CN107297459A - 采用3d打印实型模的不锈钢叶轮的熔模快速铸造工艺 - Google Patents

采用3d打印实型模的不锈钢叶轮的熔模快速铸造工艺 Download PDF

Info

Publication number
CN107297459A
CN107297459A CN201710300470.3A CN201710300470A CN107297459A CN 107297459 A CN107297459 A CN 107297459A CN 201710300470 A CN201710300470 A CN 201710300470A CN 107297459 A CN107297459 A CN 107297459A
Authority
CN
China
Prior art keywords
shell
full mold
mold mould
printing full
fusible pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710300470.3A
Other languages
English (en)
Inventor
杨晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHANGJIAGANG FEILANG VALVE CO Ltd
Original Assignee
ZHANGJIAGANG FEILANG VALVE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHANGJIAGANG FEILANG VALVE CO Ltd filed Critical ZHANGJIAGANG FEILANG VALVE CO Ltd
Priority to CN201710300470.3A priority Critical patent/CN107297459A/zh
Publication of CN107297459A publication Critical patent/CN107297459A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

本发明公开了熔模精密铸造工艺领域中的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,包括如下步骤:在3D打印实型模上设通气孔道,然后用普通蜡封住;将实型模与熔模组焊成一体,形成模组;在模组表面涂覆改性硅溶胶,形成整体型壳;去除整体型壳中封盖住通气孔道的型壳,熔掉熔模及普通蜡;风干后将型壳与实型模整体以实型模在上的状态装进焙烧炉,在富氧状态下烧蚀实型模,待充分燃烧后再封闭炉门,充分烧蚀后停炉,冷却后取出;对型壳进行冲洗,去除残渣及残灰,之后封堵好型壳上在上面步骤中去除的部分;将型壳放入焙烧炉中进行焙烧,然后进行高温金属熔液浇注,得到铸件。本发明具有制造费用低、生产效率高且型壳不易开裂等优点。

Description

采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺
技术领域
本发明涉及熔模精密铸造工艺,尤其涉及一种能与3D打印实型模相配套的不锈钢叶轮的熔模快速铸造工艺。
背景技术
叶轮是离心泵中的核心部件,叶轮的叶片通常具有不规则曲面、结构十分复杂,而且叶轮内部往往又具有许多精细的结构。为保证叶轮工作时的可靠性,对其尺寸精度、形状公差及表面粗糙度等质量指标要求很高。对于叶轮铸件生产,行业中一般采用熔模精密铸造工艺,熔模精密铸造工艺生产工序多、周期长、质量影响因素多且控制也较为复杂,其中叶轮的铸造工艺与浇注系统设计、压型设计以及制造后与实际生产结构差异性调整等通常要有一个漫长的调整过程,这便导致模具制造费用高、制作周期长。尤其是对于复杂叶轮铸件和大叶轮铸件来说,试制费用十分高昂,大大加重了企业负担,同时也会严重影响后续新产品的试制。另外,在焙烧过程中,常常伴随燃烧不完全和型壳内部空气受热膨胀情况的发生,导致型壳极易开裂、并会在型壳内形成残渣,使精铸件产生夹渣、气孔等缺陷而报废,严重影响正常生产。
发明内容
本发明所需解决的技术问题是:提供一种制造费用低、生产效率高且型壳不会开裂的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺。
为解决上述问题,本发明采用的技术方案是:采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,包括如下步骤:
(1)在3D打印实型模上准备焊接内浇口的位置设置通气孔道,然后用普通蜡封住通气孔道;
(2)将经过步骤(1)处理得到的3D打印实型模与形成浇冒口系统的熔模组焊成一体,形成模组;
(3)在步骤(2)中得到的模组表面涂覆改性硅溶胶,改性硅溶胶经过干燥和硬化后形成包覆在模组表面的整体型壳;
(4)去除步骤(3)中得到的整体型壳中封盖在通气孔道外侧的部分型壳,随后熔掉熔模及封堵在通气孔道中的普通蜡;
(5)对步骤(4)中熔掉熔模后的型壳与3D打印实型模整体进行风干处理;
(6)将焙烧炉的炉温升至500℃以上,然后将步骤(5)中得到的风干后的型壳与3D打印实型模整体以3D打印实型模在上的状态装进焙烧炉内,并保持炉门敞开,在富氧状态下,将炉内温度升至(650±10)℃烧蚀3D打印实型模,待充分燃烧后再封闭炉门并将炉内温度升至(950±10)℃,在3D打印实型模完全被烧蚀后停炉,待型壳冷却后取出;
(7)使用(50~60)℃的清水对步骤(6)中冷却后取出的型壳进行冲洗,去除残存在型壳死角和型壳内层表面的残渣及残灰,之后封堵好型壳上在步骤(4)中去除的部分;
(8)将经过步骤(7)处理后的型壳放入炉内温度为(1100~1200)℃的焙烧炉中进行焙烧,然后进行高温金属熔液浇注;
(9)待高温金属熔液冷却凝固后,切割开型壳,得到铸件。
进一步地,前述的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,其中:步骤(4)采用高压脱蜡釜或低压蒸汽脱蜡炉熔掉熔模及封堵住通气孔道的普通蜡。
进一步地,前述的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,其中:步骤(4)采用(95~100)℃的热水熔掉熔模及封堵住通气孔道的普通蜡。
进一步地,前述的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,其中:步骤(6)中将风干后的型壳与3D打印实型模整体放入焙烧炉后,将炉内温度升至650℃烧蚀3D打印实型模,待充分燃烧后再封闭炉门并将炉内温度升至950℃。
本发明的有益效果是:一、在步骤(1)中对3D打印实型模预设通气孔道,这样在步骤(6)的焙烧初始阶段,型壳内部气体受热膨胀后能够通过通气孔道向外排出,能够有效防止型壳涨裂;二、在步骤(2)中采用硅溶胶含量为10%改性硅溶胶,相比普通硅溶胶,干燥周期能够缩短1/3以上,从而提升生产效率;三、本工艺能够与3D打印实型模相配套,生产出的叶轮铸件尺寸精度高,解决了在传统工艺中,需要根据试制叶轮铸件与设计的差异性来不断调整模具的工艺参数这一重大缺陷,从而能够大幅减少制造费用、缩短制作周期。
具体实施方式
下面结合优选实施例对本发明所述的技术方案作进一步详细的说明。
实施例一:
采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,包括如下步骤:
(1)在3D打印实型模上准备焊接内浇口的位置打出通气孔道,然后用普通蜡封住通气孔道,所述3D打印实型模能够从3D模型生产厂商直接采购到,其材质为SLS蜡粉基或SLA树脂基,所述普通蜡是和蜡烛一样的材质,在(90~95)℃的热水中能被融化;
(2)将经过步骤(1)处理得到的3D打印实型模与形成浇冒口系统的熔模组焊成一体,形成模组;
(3)在步骤(2)中得到的模组表面涂覆硅溶胶含量为10%的改性硅溶胶,改性硅溶胶经过干燥和硬化后形成包覆在模组表面的整体型壳,本步骤采用的改性硅溶胶相比普通硅溶胶,干燥周期缩短了1/3以上;
(4)用水去除步骤(3)中得到的整体型壳中封盖在通气孔道外侧的部分型壳,随后采用高压脱蜡釜熔掉熔模及封堵在通气孔道中的普通蜡,由于3D打印实型模必须在高温焙烧情况下才能气化,所以在此步骤中,3D打印实型模不会被脱除;
(5)对步骤(4)中熔掉熔模后的型壳与3D打印实型模整体进行风干处理;
(6)将焙烧炉的炉温升至500℃以上,然后将步骤(5)中得到的风干后的型壳与3D打印实型模整体以3D打印实型模在上的状态装进焙烧炉内,并保持炉门敞开确保燃烧充分,在富氧状态下,将炉内温度升至660℃烧蚀3D打印实型模,在焙烧的初始阶段,型壳内部气体受热膨胀,膨胀后的气体从通气孔道向外排出,能够防止型壳涨裂。焙烧时保持烟囱畅通且呈抽风状态,待充分燃烧后再封闭炉门并将炉内温度升至960℃,在3D打印实型模完全被烧蚀后停炉,待型壳冷却后取出;
(7)使用(50~60)℃的清水对步骤(6)中冷却后取出的型壳进行冲洗,去除残存在型壳死角和型壳内层表面的残渣及残灰,防止残渣和残灰影响到铸件的尺寸精度,之后封堵好型壳上在步骤(4)中去除的部分;
(8)将经过步骤(7)处理后的型壳放入炉内温度为(1100~1200)℃的焙烧炉中进行焙烧,然后进行高温金属熔液浇注;
(9)待高温金属熔液冷却凝固后,切割开型壳,得到不锈钢叶轮铸件。
实施例二:
采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,包括如下步骤:
(1)在3D打印实型模上准备焊接内浇口的位置打出通气孔道,然后用普通蜡封住通气孔道,所述3D打印实型模能够从3D模型生产厂商直接采购到,其材质为SLS蜡粉基或SLA树脂基,所述普通蜡是和蜡烛一样的材质,在(90~95)℃的热水中能被融化;
(2)将经过步骤(1)处理得到的3D打印实型模与形成浇冒口系统的熔模组焊成一体,形成模组;
(3)在步骤(2)中得到的模组表面涂覆硅溶胶含量为10%的改性硅溶胶,改性硅溶胶经过干燥和硬化后形成包覆在模组表面的整体型壳,本步骤采用的改性硅溶胶相比普通硅溶胶,干燥周期缩短了1/3以上;
(4)用水去除步骤(3)中得到的整体型壳中封盖在通气孔道外侧的部分型壳,随后采用低压蒸汽脱蜡炉熔掉熔模及封堵在通气孔道中的普通蜡,由于3D打印实型模必须在高温焙烧情况下才能气化,所以在此步骤中,3D打印实型模不会被脱除;
(5)对步骤(4)中熔掉熔模后的型壳与3D打印实型模整体进行风干处理;
(6)将焙烧炉的炉温升至500℃以上,然后将步骤(5)中得到的风干后的型壳与3D打印实型模整体以3D打印实型模在上的状态装进焙烧炉内,并保持炉门敞开确保燃烧充分,在富氧状态下,将炉内温度升至640℃烧蚀3D打印实型模,在焙烧的初始阶段,型壳内部气体受热膨胀,膨胀后的气体从通气孔道向外排出,能够防止型壳涨裂。焙烧时保持烟囱畅通且呈抽风状态,待充分燃烧后再封闭炉门并将炉内温度升至940℃,在3D打印实型模完全被烧蚀后停炉,待型壳冷却后取出;
(7)使用(50~60)℃的清水对步骤(6)中冷却后取出的型壳进行冲洗,去除残存在型壳死角和型壳内层表面的残渣及残灰,防止残渣和残灰影响到铸件的尺寸精度,之后封堵好型壳上在步骤(4)中去除的部分;
(8)将经过步骤(7)处理后的型壳放入炉内温度为(1100~1200)℃的焙烧炉中进行焙烧,然后进行高温金属熔液浇注;
(9)待高温金属熔液冷却凝固后,切割开型壳,得到不锈钢叶轮铸件。
实施例三:
采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,包括如下步骤:
(1)在3D打印实型模上准备焊接内浇口的位置打出通气孔道,然后用普通蜡封住通气孔道,所述3D打印实型模能够从3D模型生产厂商直接采购到,其材质为SLS蜡粉基或SLA树脂基,所述普通蜡是和蜡烛一样的材质,在(90~95)℃的热水中能被融化;
(2)将经过步骤(1)处理得到的3D打印实型模与形成浇冒口系统的熔模组焊成一体,形成模组;
(3)在步骤(2)中得到的模组表面涂覆硅溶胶含量为10%的改性硅溶胶,改性硅溶胶经过干燥和硬化后形成包覆在模组表面的整体型壳,本步骤采用的改性硅溶胶相比普通硅溶胶,干燥周期缩短了1/3以上;
(4)用水去除步骤(3)中得到的整体型壳中封盖在通气孔道外侧的部分型壳,随后采用(95~100)℃的热水熔掉熔模及封堵在通气孔道中的普通蜡,由于3D打印实型模必须在高温焙烧情况下才能气化,所以在此步骤中,3D打印实型模不会被脱除;
(5)对步骤(4)中熔掉熔模后的型壳与3D打印实型模整体进行风干处理;
(6)将焙烧炉的炉温升至500℃以上,然后将步骤(5)中得到的风干后的型壳与3D打印实型模整体以3D打印实型模在上的状态装进焙烧炉内,并保持炉门敞开确保燃烧充分,在富氧状态下,将炉内温度升至650℃烧蚀3D打印实型模,在焙烧的初始阶段,型壳内部气体受热膨胀,膨胀后的气体从通气孔道向外排出,能够防止型壳涨裂。焙烧时保持烟囱畅通且呈抽风状态,待充分燃烧后再封闭炉门并将炉内温度升至950℃,在3D打印实型模完全被烧蚀后停炉,待型壳冷却后取出;
(7)使用(50~60)℃的清水对步骤(6)中冷却后取出的型壳进行冲洗,去除残存在型壳死角和型壳内层表面的残渣及残灰,防止残渣和残灰影响到铸件的尺寸精度,之后封堵好型壳上在步骤(4)中去除的部分;
(8)将经过步骤(7)处理后的型壳放入炉内温度为(1100~1200)℃的焙烧炉中进行焙烧,然后进行高温金属熔液浇注;
(9)待高温金属熔液冷却凝固后,切割开型壳,得到不锈钢叶轮铸件。
上述结构的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺的优点在于:一、在步骤(1)中对3D打印实型模预设通气孔道,这样在步骤(6)的焙烧初始阶段,型壳内部气体受热膨胀后能够通过通气孔道向外排出,能够有效防止型壳涨裂;二、在步骤(2)中采用硅溶胶含量为10%改性硅溶胶,相比普通硅溶胶,干燥周期能够缩短1/3以上,从而提升生产效率;三、本工艺能够与3D打印实型模相配套,生产出的叶轮铸件尺寸精度高,解决了在传统工艺中,需要根据试制叶轮铸件与设计的差异性来不断调整模具的工艺参数这一重大缺陷,从而能够大幅减少制造费用、缩短制作周期。

Claims (4)

1.采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,其特征在于:包括如下步骤:
(1)在3D打印实型模上准备焊接内浇口的位置设置通气孔道,然后用普通蜡封住通气孔道;
(2)将经过步骤(1)处理得到的3D打印实型模与形成浇冒口系统的熔模组焊成一体,形成模组;
(3)在步骤(2)中得到的模组表面涂覆改性硅溶胶,改性硅溶胶经过干燥和硬化后形成包覆在模组表面的整体型壳;
(4)去除步骤(3)中得到的整体型壳中封盖在通气孔道外侧的部分型壳,随后熔掉熔模及封堵在通气孔道中的普通蜡;
(5)对步骤(4)中熔掉熔模后的型壳与3D打印实型模整体进行风干处理;
(6)将焙烧炉的炉温升至500℃以上,然后将步骤(5)中得到的风干后的型壳与3D打印实型模整体以3D打印实型模在上的状态装进焙烧炉内,并保持炉门敞开,在富氧状态下,将炉内温度升至(650±10)℃烧蚀3D打印实型模,待充分燃烧后再封闭炉门并将炉内温度升至(950±10)℃,在3D打印实型模完全被烧蚀后停炉,待型壳冷却后取出;
(7)使用(50~60)℃的清水对步骤(6)中冷却后取出的型壳进行冲洗,去除残存在型壳死角和型壳内层表面的残渣及残灰,之后封堵好型壳上在步骤(4)中去除的部分;
(8)将经过步骤(7)处理后的型壳放入炉内温度为(1100~1200)℃的焙烧炉中进行焙烧,然后进行高温金属熔液浇注;
(9)待高温金属熔液冷却凝固后,切割开型壳,得到铸件。
2.根据权利要求1所述的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,其特征在于:步骤(4)采用高压脱蜡釜或低压蒸汽脱蜡炉熔掉熔模及封堵住通气孔道的普通蜡。
3.根据权利要求1所述的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,其特征在于:步骤(4)采用(95~100)℃的热水熔掉熔模及封堵住通气孔道的普通蜡。
4.根据权利要求1所述的采用3D打印实型模的不锈钢叶轮的熔模快速铸造工艺,其特征在于:步骤(6)中将风干后的型壳与3D打印实型模整体放入焙烧炉后,将炉内温度升至650℃烧蚀3D打印实型模,待充分燃烧后再封闭炉门并将炉内温度升至950℃。
CN201710300470.3A 2017-05-02 2017-05-02 采用3d打印实型模的不锈钢叶轮的熔模快速铸造工艺 Pending CN107297459A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710300470.3A CN107297459A (zh) 2017-05-02 2017-05-02 采用3d打印实型模的不锈钢叶轮的熔模快速铸造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710300470.3A CN107297459A (zh) 2017-05-02 2017-05-02 采用3d打印实型模的不锈钢叶轮的熔模快速铸造工艺

Publications (1)

Publication Number Publication Date
CN107297459A true CN107297459A (zh) 2017-10-27

Family

ID=60137064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710300470.3A Pending CN107297459A (zh) 2017-05-02 2017-05-02 采用3d打印实型模的不锈钢叶轮的熔模快速铸造工艺

Country Status (1)

Country Link
CN (1) CN107297459A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111558689A (zh) * 2020-05-22 2020-08-21 江苏科技大学 一种叶轮新型制造工艺
CN113084087A (zh) * 2021-03-02 2021-07-09 赛普工业研究院(安阳)有限公司 一种马氏体不锈钢2Cr13叶片的铁素控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844144A (en) * 1988-08-08 1989-07-04 Desoto, Inc. Investment casting utilizing patterns produced by stereolithography
US5735336A (en) * 1995-08-11 1998-04-07 Johnson & Johnson Professional, Inc. Investment casting method utilizing polymeric casting patterns
CN103252451A (zh) * 2013-05-23 2013-08-21 沈阳黎明航空发动机(集团)有限责任公司 一种低压导向三联体空心叶片的制造方法
CN103722127A (zh) * 2013-12-31 2014-04-16 陕西恒通智能机器有限公司 一种基于光固化(sl)的快速熔模铸造方法
CN105344938A (zh) * 2015-10-30 2016-02-24 鹰普(中国)有限公司 一种排蜡方法
CN105458180A (zh) * 2015-11-20 2016-04-06 沈阳黎明航空发动机(集团)有限责任公司 一种含有排蜡口的成型浇道及其制备和封堵方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844144A (en) * 1988-08-08 1989-07-04 Desoto, Inc. Investment casting utilizing patterns produced by stereolithography
US5735336A (en) * 1995-08-11 1998-04-07 Johnson & Johnson Professional, Inc. Investment casting method utilizing polymeric casting patterns
CN103252451A (zh) * 2013-05-23 2013-08-21 沈阳黎明航空发动机(集团)有限责任公司 一种低压导向三联体空心叶片的制造方法
CN103722127A (zh) * 2013-12-31 2014-04-16 陕西恒通智能机器有限公司 一种基于光固化(sl)的快速熔模铸造方法
CN105344938A (zh) * 2015-10-30 2016-02-24 鹰普(中国)有限公司 一种排蜡方法
CN105458180A (zh) * 2015-11-20 2016-04-06 沈阳黎明航空发动机(集团)有限责任公司 一种含有排蜡口的成型浇道及其制备和封堵方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
包彦堃,等: "《熔模铸造技术》", 30 November 1997, 杭州:浙江大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111558689A (zh) * 2020-05-22 2020-08-21 江苏科技大学 一种叶轮新型制造工艺
CN113084087A (zh) * 2021-03-02 2021-07-09 赛普工业研究院(安阳)有限公司 一种马氏体不锈钢2Cr13叶片的铁素控制方法

Similar Documents

Publication Publication Date Title
CN109622888B (zh) 一种复杂高温合金多联导向叶片铸件的铸造成型工艺
US20160332226A1 (en) Method and casting core for forming a landing for welding a baffle inserted in an airfoil
CN101412076A (zh) 一种陶瓷壳消失模精密铸造工艺
CN104014748B (zh) 利用模壳焙烧模样气化燃烧制备整体壳型的方法
CN100389905C (zh) 增压器压气机叶轮模具的加工方法
CN106424562A (zh) 一种消除缩孔、疏松缺陷的熔模精密铸造方法
CN104148583A (zh) 一种熔模铸造方法
CN109396349A (zh) 一种小型薄壁铸件的熔模精密铸造工艺
CN109014038A (zh) 一种减少熔模精密铸造脱蜡过程中型壳胀裂的方法
CN109759543A (zh) 一种铸铜雕塑铸造生产方法
CN110280717A (zh) 一种喷墨粘接三维打印砂型钛合金铸造工艺
CN105478672A (zh) 一种模壳脱蜡口带封堵装置的熔模离心铸造方法及其装置
CN105983656A (zh) 一种熔模铸造工艺
CN108015231A (zh) 一种熔模精密铸造工艺
CN107297459A (zh) 采用3d打印实型模的不锈钢叶轮的熔模快速铸造工艺
CN106694853A (zh) 采用低压铸造工艺进行摩托车配件铸造的方法
CN103509978A (zh) 一种精密铸造用铝合金的热处理方法
CN103506577B (zh) 一种铝合金铸件的精密铸造方法
CN107695295A (zh) 一种熔模的铸造加工方法
CN104999034A (zh) 一种大型无余量扩压器精铸件的铸造方法
CN107398531A (zh) 高精度不锈钢阀体的铸造工艺
CN108997761A (zh) 一种熔模精密铸造用松香基模料及其制备方法
CN113102688A (zh) 一种改善3d打印光敏树脂模在熔模铸造中胀壳的方法
CN104550725A (zh) 汽车耐热钢排气歧管熔模铸造方法
CN105478671A (zh) 一种铝合金熔模精密铸造微震浇注工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171027

RJ01 Rejection of invention patent application after publication