CN107304304A - 一种有机硅树脂中纳米粉体分散方法 - Google Patents
一种有机硅树脂中纳米粉体分散方法 Download PDFInfo
- Publication number
- CN107304304A CN107304304A CN201610253792.2A CN201610253792A CN107304304A CN 107304304 A CN107304304 A CN 107304304A CN 201610253792 A CN201610253792 A CN 201610253792A CN 107304304 A CN107304304 A CN 107304304A
- Authority
- CN
- China
- Prior art keywords
- nano
- powder
- organic siliconresin
- tundish
- dispersing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Silicon Compounds (AREA)
Abstract
本发明涉及一种有机硅树脂中纳米粉体分散方法,其特征在于纳米粉体被均匀的分散到树脂中,所述,在速凝设备中补配中间包,添加陶瓷纤维材料喷嘴,调节喷嘴流通孔洞的尺寸、大小、分布,使合金液均匀的流出。调整中间包合适的保温加热温度,防止树脂液阻塞流通孔洞,调整中间包与旋转辊轮的距离,配合铜辊旋转速度,使薄带片以最佳的速度甩出。大部分的晶粒大小分布在2~5µm之间的微结构,而且薄带的自由面与贴辊面的晶粒取向基本一致。所述,一种有机硅树脂中纳米粉体分散方法,采用超临界流体在流化床的快速膨胀,使改性纳米粉体表面形成均匀的薄膜包覆。并通过控制膨胀前温度、包覆时间,达到控制释放,从而控制粉体表面包覆致密度与包覆厚度。最终实现纳米粉体在有机硅树脂中均匀分散。
Description
技术领域
本发明涉及一种有机硅树脂中纳米粉体分散方法,特别涉及一种有机硅树脂中纳米粉体分散。属于新材料技术领域。
背景技术
由于近年来世界各国都对纳米技术进行了大量的投入, 所以目前可以很容易制备出各种纳米粉体。由于纳米粒子具有大比表面积, 随着粒子半径的减小, 其表面能和表面张力都急剧增大;此外, 还具有小尺寸效应、量子尺寸效应和量子隧道效应, 因而, 纳米材料具有独特的力学、光、热、电、磁、吸附、气敏等性质, 在传统材料中加入纳米粉体将大大改善其性能或带来意想不到的性质。
目前, 纳米材料在信息、能源、环境和生物技术等高科技产业中的应用已取得了初步成果。但是在应用过程中, 由于纳米粒子粒径小, 表面活性高, 使其易发生团聚而形成尺寸较大的团聚体, 严重地阻碍了纳米粉体的应用和相应的纳米材料的制备,纳米粒子具有许多特殊的性质,人们对纳米材料的研究表现出极大的热情,先后合成出多种功能先进性能突出的纳米及纳米复合材料。因纳米粒子具有特殊的表面性质,要获得稳定而不团聚的纳米粒子,必须在制备或分散纳米粒子的过程中对其进行表面修饰。表面修饰对于纳米粒子的制备、改性和保存都具有非常重要的作用。目前,团聚与分散问题已经成为制备与发展纳米粉体的瓶颈,纳米粉体的团聚与分散性取决于其形态和表面结构等。而纳米粉体的形态和表面结构又与其内部结构、杂质、表面吸附和化学反应、制备工艺、环境状态等诸因素有关, 因而导致了纳米粉体团聚与分散机制的复杂性和多样性。通过对纳米粉体表面的处理可以保护纳米粒子,改善粒子的分散性,提高纳米粒子的表面活性,改变纳米粒子表面状态,改善纳米粒子与分散介质之间的相容性,为纳米材料的自组装奠定基础。纳米粉体粒子经表面改性后,其吸附、润湿、分散等一系列表面性质都随之变化,有利于颗粒保存、运输及使用。
纳米粉体表面处理以后,表面形成一层有机包覆层。包覆层的极性端吸附在颗粒的表面,非极性长链则指向溶剂,在一定条件下,有机链的非极性端结合在一起,形成规则排布的二维结构。目前粉体表面处理大部都是把纳米粉体分散在一些含有偶联剂或稳定剂的溶液中,然后超声分散,最后磁力搅拌。再干燥,但粉体都结块了,并且不是纳米级的。
发明内容
为了克服上述不足,本发明涉及一种有机硅树脂中纳米粉体分散方法,包括对国产甩带设备进行创新性的改造,补配中间包,以及添加陶瓷纤维材料喷嘴,用以保持树脂液恒定流量和流速。本发明利用有机小分子,比如有机硅分子等,对纳米材料表面修饰,并通过流体在超临界状态下具有气相的高扩散系数和液相的强溶解能力的特点。使超临界流体在流化床中的快速膨胀,使改性微核在颗粒表面形成均匀的薄膜包覆。超临界流体在快速膨胀过程中,超临界相向气相的快速转变引发流体温度、压力的急剧降低,从而导致溶质在超临界溶剂中溶解度的急剧变化,在高频湍动的膨胀射流场中瞬间 均匀析出溶质微核。膨胀气流载带这些均匀微核与流化床中的颗粒碰撞,产生均匀接触,从而在细颗粒表面形成均匀包覆。本发明通过控制膨胀前温度、包覆时间达到控制释放,从而控制包覆致密度与包覆厚度。最终使纳米粉体材料得到充分的表面处理,由于超临界流体快速膨胀后的溶剂与溶质颗粒容易快速彻底分离,不会对产品产生任何污染。
附图说明;图1:超临界流体在流化床中的快速膨胀过程示意图。
(1)CO2钢瓶 (2)冷却器 (3)高压泵 (4)CO2流量计 (5)换热器 (6)萃取罐(7)喷嘴 (8)流化床 (9)分布板 (10)流化气流量计 (11)气源。
具体实施方式
实施方式一:本发明涉及一种有机硅树脂中纳米粉体分散方法,利用创新性改造国产速凝甩带炉,在速凝设备中补配中间包,中间包的喷嘴(7)采用陶瓷纤维材料制备,设计合适喷嘴(7)流通的孔洞大小及分布,以保持合金液及树脂液分散均匀厚度的从孔洞流出,同时调整中间包与旋转辊轮的距离为0.5mm,配合铜辊以12m/s速度旋转,使薄带片以最佳的速度甩出。提高薄带的自由面与贴辊面的晶粒取向基本一致性。
实施方式二:通过流体在超临界状态下具有气相的高扩散系数和液相的强溶解能力的特点。使超临界流体在流化床中的快速膨胀,使改性微核在颗粒表面形成均匀的薄膜包覆。具体操作如图1所示:纯净的CO2(1)通过高压泵(3)加压力7.3MPa,经过冷却器(2)至液态,再经过管路控制加热至31.05℃,CO2流量计(4)会对加压、加热CO2(1)用量进行控制,经过换热器(5)后送入高压萃取罐(6)中,萃取罐(6)中预先放入过量的包覆剂,经过2小时反复萃取后,超临界流体再次流经换热器(5),并通过喷嘴(7)在流化床(8)中快速膨胀,喷嘴(7)与流化床(8)之间设有分布板(9),流化床(8)中颗粒在膨胀射流和气源(11)的共同作用下,使合金液在高频湍动的膨胀射流场中瞬间均匀析出溶质微核。膨胀气流载带这些均匀微核与流化床中的颗粒碰撞,产生均匀接触,从而实现在细颗粒表面形成均匀颗粒包覆。为了控制流化气流量,流化床(8)和气源(11)之间设有流化气流量计(10),由于超临界流体在快速膨胀过程中,超临界相向气相的快速转变引发流体温度、压力的急剧降低,从而导致溶质在超临界溶剂中溶解度的急剧变化,因此,要对中间包的喷嘴(7)做进一步的调整,添加陶瓷纤维材料喷嘴,可控制保持树脂液恒定流量和流速。利用适合喷嘴(7)流通的孔洞大小、分布,使合金液及树脂液分散且均匀厚度的从孔洞流出,同时调整中间包合适的保温加热温度,防止金属液及树脂液阻塞流通孔洞,本发明通过控制膨胀前调整中间包合适的保温加热温度,调整中间包与旋转辊轮的距离,配合铜辊旋转速度,使薄带片以最佳的速度甩出。大部分的晶粒大小分布在5~20µm之间的微结构,而且薄带的自由面与贴辊面的晶粒取向基本一致。包覆时间达到控制释放,从而控制包覆致密度与包覆厚度。最终使纳米粉体材料得到充分的表面处理,由于超临界流体快速膨胀后的溶剂与溶质颗粒容易快速彻底分离,不会对产品产生任何污染。
本发明一种有机硅树脂中纳米粉体分散方法实施效果为:采用超临界流体,超临界流体快速膨胀后的溶剂与溶质颗粒容易快速彻底分离,无溶剂在颗粒中残留,不会对产品产生任何污染。最终实现纳米粉体在有机硅树脂中均匀分散。
Claims (5)
1.一种有机硅树脂中纳米粉体分散方法,其特征在于纳米粉体被均匀的分散到树脂中,所述,在速凝设备中补配中间包,添加陶瓷纤维材料喷嘴,调节喷嘴流通孔洞的尺寸、大小、分布,使合金液均匀的流出,调整中间包合适的保温加热温度,防止树脂液阻塞流通孔洞,调整中间包与旋转辊轮的距离,配合铜辊旋转速度,使薄带片以最佳的速度甩出,大部分的晶粒大小分布在2~5µm之间的微结构,而且薄带的自由面与贴辊面的晶粒取向基本一致。
2.根据权利要求1所述,一种有机硅树脂中纳米粉体分散方法,其特征在于: 这个过程需要在甩带设备中进行。
3.根据权利要求1所述,一种有机硅树脂中纳米粉体分散方法,其特征在于:中间包的保温加热温度调整为31℃,可防止树脂液阻塞流通孔洞。
4.根据权利要求1所述,一种有机硅树脂中纳米粉体分散方法,其特征在于:中间包与旋转辊轮的距离为0.5mm,配合铜辊旋转速度为12m/s,使薄带片以最佳的速度甩出,而且薄带的自由面与贴辊面的晶粒取向基本一致。
5.根据权利要求4所述,一种有机硅树脂中纳米粉体分散方法,其特征在于:采用超临界流体在流化床的快速膨胀,使改性纳米粉体表面形成均匀的薄膜包覆,并通过控制膨胀前温度、包覆时间,达到控制释放,从而控制粉体表面包覆致密度与包覆厚度,最终实现纳米粉体在有机硅树脂中均匀分散。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610253792.2A CN107304304A (zh) | 2016-04-22 | 2016-04-22 | 一种有机硅树脂中纳米粉体分散方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610253792.2A CN107304304A (zh) | 2016-04-22 | 2016-04-22 | 一种有机硅树脂中纳米粉体分散方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107304304A true CN107304304A (zh) | 2017-10-31 |
Family
ID=60151916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610253792.2A Pending CN107304304A (zh) | 2016-04-22 | 2016-04-22 | 一种有机硅树脂中纳米粉体分散方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107304304A (zh) |
-
2016
- 2016-04-22 CN CN201610253792.2A patent/CN107304304A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Si et al. | Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process | |
Kim et al. | Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in a micro precipitator | |
TWI619672B (zh) | 製作粒子的裝置與方法 | |
Hall et al. | Preparation of aluminum coatings containing homogenous nanocrystalline microstructures using the cold spray process | |
Wang et al. | Mechanism of particle coating granulation with RESS process in a fluidized bed | |
KR20080012918A (ko) | 원하는 재료의 균일한 층 부착 방법 | |
Zhao et al. | Large-scale production of (2, 4-DHB) nM micro-nano spheres by spray drying and their application as catalysts for ammonium perchlorate | |
Guan et al. | One-pot synthesis of size-tunable hollow gold nanoshells via APTES-in-water suspension | |
Tabbara et al. | A study of liquid droplet disintegration for the development of nanostructured coatings | |
CN104942300A (zh) | 空心或实心球形金属粉体的制备方法 | |
Lee et al. | Spray drying formation of metal oxide (TiO2 or SnO2) nanoparticle coated boron particles in the form of microspheres and their physicochemical properties | |
Montes et al. | Silica microparticles precipitation by two processes using supercritical fluids | |
CN107304304A (zh) | 一种有机硅树脂中纳米粉体分散方法 | |
Zhou et al. | Recent progress in the development and properties of aluminum matrix composites reinforced with graphene: A review | |
Li et al. | Imbibition-induced ultrafast assembly and printing of colloidal photonic crystals | |
Pyeon et al. | Plasmonic metasurfaces of cellulose nanocrystal matrices with quadrants of aligned gold nanorods for photothermal anti-icing | |
Da Silva et al. | scCO2-based synthesis of semi-crystalline TiO2 nanoparticles: A rapid and direct strategy | |
CN107140692A (zh) | 磁性胶体核壳结构γ‑Fe2O3及Fe3O4的制备方法 | |
Lonbani et al. | Fabrication and Properties of Hydrophobically Modified ZnO–SiO2 Nanocomposite with Polysiloxane | |
Tsutsumi et al. | A nano-coating process by the rapid expansion of supercritical suspensions in impinging-stream reactors | |
CN106111030B (zh) | 一种金/碳复合微球及其制备方法 | |
Puprompan et al. | Flow synthesis of silver nanoparticles using water in supercritical CO2 emulsion | |
Karthik et al. | Effects of bulk stoichiometry and surface state of NiAl nano-dispersoid on the stability and heat transfer characteristics of water based nanofluid | |
Chen et al. | Hydrothermal synthesis of high densified CdS polycrystalline microspheres under high gravity | |
CN102502818A (zh) | 热喷涂用纳米氧化锆球形团聚颗粒的一步合成法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171031 |
|
WD01 | Invention patent application deemed withdrawn after publication |