CN107312580B - 一种煤浆提浓和工业废水处理工艺及装置 - Google Patents

一种煤浆提浓和工业废水处理工艺及装置 Download PDF

Info

Publication number
CN107312580B
CN107312580B CN201710557137.0A CN201710557137A CN107312580B CN 107312580 B CN107312580 B CN 107312580B CN 201710557137 A CN201710557137 A CN 201710557137A CN 107312580 B CN107312580 B CN 107312580B
Authority
CN
China
Prior art keywords
slurry
coal
water
grinding
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710557137.0A
Other languages
English (en)
Other versions
CN107312580A (zh
Inventor
蒋远华
杨晓勤
黄志亮
张忠华
虞云峰
朱月
李进
张战利
夏同成
张元堂
肖国
付明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YIHUA CHEMICAL CO Ltd HUBEI
Original Assignee
YIHUA CHEMICAL CO Ltd HUBEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YIHUA CHEMICAL CO Ltd HUBEI filed Critical YIHUA CHEMICAL CO Ltd HUBEI
Priority to CN201710557137.0A priority Critical patent/CN107312580B/zh
Publication of CN107312580A publication Critical patent/CN107312580A/zh
Application granted granted Critical
Publication of CN107312580B publication Critical patent/CN107312580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/326Coal-water suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

本发明公开了一种煤浆提浓和工业废水处理工艺及装置,该工艺,包括以下步骤:1)将煤进行破碎,然后加入水及分散剂后进行粗磨,至粒径在50μm以下,得浆料1;2)取25‑35wt%的浆料1,进行整形研磨,至粒径在20‑30μm,得浆料2;其余的浆料1泵送至水煤浆储槽作为水煤浆产品等待气化;3)取15‑25wt%的浆料2,进行超细研磨,至粒径在5‑10μm,得到浆料3;其余的浆料2及新得到的浆料3均送入粗磨阶段进行粗磨;通过步骤1)的粗磨及步骤2)和步骤3)多次重复操作后,达到有效提升浆料1浓度的目的。在提浓的过程中,所用的水还可以用工业废水进行替代。本发明至少提高煤浆浓度3个百分点,能大幅度降低气化能耗,具有安全可靠、改造方便、经济效益显著特点。

Description

一种煤浆提浓和工业废水处理工艺及装置
技术领域
本发明属于水煤浆制备技术领域,涉及水煤浆的提质,还涉及利用工业废水进行水煤浆提浓的工艺,具体为一种煤浆提浓和工业废水处理工艺及装置。
背景技术
褐煤属于低阶煤的一种,国内外褐煤资源丰富,我国已发现的褐煤资源储量约为1291.32.亿吨,约占我国煤炭保有资源量的12.7%。由于褐煤含水量高、发热量低、长距离运输易燃等原因,导致就地利用褐煤资源,发展煤化工产业成为行业焦点。但褐煤高内水含量和多空隙的特点,导致其成浆浓度低,一般为30%~50%,使得褐煤利用过程中气化选型的范围变窄,限制了其被用于水煤浆气化这种成熟稳定的气化方式。煤浆浓度过低导致气化比煤耗和比氧耗较高、冷煤气效率低,造成项目经济性不好,同时也会引起合成气水汽比高、气化炉温度与压力波动等问题,严重影响着装置的“安、稳、长、满、优”运行。因此,提高褐煤的成浆浓度对褐煤的高效洁净化利用意义重大。
提高褐煤的成浆性是目前国际上的一个难点,国内外有众多提高褐煤成浆性的技术,归纳起来共分2大类方法: 物理方法和化学方法。其中包括6项技术: 配煤制浆技术、干法制浆技术、分级研磨制浆技术、热解半焦制浆技术、机械热压提质制浆技术和水热处理制浆技术。
这几种技术各有其优缺点。其中低阶煤高效分级研磨制备水煤浆工艺针对原料煤的磨矿特性和水煤浆产品质量的要求,采用“分级研磨”的方法,使煤浆获得较宽的粒度分布,从而明显改善煤浆中煤颗粒的堆积效率,进而提高煤浆的成浆浓度。但实际运行时,该技术对于褐煤适用性较差,成浆浓度仅能提高1%~2%,难以从根本上解决褐煤成浆浓度低的难题,难以改变褐煤无法用于水煤浆气化的现实状况。
在我国煤炭品种中,难成浆的煤种占到总储量的 70%,在水煤浆技术的应用与推广过程中,如何采用难制浆煤种制备高浓度、低黏度、流动性好的水煤浆一直是关注的焦点。
大量氨氮废水或过量的氨氮废水直接排入水体,将导致水体富营养化且严重缺氧,使水生植物大量死亡,腐败的机体导致厌氧性微生物繁殖,水质变浑、变臭,破坏生态,污染环境,因此,废水脱氮处理受到人们的广泛关注,并且氨氮的排放指标已纳入了国家“十二五”重点污染治理的规划。因此,化肥行业的氨氮废水减排势在必行,这一问题如不予以重视并得到很好的处理,必将制约化肥工业的持续发展。因此,将来大化行业将废水回收处理是必然的趋势。
发明内容
本发明的目的提供一种煤浆提浓和工业废水处理工艺及装置,其能够至少提高煤浆浓度3个百分点,大幅度降低气化能耗,经济效益显著特点;进一步地,还能利用工业废水进行提浓,减小环保压力。
为解决上述技术问题,本发明所采用的技术方案是:一种煤浆提浓的工艺,包括以下步骤:
1)将煤进行破碎,然后加入磨煤水及添加剂后进行粗磨,至粒径在50μm以下,得浆料1;
2)取25-35wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在20-30μm,得浆料2;其余的浆料1泵送至水煤浆储槽;
3)取15-25wt%的浆料2,进行超细研磨,至平均粒径在5-10μm,得到浆料3;其余的浆料2及新得到的浆料3均送入步骤1)中的粗磨阶段进行粗磨;
通过步骤1)的粗磨及步骤2)和步骤3)多次重复操作后,达到有效提升水煤浆储槽中水煤浆浓度的目的。
进一步地,所述步骤1)中所用的煤,灰分<15wt%,灰熔点<1250℃,哈氏可磨性指数<75,粘度<1500。
进一步地,步骤1)中破碎时,破碎的程度为5cm以下,优选1cm以下;添加剂为木质磺酸盐。
优选地,步骤2)中,取30wt%的浆料1进行整形研磨,研磨至平均粒径为30μm。
优选地,步骤3)中,取20wt%的浆料2进行超细研磨,研磨至平均粒径为5μm。
进一步地,所述的磨煤水采用工业用水或采用工业用水与工业废水以任意比得到的混合液。
进一步地,所述的工业废水为合成氨变换冷凝液、低温甲醇洗废水中的一种或者两种,合成氨变换冷凝液中,氨氮浓度在10000-12000ppm,低温甲醇洗废水中甲醇浓度在450-550ppm。工业废水还可使用造纸厂废液及保险粉厂区难处理的有机废液。能很大程度上改制造业的废水排放问题,能企业稳定持续发展,其社会效益显著。
更进一步地,所用的工业废水中,合成氨变换冷凝液与低温甲醇洗废水的体积比为30-40:10-15。加入保险粉厂区难处理的有机废液时,其于其他工业废水的体积比为1-1.5:1。
本发明还涉及采用所述的工艺进行煤浆提浓的装置,包括依次设置的粉碎设备、粗磨设备和水煤浆储罐,水煤浆储罐通过管道连接至整形研磨设备进料口,整形研磨设备的出料口再通过中转罐及管道连接至粗磨设备;中转罐还通过管道连接至超细研磨设备进料口,超细研磨设备进料口通过管道连接至粗磨设备。
水煤浆气化工艺对煤种的要求较高,灰熔点灰分的高低都直接影响生产的稳定,故在煤种选择较窄的情况下提高煤浆浓度是产生效益的有效途径。本发明通过不同粒径的研磨煤能够有效填补大粒径煤粒间的空隙从而提高煤浆浓度。
本发明有益效果如下:
1、高浓度水煤浆分散体系在某种意义上可看作是由各种粒度煤粉构成的粒子床,其孔隙率为在0.4 左右,当这些孔隙被水完全填充时,水煤浆浓度可达 65%甚至以上。由于在制浆过程中采用合理的粒度级配实现合理的粒度分布不仅可以使煤粉顺利达到较高的堆积效率,制得高浓度水煤浆,而且可以使制得的水煤浆具有较好的流动性,并降低其表观黏度。粒度配级时,并不是越细越好,煤粉的粒径及各粒径的比重都需要严格控制,否则浓度和黏度均难以达到要求。本发明采用合理的粒度级配制备得到了高浓度水煤浆,而且能够保证水煤浆的浓度在合理的范围之内。
2、本发明中涉及的工业废水虽然成分较为复杂,但由于含有一定量有机物质并具有热值,将其与煤配合制备成生物质煤浆,将水煤浆制备技术和高浓度有机废水处理结合起来,使废水中的有机物在水煤浆气化炉中燃烧,得到氢气,一氧化碳,甲醇,合成氨等有效气组成分,不仅降低制浆成本、节省用煤量和用水量,还可以完全处理高浓度有机废水,减少污水处理成本,实现废弃物资源再利用,对废水进行资源化研究处理,变废为宝,提高企业效益的同时能够减轻后续废水处理的成本和压力。在提高水煤浆的浓度的同时,消耗掉现场废水,实现煤炭高效清洁利用和环保的双重目标。
湖北宜化化工股份有限公司改造之前的水煤浆合成氨装置,气化工段煤浆制备系统煤浆浓度为60%左右,受原材料煤种及新装置操作控制水平影响,煤浆流动性及稳定性较差,煤浆指标不稳定。根据生产经验表明,水煤浆浓度每提高1%,每1000Nm3合成气(CO+H2)耗氧约减少10Nm3,煤耗降低约10kg,有效气含量提高约0.7个百分点。采用本发明的方法在煤浆浓度上有所突破,能够提升煤浆浓度3-5个百分点甚至更多,使煤耗、氧耗降低,有效气体含量增加,提高整体系统装置的生产能力,将给企业带来显著的经济效益。
附图说明
图1是本发明工艺流程图。
图2是本发明提供装置的结构图。
具体实施方式
下面结合实施例来进一步说明本发明,但本发明要求保护的范围并不局限于实施例表述的范围。
实施例1:
煤种一:灰分16.1 wt%,灰熔点 1300℃,哈氏可磨性指数55,粘度 1000 Pa.s。
1)将煤进行破碎,然后加入磨煤水及添加剂后进行粗磨,至粒径在50μm以下,得浆料1;
2)取25wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在20μm,得浆料2;其余的浆料1泵送至水煤浆储槽;
3)取15wt%的浆料2,进行超细研磨,至平均粒径在5μm,得到浆料3;其余的浆料2及新得到的浆料3均送入粗磨阶段进行粗磨;
通过步骤1)的粗磨及步骤2)和步骤3)多次重复操作后,达到有效提升水煤浆储槽中的水煤浆浓度的目的。水煤浆浓度为64%;黏度为965Pa.s。
对比例1:省去步骤2)和步骤3),其余同实施例1,得到的水煤浆的浓度为59.5%。
实施例2:
煤种二:灰分14.7 wt%,灰熔点1233℃,哈氏可磨性指数60,粘度1100 Pa.s。
1)将煤进行破碎,然后加入磨煤水及添加剂后进行粗磨,至粒径在50μm以下,得浆料1;
2)取30wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在30μm,得浆料2;其余的浆料1泵送至水煤浆储槽作为水煤浆产品等待气化;
3)取20wt%的浆料2,进行超细研磨,至平均粒径在5μm,得到浆料3;其余的浆料2及新得到的浆料3均送入粗磨阶段进行粗磨;
通过步骤1)的粗磨及步骤2)和步骤3)多次重复操作后,达到有效提升水煤浆储槽中的水煤浆浓度的目的。水煤浆浓度为66%;黏度为981 Pa.s。
对比例2:在步骤2)中,取50wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在30μm,其余同实施例2,得到水煤浆的浓度为61wt%。
对比例3:在步骤2)中,取10wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在30μm,其余同实施例2,得到水煤浆的浓度为60.3wt%。
对比例4:取10wt%的浆料2,进行超细研磨,至平均粒径在5μm,得到浆料3;其余同实施例2,得到水煤浆的浓度为62.5wt%。
对比例5:取40wt%的浆料2,进行超细研磨,至平均粒径在5μm,得到浆料3;其余同实施例2,得到水煤浆的浓度为62.8wt%。
实施例3:
煤种三:灰分13.9 wt%,灰熔点1240℃,哈氏可磨性指数70,粘度1300 Pa.s。
1)将煤进行破碎,然后加入磨煤水及添加剂后进行粗磨,至粒径在50μm以下,得浆料1;
2)取35wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在25μm,得浆料2;其余的浆料1泵送至水煤浆储槽作为水煤浆产品等待气化;
3)取25wt%的浆料2,进行超细研磨,至平均粒径在10μm,得到浆料3;其余的浆料2及新得到的浆料3均送入粗磨阶段进行粗磨;
通过步骤1)的粗磨及步骤2)和步骤3)多次重复操作后,达到有效提升水煤浆储槽中的水煤浆浓度的目的。水煤浆浓度为65%;黏度为950 Pa.s。
实施例4:
煤种四:灰分15 wt%,灰熔点1280℃,哈氏可磨性指数65,粘度1050 Pa.s。
1)将煤进行破碎,然后加入磨煤水及添加剂后进行粗磨,至粒径在50μm以下,得浆料1;
2)取30wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在30μm,得浆料2;其余的浆料1泵送至水煤浆储槽作为水煤浆产品等待气化;
3)取20wt%的浆料2,进行超细研磨,至平均粒径在5μm,得到浆料3;其余的浆料2及新得到的浆料3均送入粗磨阶段进行粗磨;
通过步骤1)的粗磨及步骤2)和步骤3)多次重复操作后,达到有效提升水煤浆储槽中的水煤浆浓度的目的。所用的磨煤水为工业用水、合成氨变换冷凝液与低温甲醇洗废水按体积比为50:30-40:10-15混合得到;水煤浆浓度为67%;黏度为810 Pa.s。
对比例6:在步骤2)中,取30wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在10μm,其余同实施例4,得到水煤浆的浓度为62.9wt%,粘度为1309 Pa.s。分析其原因是研磨过细,反而增加了水煤浆的粘度。
用于替代工业用水(一次水)的废水中,均是本公司在其余工艺中的废水,可用的包括以下几种,一股来自合成氨变换冷凝液,其正常生产时流量3.49T/H,压力0.2MP,温度70度,NH3浓度在10000-12000;一股来自低温甲醇洗的废水,流量1.85/H,压力0.28MP,温度31度,甲醇浓度在450-550ppm;具体用废水根据厂区的实际情况进行调整,还可以容纳周边造纸厂废液及保险粉厂区难处理的有机废液。能很大程度上改善周边制造业的废水排放问题,能帮助周边中小型企业稳定持续发展,其社会效益显著。
如图1-图2所示,本发明还涉及采用所述的工艺进行煤浆提浓的装置,包括依次设置的粉碎设备1、粗磨设备2和水煤浆储罐3,水煤浆储罐通过管道连接至整形研磨设备4进料口,整形研磨设备的出料口再通过中转罐5及管道连接至粗磨设备2;中转罐还通过管道连接至超细研磨设备6进料口,超细研磨设备进料口通过管道连接至粗磨设备2。

Claims (8)

1.一种煤浆提浓的工艺,其特征在于,包括以下步骤:
1)将煤进行破碎,然后加入磨煤水及添加剂后进行粗磨,至粒径在50μm以下,得浆料1;
2)取25-35wt%的浆料1,加入磨煤水进行整形研磨,至平均粒径在20-30μm,得浆料2;其余的浆料1泵送至水煤浆储槽;
3)取15-25wt%的浆料2,进行超细研磨,至平均粒径在5-10μm,得到浆料3;其余的浆料2及新得到的浆料3均送入步骤1)中的粗磨阶段进行粗磨;
通过步骤1)的粗磨及步骤2)和步骤3)多次重复操作后,达到有效提升水煤浆储槽中水煤浆浓度的目的。
2.根据权利要求1所述的工艺,其特征在于:所述步骤1)中所用的煤,灰分<18wt%,灰熔点<1300℃,哈氏可磨性指数<75,粘度<1500mPa.s。
3.根据权利要求1所述的工艺,其特征在于:步骤1)中,添加剂为木质磺酸盐。
4.根据权利要求1所述的工艺,其特征在于:步骤2)中,取30wt%的浆料1进行整形研磨,研磨至平均粒径为30μm。
5.根据权利要求1所述的工艺,其特征在于:步骤3)中,取20wt%的浆料2进行超细研磨,研磨至平均粒径为5μm。
6.根据权利要求1所述的工艺,其特征在于:所述的磨煤水采用工业用水或采用工业用水与工业废水的混合液。
7.根据权利要求6所述的工艺,其特征在于:所述的工业废水为合成氨变换冷凝液、低温甲醇洗废水中的一种或者两种,合成氨变换冷凝液中,氨氮浓度在10000-12000ppm,低温甲醇洗废水中甲醇浓度在450-550ppm。
8.根据权利要求7所述的工艺,其特征在于:所用的工业废水中,合成氨变换冷凝液与低温甲醇洗废水体积比为30-40:10-15。
CN201710557137.0A 2017-07-10 2017-07-10 一种煤浆提浓和工业废水处理工艺及装置 Active CN107312580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710557137.0A CN107312580B (zh) 2017-07-10 2017-07-10 一种煤浆提浓和工业废水处理工艺及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710557137.0A CN107312580B (zh) 2017-07-10 2017-07-10 一种煤浆提浓和工业废水处理工艺及装置

Publications (2)

Publication Number Publication Date
CN107312580A CN107312580A (zh) 2017-11-03
CN107312580B true CN107312580B (zh) 2019-04-23

Family

ID=60178254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710557137.0A Active CN107312580B (zh) 2017-07-10 2017-07-10 一种煤浆提浓和工业废水处理工艺及装置

Country Status (1)

Country Link
CN (1) CN107312580B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725045B (zh) * 2019-10-29 2022-11-15 中国石油化工股份有限公司 水煤浆及其制备方法
CN111234891B (zh) * 2020-02-10 2022-10-18 内蒙古大学 一种利用煤化工含氨废水制备高性能水煤浆的方法
CN111530564B (zh) * 2020-06-03 2021-02-26 北煤化(北京)科技有限公司 一种高浓度高流动性矿浆及其制备方法
CN112812866B (zh) * 2020-12-25 2022-12-27 国家能源集团宁夏煤业有限责任公司 水煤浆及其制备方法和合成气的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511129B2 (ja) * 1988-12-12 1996-06-26 三菱重工業株式会社 高濃度石炭水スラリの製造方法
CN201729818U (zh) * 2010-07-27 2011-02-02 中国神华能源股份有限公司 一种神华煤高浓度制浆设备
CN104987903B (zh) * 2015-07-13 2016-08-24 中煤科工清洁能源股份有限公司 一种制备气化水煤浆的方法

Also Published As

Publication number Publication date
CN107312580A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN107312580B (zh) 一种煤浆提浓和工业废水处理工艺及装置
CN103722002B (zh) 基于厌氧消化和水热碳化的生活垃圾综合处理方法
CN105154121A (zh) 低阶煤分级利用多联产系统及方法
CN105062583A (zh) 一种干燥煤粉与半焦配合制备气化水煤浆的方法
CN110982542B (zh) 基于水热反应的低阶煤制备高炉喷吹半焦方法
CN109652139A (zh) 一种利用低阶煤中挥发分和废水制备合成气的方法和系统
CN107057787A (zh) 煤转化废水梯级利用制备浆体燃料的方法
CN108285808B (zh) 一种煤与生物质的多级液化工艺
CN101787312B (zh) 垃圾渗沥液为原料制备的生物炭浆及其制备工艺
CN203866268U (zh) 低煤化程度煤热解与磨煤耦合制备水煤浆系统
CN205133505U (zh) 低阶煤分级利用多联产系统
CN101985572A (zh) 一种高浓度污泥煤焦浆及其制备方法
CN109880663B (zh) 一种低能耗完全间断粒度级配的水煤浆及其制备方法
CN105062567B (zh) 水煤气的制备方法
CN105623757B (zh) 采用炼油化工碱渣废水制备水煤浆
CN107381879A (zh) 一种处理生物质气化洗气废水及资源化利用废水处理产物的方法
Chen et al. High efficient and clean utilization of coal for the carbothermic reduction of silica
CN110964580A (zh) 一种高浓度气化水煤浆制备方法
CN114015473A (zh) 纯氧加压生产1.0~2.2MPa水煤气的方法及装置
CN110387269A (zh) 煤炭分级综合利用和焦粉高效气化的系统和方法
Gao et al. Effects of pH on rheological characteristics and stability of petroleum coke water slurry
CN113308282A (zh) 一种水煤浆及其制备方法和应用
CN202968499U (zh) 制革废弃物气化制备燃气的专用设备
CN208964867U (zh) 焦粉高效气化系统及煤炭综合利用和焦粉高效气化系统
CN207699538U (zh) 高浓有机废水清洁制取高浓度煤浆装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant