CN107291974A - A kind of parameter tuning method of spring operation formula vacuum circuit breaker high frequency transient simulation model - Google Patents

A kind of parameter tuning method of spring operation formula vacuum circuit breaker high frequency transient simulation model Download PDF

Info

Publication number
CN107291974A
CN107291974A CN201710299522.XA CN201710299522A CN107291974A CN 107291974 A CN107291974 A CN 107291974A CN 201710299522 A CN201710299522 A CN 201710299522A CN 107291974 A CN107291974 A CN 107291974A
Authority
CN
China
Prior art keywords
mrow
msub
munderover
mfrac
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710299522.XA
Other languages
Chinese (zh)
Other versions
CN107291974B (en
Inventor
唐文虎
周文婷
黄晶晶
辛妍丽
周九江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710299522.XA priority Critical patent/CN107291974B/en
Publication of CN107291974A publication Critical patent/CN107291974A/en
Application granted granted Critical
Publication of CN107291974B publication Critical patent/CN107291974B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种弹操式真空断路器高频暂态仿真模型的参数整定方法,通过搭建包含三相电源、可调变压器、变压器、三相电缆、真空断路器和容性负载的试验电路,测量真空断路器合闸电阻、电容、电感以及合闸暂态过程中真空断路器两端电压及流过断路器的电流,采用线性拟合及求均值的方法计算真空断路器合闸高频暂态参数,并对比拟合参数与合闸速度的误差验证参数。本发明通过改变二次侧电压能在额定范围内随意调节的可调变压器电压测量不同电压下的参数并采用取均值的方法计算出该电压级别的通用参数,从而实现真空断路器高频暂态仿真模型参数的准确计算,适用电压范围更广,可用于不同工况下高频暂态仿真,广泛适用于多种研究。

The invention discloses a parameter setting method for a high-frequency transient simulation model of a spring-operated vacuum circuit breaker. By building a test circuit including a three-phase power supply, an adjustable transformer, a transformer, a three-phase cable, a vacuum circuit breaker and a capacitive load , measure the closing resistance, capacitance, inductance of the vacuum circuit breaker and the voltage at both ends of the vacuum circuit breaker and the current flowing through the circuit breaker during the closing transient process, and calculate the high frequency of closing the vacuum circuit breaker by linear fitting and averaging Transient parameters, and compare the fitting parameters with the error verification parameters of the closing speed. The invention measures the parameters under different voltages by changing the voltage of the adjustable transformer whose secondary side voltage can be adjusted freely within the rated range, and calculates the general parameters of the voltage level by taking the average value, so as to realize the high-frequency transient state of the vacuum circuit breaker Accurate calculation of simulation model parameters, applicable to a wider voltage range, can be used for high-frequency transient simulation under different working conditions, and is widely applicable to various researches.

Description

一种弹操式真空断路器高频暂态仿真模型的参数整定方法A parameter setting method for high-frequency transient simulation model of spring-operated vacuum circuit breaker

技术领域technical field

本发明涉及电力系统暂态仿真模型技术领域,尤其是指一种基于试验的弹操式真空断路器高频暂态仿真模型的参数整定方法。The invention relates to the technical field of transient simulation models of power systems, in particular to a parameter setting method for a high-frequency transient simulation model of a spring-operated vacuum circuit breaker based on tests.

背景技术Background technique

真空断路器具有灭弧能力强、可靠性高、使用寿命长、无火灾危害、适合频繁操作等优点,在电力系统及其配电网中的应用日益广泛。不同于理想状态,在实际电力系统运行中,真空断路器往往会因为开合操作过程中的预击穿、重燃等现象引起系统操作过电压,发生变电站内断路器相间绝缘击穿、母线压变高压熔丝熔断等过电压事故,严重威胁着并联补偿装置,危害电气设备使用期限,危及电力设备的绝缘,影响电力系统的正常运行。为保护电力系统及其配电网的安装及运行安全,需对真空断路器合闸暂态及保护进行仿真研究,因此真空断路器模型的准确性是影响真空断路器操作过电压研究的关键因素之一,其中,真空断路器高频暂态仿真模型的参数整定尤为重要。Vacuum circuit breakers have the advantages of strong arc extinguishing ability, high reliability, long service life, no fire hazard, suitable for frequent operation, etc., and are widely used in power systems and distribution networks. Different from the ideal state, in the actual operation of the power system, the vacuum circuit breaker often causes the system operation overvoltage due to the phenomenon of pre-breakdown and re-ignition during the opening and closing operation, and the phase-to-phase insulation breakdown of the circuit breaker in the substation, the busbar voltage, etc. Overvoltage accidents such as high-voltage fuse blown seriously threaten the parallel compensation device, endanger the service life of electrical equipment, endanger the insulation of power equipment, and affect the normal operation of the power system. In order to protect the installation and operation safety of the power system and its distribution network, it is necessary to conduct simulation research on the closing transient and protection of the vacuum circuit breaker. Therefore, the accuracy of the vacuum circuit breaker model is a key factor affecting the research on the operation overvoltage of the vacuum circuit breaker. One of them, among them, the parameter setting of the vacuum circuit breaker high-frequency transient simulation model is particularly important.

目前,弹操式真空断路器仅有标准工频参数,而高频暂态仿真所需的参数十分缺乏。现有高频暂态参数缺乏准确性及通用性,因此对参数整定方法的改进十分必要,对仿真研究电力系统运行状态中弹操式真空断路器合闸暂态引起的过电压等问题,有一定的研究及工程应用价值。At present, there are only standard power frequency parameters for spring-operated vacuum circuit breakers, but the parameters required for high-frequency transient simulation are very scarce. The existing high-frequency transient parameters lack accuracy and versatility, so it is necessary to improve the parameter setting method. It is useful for the simulation study of the overvoltage caused by the spring-operated vacuum circuit breaker closing transient in the power system operating state. Certain research and engineering application value.

发明内容Contents of the invention

本发明的目的是针对传统弹操式真空断路器仿真模型参数整定方法存在的不足,提供了一种基于试验的弹操式真空断路器高频暂态仿真模型的参数整定方法,该方法通过改变二次侧电压能在额定范围内随意调节的可调变压器电压测量不同电压下的参数并采用取均值的方法计算出该电压级别的通用参数,从而实现真空断路器高频暂态仿真模型参数的准确计算,适用电压范围更广,可用于不同工况下高频暂态仿真,广泛适用于多种研究。The object of the present invention is to aim at the deficiencies in the parameter setting method of the simulation model of the traditional spring-operated vacuum circuit breaker, and provide a parameter setting method of the high-frequency transient simulation model of the spring-operated vacuum circuit breaker based on the test. The secondary side voltage can be adjusted freely within the rated range. The adjustable transformer voltage measures the parameters under different voltages and calculates the general parameters of the voltage level by taking the average value, so as to realize the high-frequency transient simulation model parameters of the vacuum circuit breaker. Accurate calculation, wider applicable voltage range, can be used for high-frequency transient simulation under different working conditions, and is widely applicable to various researches.

为实现上述目的,本发明所提供的技术方案为:一种弹操式真空断路器高频暂态仿真模型的参数整定方法,包括以下步骤:In order to achieve the above purpose, the technical solution provided by the present invention is: a parameter setting method for a high-frequency transient simulation model of a spring-operated vacuum circuit breaker, comprising the following steps:

1)搭建包含三相电源、变压器组、三相电缆、弹操式真空断路器及负载的试验电路,其中,所述变压器组使用可调变压器低压侧连接变压器,所述可调变压器初始设置为额定电压;1) Build a test circuit including a three-phase power supply, a transformer group, a three-phase cable, a spring-operated vacuum circuit breaker and a load, wherein the transformer group uses an adjustable transformer low-voltage side to connect to the transformer, and the adjustable transformer is initially set to rated voltage;

2)测量弹操式真空断路器的合闸电阻、电容、电感及弹操式真空断路器两触头间隙距离;2) Measure the closing resistance, capacitance, inductance of the spring-operated vacuum circuit breaker and the distance between the two contacts of the spring-operated vacuum circuit breaker;

3)控制弹操式真空断路器进行多次切合,并使用示波器、电流、电压测量设备测量合闸暂态过程中合闸时间、弹操式真空断路器两端电压及通过的电流;3) Control the spring-operated vacuum circuit breaker to perform multiple cut-ins, and use oscilloscopes, current and voltage measuring equipment to measure the closing time, the voltage at both ends of the spring-operated vacuum circuit breaker and the passing current during the closing transient process;

4)根据触头间隙距离及合闸时间计算合闸速度,并取多次试验合闸速度的平均值为该组试验合闸速度;4) Calculate the closing speed according to the contact gap distance and closing time, and take the average closing speed of multiple tests as the closing speed of this group of tests;

5)根据所测电压波形选取每次试验测得的多个预击穿点即合闸高频暂态电压的峰值点,将多次试验的峰值整合并线性拟合获得线性相关系数;5) According to the measured voltage waveform, select multiple pre-breakdown points measured in each test, that is, the peak point of the switching high-frequency transient voltage, integrate the peak values of multiple tests and linearly fit to obtain a linear correlation coefficient;

6)根据所测电流波形选取高频电流截断点并计算该点的电流变化频率,将多次试验计算的频率值整合并线性拟合获得线性相关系数;6) Select the high-frequency current cut-off point according to the measured current waveform and calculate the current change frequency at this point, integrate the frequency values calculated by multiple experiments and linearly fit to obtain the linear correlation coefficient;

7)调节可调变压器低压侧电压分别为额定电压的0.9倍及1.1倍,重复步骤3)、4)、5)、6)获得另外两组线性相关系数,综合三组线性相关系数及合闸速度值计算每个相关系数及合闸速度的平均值,即为该速度下弹操式真空断路器仿真模型参数,并验证参数;7) Adjust the voltage on the low-voltage side of the adjustable transformer to be 0.9 times and 1.1 times the rated voltage, repeat steps 3), 4), 5), and 6) to obtain another two sets of linear correlation coefficients, and synthesize the three sets of linear correlation coefficients and closing The speed value calculates the average value of each correlation coefficient and closing speed, which is the parameter of the spring-operated vacuum circuit breaker simulation model at this speed, and verifies the parameters;

8)改变弹操式真空断路器弹簧操动机构,重复步骤3)、4)、5)、6)、7)获得不同速度下弹操式真空断路器仿真模型参数,并在PSCAD/EMTDC环境下建立弹操式真空断路器仿真模型,同时使用合闸电阻、电容、电感电路并联理想断路器的结构。8) Change the spring operating mechanism of the spring-operated vacuum circuit breaker, repeat steps 3), 4), 5), 6), and 7) to obtain the parameters of the simulation model of the spring-operated vacuum circuit breaker at different speeds, and set them in the PSCAD/EMTDC environment The simulation model of the spring-operated vacuum circuit breaker is established, and the structure of the ideal circuit breaker is connected in parallel with the closing resistor, capacitor and inductance circuit.

在步骤4)中,每次试验合闸速度不完全相等但保持在设备允许的变化范围内,因此合闸速度取平均值,其计算公式如下所示:In step 4), the closing speed of each test is not exactly equal but kept within the allowable variation range of the equipment, so the closing speed is averaged, and the calculation formula is as follows:

其中,k=1,2,3...;i=1,2,3;n为每组试验次数;vk是每次试验的合闸速度;d为触头间隙距离;tk为每次试验的合闸时间;vi为每组试验的合闸速度,为该组多次试验合闸速度的平均值;Among them, k =1,2,3...; i=1,2,3; n is the number of tests in each group; v k is the closing speed of each test; d is the contact gap distance; The closing time of the first test; v i is the closing speed of each group of tests, which is the average value of the closing speed of the group of multiple tests;

在步骤5)中,线性拟合的公式如下所示:In step 5), the formula for the linear fit is as follows:

Ui=ait+bi U i =a i t+b i

其中,t是时间,tik是每个拟合点的时间;Ui是电压,Uik是每个拟合点的电压;ai为电压线性拟合比例系数;bi为电压线性拟合常量;Among them, t is the time, t ik is the time of each fitting point; U i is the voltage, U ik is the voltage of each fitting point; a i is the voltage linear fitting proportional coefficient; b i is the voltage linear fitting constant;

在步骤6)中,线性拟合的公式如下所示:In step 6), the formula for the linear fit is as follows:

di/dti=cit+di di/dt i =c i t+d i

其中,di/dti是电流变化频率,di/dtik是每个拟合点的电流变化频率;ci为电流频率线性拟合比例系数;di为电流频率线性拟合常量;Among them, di/dt i is the current change frequency, di/dt ik is the current change frequency of each fitting point; c i is the current frequency linear fitting proportional coefficient; d i is the current frequency linear fitting constant;

在步骤7)中,通过对步骤5)、6)中线性拟合数据进行处理,获得计算弹操式真空断路器介电强度及高频电流熄弧能力的参数:In step 7), by processing the linear fitting data in steps 5) and 6), the parameters for calculating the dielectric strength and high-frequency current arc extinguishing capability of the spring-operated vacuum circuit breaker are obtained:

a.介电强度a.Dielectric strength

不同时刻真空断路器的介电强度Ub计算公式如下所示:The formula for calculating the dielectric strength U b of the vacuum circuit breaker at different times is as follows:

Ub=Ublimit-A(t-tclose)-BU b =U blimit -A(tt close )-B

其中,Ublimit是真空断路器极限介电强度,其数值大小与断路器触头间的介电材料有关;A为合闸速度;t为当前仿真时刻;tclose为断路器触头开始动作时间;B为介电强度常数;Among them, U blimit is the ultimate dielectric strength of the vacuum circuit breaker, and its value is related to the dielectric material between the contacts of the circuit breaker; A is the closing speed; t is the current simulation time; t close is the start time of the circuit breaker contacts ; B is the dielectric strength constant;

b.高频电流熄弧能力b. High frequency current arc extinguishing ability

将电流变化率di/dt的临界值作为高频电流熄弧能力,并采用一阶多项式表示:The critical value of the current change rate di/dt is taken as the high-frequency current arc-extinguishing ability, and expressed by a first-order polynomial:

di/dt=C(t-tclose)+Ddi/dt=C(tt close )+D

其中,C是高频电流熄弧能力的上升比例;D为触头开始合闸时高频电流熄弧能力;Among them, C is the rising ratio of the high-frequency current arc-extinguishing ability; D is the high-frequency current arc-extinguishing ability when the contact starts to close;

因此,该合闸速度测量值下,弹操式真空断路器合闸参数如下所示:Therefore, the closing speed measurement Next, the spring-operated vacuum circuit breaker closing parameters are as follows:

采用合闸速度A与合闸速度测量值V对比验证参数,当A与V的偏差在误差允许范围内,该组参数就能够用于仿真模型。The closing speed A is compared with the closing speed measurement value V to verify the parameters. When the deviation between A and V is within the allowable range of error, this set of parameters can be used in the simulation model.

本发明与现有技术相比,具有如下优点与有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:

1、本发明搭建试验电路,采用测量设备对弹操式真空断路器合闸高频暂态电路进行测量并拟合计算构建的仿真模型所需的参数。1. The present invention builds a test circuit, uses measuring equipment to measure the high-frequency transient circuit of the spring-operated vacuum circuit breaker, and fits and calculates the parameters required by the simulated model constructed.

2、本发明采用可调变压器,分别对可调变压器为额定电压、0.9倍额定电压、1.1倍额定电压三种情况进行试验测量,并取三组测试的平均值为最终参数,保证弹操式真空断路器合闸高频暂态参数的准确性。2. The present invention adopts an adjustable transformer, and conducts tests and measurements on the three situations of the adjustable transformer being the rated voltage, 0.9 times the rated voltage, and 1.1 times the rated voltage, and takes the average value of the three groups of tests as the final parameter to ensure that the elastic operation Accuracy of high-frequency transient parameters of vacuum circuit breaker closing.

3、本发明通过改变弹操式真空断路器弹簧操作机构从而改变弹操式真空断路器合闸速度,测量并计算出不同速度下弹操式真空断路器合闸高频暂态参数,为弹操式真空断路器仿真模型及不同工况仿真提供多种参考。3. The present invention changes the closing speed of the spring-operated vacuum circuit breaker by changing the spring operating mechanism of the spring-operated vacuum circuit breaker, and measures and calculates the high-frequency transient parameters of the spring-operated vacuum circuit breaker at different speeds. The simulation model of the operating vacuum circuit breaker and the simulation of different working conditions provide a variety of references.

附图说明Description of drawings

图1是本发明所述弹操式真空断路器高频暂态仿真模型的参数整定方法流程图。Fig. 1 is a flow chart of the parameter setting method of the high-frequency transient simulation model of the spring-operated vacuum circuit breaker according to the present invention.

图2是本发明所述弹操式真空断路器参数测量的试验电路结构图。Fig. 2 is a structural diagram of a test circuit for parameter measurement of the spring-operated vacuum circuit breaker of the present invention.

图3是本发明所述弹操式真空断路器仿真模型电路结构图。Fig. 3 is a circuit structure diagram of a simulation model of the spring-operated vacuum circuit breaker of the present invention.

具体实施方式detailed description

下面结合具体实施例对本发明做进一步的说明。The present invention will be further described below in conjunction with specific embodiments.

如图1所示,本实施例所提供的弹操式真空断路器高频暂态仿真模型的参数整定方法,包括以下步骤:As shown in Figure 1, the parameter setting method of the high-frequency transient simulation model of the spring-operated vacuum circuit breaker provided in this embodiment includes the following steps:

1)搭建如图2所示的试验电路,包括依次串联连接的380V三相电源、380V可调变压器(可调范围0-430V,初始设置为额定电压,即为380V)、35/0.38kV变压器、35kV弹操式真空断路器及容性负载。1) Build the test circuit shown in Figure 2, including 380V three-phase power supply connected in series, 380V adjustable transformer (adjustable range 0-430V, initially set to rated voltage, which is 380V), 35/0.38kV transformer , 35kV spring operated vacuum circuit breaker and capacitive load.

2)使用弹操式真空断路器合闸电阻测试仪、电容测量仪及电感测量仪测量35kV弹操式真空断路器合闸电阻R、电容L及电感C,并使用位置传感器测量弹操式真空断路器两触头间隙距离d。2) Use the spring-operated vacuum circuit breaker closing resistance tester, capacitance measuring instrument and inductance measuring instrument to measure the closing resistance R, capacitance L and inductance C of the 35kV spring-operated vacuum circuit breaker, and use the position sensor to measure the spring-operated vacuum The gap distance d between the two contacts of the circuit breaker.

3)控制弹操式真空断路器进行多次切合,并使用电流互感器、电压互感器连接示波器测量合闸暂态过程中合闸时间tik、弹操式真空断路器两端电压Uik及通过的电流Iik3) Control the spring-operated vacuum circuit breaker to make multiple cuts, and use the current transformer and voltage transformer to connect the oscilloscope to measure the closing time t ik and the voltage U ik at both ends of the spring-operated vacuum circuit breaker during the closing transient process. The passing current I ik .

4)计算合闸速度,并取多次试验合闸速度vk的平均值为该组试验合闸速度vi,其计算公式如下:4) Calculate the closing speed, and take the average value of the closing speed v k of multiple tests as the closing speed v i of this group of tests, and the calculation formula is as follows:

其中,k=1,2,3...;i=1,2,3;n为每组试验次数;vk是每次试验的合闸速度;d为触头间隙距离;tk为每次试验的合闸时间;vi为每组试验的合闸速度,为该组多次试验合闸速度的平均值。Among them, k =1,2,3...; i=1,2,3; n is the number of tests in each group; v k is the closing speed of each test; d is the contact gap distance; is the closing time of each test; v i is the closing speed of each group of tests, and is the average value of the closing speed of multiple tests in this group.

5)根据所测电压数据,使用MATLAB绘制弹操式真空断路器波形,结合数据及波形选取每次试验测得的多个预击穿点即合闸高频暂态电压的峰值点,并使用MATLAB语句将多次试验的峰值整合并线性拟合获得线性相关系数,其计算公式如下:5) According to the measured voltage data, use MATLAB to draw the waveform of the spring-operated vacuum circuit breaker, combine the data and waveform to select multiple pre-breakdown points measured in each test, that is, the peak point of the closing high-frequency transient voltage, and use The MATLAB statement integrates the peak values of multiple experiments and linearly fits to obtain the linear correlation coefficient. The calculation formula is as follows:

Ui=ait+bi U i =a i t+b i

其中,t是时间,tik是每个拟合点的时间;Ui是电压,Uik是每个拟合点的电压;ai为电压线性拟合比例系数;bi为电压线性拟合常量;Among them, t is the time, t ik is the time of each fitting point; U i is the voltage, U ik is the voltage of each fitting point; a i is the voltage linear fitting proportional coefficient; b i is the voltage linear fitting constant;

6)根据所测电压数据,使用MATLAB绘制弹操式真空断路器波形,结合数据及波形选取每次试验测得多个高频电流截断点并计算该点的电流变化频率,并使用MATLAB语句将多次试验的峰值整合并线性拟合获得线性相关系数,其计算公式如下:6) According to the measured voltage data, use MATLAB to draw the waveform of the spring-operated vacuum circuit breaker, combine the data and waveform to select multiple high-frequency current truncation points measured in each test and calculate the current change frequency at this point, and use the MATLAB statement to The peaks of multiple experiments were integrated and linearly fitted to obtain the linear correlation coefficient, and its calculation formula is as follows:

di/dti=cit+di di/dt i =c i t+d i

其中,di/dti是电流变化频率,di/dtik是每个拟合点的电流变化频率;ci为电流频率线性拟合比例系数;di为电流频率线性拟合常量;Among them, di/dt i is the current change frequency, di/dt ik is the current change frequency of each fitting point; c i is the current frequency linear fitting proportional coefficient; d i is the current frequency linear fitting constant;

7)调节可调变压器的电压值分别为额定电压的0.9倍及1.1倍即342V及418V,重复步骤3)、4)、5)、6)获得另外两组线性相关系数,综合三组线性相关系数及合闸速度值计算每个相关系数及合闸速度的平均值,即为该速度下弹操式真空断路器介电强度及高频电流熄弧能力的参数:7) Adjust the voltage value of the adjustable transformer to 0.9 times and 1.1 times the rated voltage, namely 342V and 418V, repeat steps 3), 4), 5), and 6) to obtain another two sets of linear correlation coefficients, and synthesize the three sets of linear correlations Coefficient and closing speed value Calculate the average value of each correlation coefficient and closing speed, which is the parameter of dielectric strength and high-frequency current arc extinguishing ability of spring-operated vacuum circuit breaker at this speed:

a.介电强度a.Dielectric strength

不同时刻弹操式真空断路器的介电强度Ub计算公式如下所示:The formula for calculating the dielectric strength U b of the spring-operated vacuum circuit breaker at different times is as follows:

Ub=Ublimit-A(t-tclose)-B (4)U b =U blimit -A(tt close )-B (4)

其中,Ublimit是弹操式真空断路器极限介电强度,其数值大小与断路器触头间的介电材料有关;A为合闸速度;t为当前仿真时刻;tclose为断路器触头开始动作时间;B为介电强度常数;Among them, U blimit is the ultimate dielectric strength of the spring-operated vacuum circuit breaker, and its value is related to the dielectric material between the contacts of the circuit breaker; A is the closing speed; t is the current simulation time; t close is the contact of the circuit breaker Start action time; B is the dielectric strength constant;

b.高频电流熄弧能力b. High frequency current arc extinguishing ability

将电流变化率di/dt的临界值作为高频电流熄弧能力,并采用一阶多项式表示:The critical value of the current change rate di/dt is taken as the high-frequency current arc-extinguishing ability, and expressed by a first-order polynomial:

di/dt=C(t-tclose)+D (5)di/dt=C(tt close )+D (5)

其中,C是高频电流熄弧能力的上升比例;D为触头开始合闸时高频电流熄弧能力;Among them, C is the rising ratio of the high-frequency current arc-extinguishing ability; D is the high-frequency current arc-extinguishing ability when the contact starts to close;

因此,该合闸速度测量值下,弹操式真空断路器合闸参数如下所示:Therefore, the closing speed measurement Next, the spring-operated vacuum circuit breaker closing parameters are as follows:

此外,需采用合闸速度A与合闸速度测量值V对比验证参数,当A与V的偏差在误差允许范围内,该组参数可用于仿真模型。In addition, it is necessary to compare the closing speed A with the closing speed measurement value V to verify the parameters. When the deviation between A and V is within the allowable range of error, this set of parameters can be used in the simulation model.

8)通过改变弹操式真空断路器弹簧操动机构,重复步骤3)、4)、5)、6)、7),测量计算不同速度下弹操式真空断路器仿真模型参数并在PSCAD/EMTDC环境下建立弹操式真空断路器仿真模型,如图3所示。该仿真模型使用合闸电阻、电容、电感(RLC)电路并联理想断路器的结构,其中合闸电阻、电容、电感使用2)中测得的数据,并利用7)中得到的A、B、C、D参数计算介电强度及高频截断能力,用于断路器开合状态的判断。8) By changing the spring operating mechanism of the spring-operated vacuum circuit breaker, repeat steps 3), 4), 5), 6), and 7), measure and calculate the parameters of the simulation model of the spring-operated vacuum circuit breaker at different speeds and calculate them in PSCAD/ The simulation model of spring-operated vacuum circuit breaker is established in the EMTDC environment, as shown in Figure 3. This simulation model uses the structure of closing resistance, capacitance and inductance (RLC) circuit connected in parallel with an ideal circuit breaker, in which the closing resistance, capacitance and inductance use the data measured in 2), and use the A, B, C and D parameters are used to calculate the dielectric strength and high-frequency cut-off capability, which are used to judge the opening and closing state of the circuit breaker.

根据以上步骤搭建试验电路,测量弹操式真空断路器合闸电阻、电容、电感以及合闸暂态过程中弹操式真空断路器两端电压及流过断路器的电流,采用线性拟合及求均值的方法计算弹操式真空断路器合闸高频暂态参数,并通过拟合参数与合闸速度的误差比较验证参数,该方法具有更高的有效性。本实例分别对可调电路为380V、342V及418V,即弹操式真空断路器端电压为35kV、31.5kV、38.5kV时,弹操式真空断路器合闸暂态电压及电流情况进行测量,采用取均值的方法获得所需的仿真模型参数,因此计算多得参数准确且适用电压范围广。本实例对多种合闸速度进行试验,因此仿真模型适用于多种工况。本实例可以说明基于试验的弹操式真空断路器高频暂态仿真模型的参数整定方法能较好地测量计算弹操式真空断路器仿真模型所需参数,将其用于仿真能够符合实际工况,可以广泛用于所有弹操式真空断路器参数的整定,值得推广。Build a test circuit according to the above steps, measure the closing resistance, capacitance, inductance of the spring-operated vacuum circuit breaker, the voltage at both ends of the spring-operated vacuum circuit breaker and the current flowing through the circuit breaker during the transient process of closing, and use linear fitting and The method of calculating the average value calculates the high-frequency transient parameters of the spring-operated vacuum circuit breaker, and verifies the parameters by comparing the error between the fitting parameters and the closing speed. This method has higher effectiveness. In this example, when the adjustable circuit is 380V, 342V and 418V, that is, when the terminal voltage of the spring-operated vacuum circuit breaker is 35kV, 31.5kV, and 38.5kV, the closing transient voltage and current of the spring-operated vacuum circuit breaker are measured. The required simulation model parameters are obtained by taking the average value, so the calculation is more accurate and the applicable voltage range is wide. In this example, various closing speeds are tested, so the simulation model is suitable for various working conditions. This example can illustrate that the parameter setting method of the high-frequency transient simulation model of the spring-operated vacuum circuit breaker based on the test can better measure and calculate the parameters required for the simulation model of the spring-operated vacuum circuit breaker, and it can be used in the simulation to meet the actual work conditions. It can be widely used in parameter setting of all spring-operated vacuum circuit breakers, and it is worthy of popularization.

以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。The above-described embodiments are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, all changes made according to the shape and principles of the present invention should be covered within the protection scope of the present invention.

Claims (2)

1. a kind of parameter tuning method of spring operation formula vacuum circuit breaker high frequency transient simulation model, it is characterised in that including following Step:
1) build comprising three phase mains, transformer group, threephase cable, spring operation formula vacuum circuit breaker and the hookup of load, its In, the transformer group connects transformer using adjustable transformer low-pressure side, and the adjustable transformer is initially set to specified electricity Pressure;
2) measurement spring operation formula vacuum circuit breaker switching-on resistance, electric capacity, inductance and the contact gap distance of spring operation formula vacuum circuit breaker two;
3) control spring operation formula vacuum circuit breaker is repeatedly suited, and is closed a floodgate using oscillograph, electric current, voltage measuring apparatus measurement Closing time, spring operation formula vacuum circuit breaker both end voltage and the electric current passed through in transient process;
4) closing speed is calculated according to contact gap distance and closing time, and takes the average value of test of many times closing speed to be somebody's turn to do Group experiment closing speed;
5) the multiple prebreakdown points i.e. peak value of combined floodgate transient high frequency voltage tested measure every time is chosen according to surveyed voltage waveform Point, the peak value of test of many times is integrated and linear fit obtains linearly dependent coefficient;
6) high frequency electric point of cut-off is chosen according to surveyed current waveform and calculates the curent change frequency of the point, by test of many times meter The frequency values of calculation are integrated and linear fit obtains linearly dependent coefficient;
7) regulation adjustable transformer low-pressure side voltage is respectively 0.9 times and 1.1 times of rated voltage, repeat step 3), 4), 5), 6) obtain other two groups of linearly dependent coefficients, comprehensive three groups of linearly dependent coefficients and closing speed value calculate each coefficient correlation and Spring operation formula vacuum circuit breaker simulation parameters under the average value of closing speed, the as speed, and certificate parameter;
8) change spring operation formula spring actuating mechanism of vacuum circuit-breaker, repeat step 3), 4), 5), 6), 7) obtain friction speed under bullet Behaviour's formula vacuum circuit breaker simulation parameters, and set up under PSCAD/EMTDC environment spring operation formula vacuum circuit breaker simulation model, The structure of switching-on resistance, electric capacity, inductive circuit preferable breaker in parallel is used simultaneously.
2. a kind of parameter tuning method of spring operation formula vacuum circuit breaker high frequency transient simulation model according to claim 1, It is characterized in that:In step 4) in, experiment closing speed is not completely equivalent but is maintained in the excursion of equipment permission every time, Therefore closing speed is averaged, and its calculation formula is as follows:
<mrow> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mi>d</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </mfrac> </mrow>
<mrow> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>v</mi> <mi>k</mi> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
Wherein, k=1,2,3...;I=1,2,3;N is every group of test number (TN);vkIt is the closing speed tested every time;D is between contact Stand-off distance from;tkFor the closing time tested every time;viFor the closing speed of every group of experiment, for this group of test of many times closing speed Average value;
In step 5) in, the formula of linear fit is as follows:
Ui=ait+bi
<mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow>
<mrow> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
Wherein, t is time, tikIt is the time of each match point;UiIt is voltage, UikIt is the voltage of each match point;aiFor voltage Linear fit proportionality coefficient;biConstant is fitted for voltage linear;
In step 6) in, the formula of linear fit is as follows:
di/dti=cit+di
<mrow> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>d</mi> <mi>i</mi> <mo>/</mo> <msub> <mi>dt</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>d</mi> <mi>i</mi> <mo>/</mo> <msub> <mi>dt</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow>
<mrow> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> <mo>-</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
Wherein, di/dtiIt is curent change frequency, di/dtikIt is the curent change frequency of each match point;ciFor power frequency line Property fitting proportionality coefficient;diFor power frequency linear fit constant;
In step 7) in, by step 5), 6) in linear fitting data handle, obtain and calculate spring operation formula vacuum circuit breaker The parameter of dielectric strength and high frequency electric arc-rupturing capacity:
A. dielectric strength
The not dielectric strength U of vacuum circuit breaker in the same timebCalculation formula is as follows:
Ub=Ublimit-A(t-tclose)-B
Wherein, UblimitIt is vacuum circuit breaker limit dielectric strength, the dielectric material between its numerical values recited and contact of breaker has Close;A is closing speed;T is the current emulation moment;tcloseStart actuation time for contact of breaker;B is dielectric strength constant;
B. high frequency electric arc-rupturing capacity
Using current changing rate di/dt critical value as high frequency electric arc-rupturing capacity, and use single order polynomial repressentation:
Di/dt=C (t-tclose)+D
Wherein, C is the rising scale of high frequency electric arc-rupturing capacity;D is high frequency electric arc-rupturing capacity when contact starts to close a floodgate;
Therefore, the closing speed measured valueUnder, spring operation formula vacuum circuit breaker Circuit Closing Parameters are as follows:
<mrow> <mi>A</mi> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
<mrow> <mi>B</mi> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>b</mi> <mi>lim</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>b</mi> <mi>i</mi> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
<mrow> <mi>C</mi> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>c</mi> <mi>i</mi> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
<mrow> <mi>D</mi> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>d</mi> <mi>i</mi> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
Using closing speed A and closing speed measured value V contrast verification parameters, when A and V deviation is in error allowed band, This group of parameter just can be used in simulation model.
CN201710299522.XA 2017-05-02 2017-05-02 A parameter setting method for high frequency transient simulation model of spring-operated vacuum circuit breaker Active CN107291974B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710299522.XA CN107291974B (en) 2017-05-02 2017-05-02 A parameter setting method for high frequency transient simulation model of spring-operated vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710299522.XA CN107291974B (en) 2017-05-02 2017-05-02 A parameter setting method for high frequency transient simulation model of spring-operated vacuum circuit breaker

Publications (2)

Publication Number Publication Date
CN107291974A true CN107291974A (en) 2017-10-24
CN107291974B CN107291974B (en) 2020-06-19

Family

ID=60095385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710299522.XA Active CN107291974B (en) 2017-05-02 2017-05-02 A parameter setting method for high frequency transient simulation model of spring-operated vacuum circuit breaker

Country Status (1)

Country Link
CN (1) CN107291974B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111797524A (en) * 2020-07-02 2020-10-20 天津工业大学 Full-automatic optimization design method for electromagnetic operating mechanism of circuit breaker

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635151A (en) * 2014-12-29 2015-05-20 国家电网公司 Cascade full-bridge direct-current circuit breaker low-voltage equivalent test circuit and detection method thereof
CN105260516A (en) * 2015-09-25 2016-01-20 清华大学 Electromagnetic transient simulation method containing switching characteristic sub-network
CN106529084A (en) * 2016-12-05 2017-03-22 华南理工大学 Construction method for vacuum circuit breaker switch-on transient state simulation model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635151A (en) * 2014-12-29 2015-05-20 国家电网公司 Cascade full-bridge direct-current circuit breaker low-voltage equivalent test circuit and detection method thereof
CN105260516A (en) * 2015-09-25 2016-01-20 清华大学 Electromagnetic transient simulation method containing switching characteristic sub-network
CN106529084A (en) * 2016-12-05 2017-03-22 华南理工大学 Construction method for vacuum circuit breaker switch-on transient state simulation model

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABDULAHOVIC T: "《Analysis of high-frequency electrical transients in offshore wind parks》", 《CHALMERS UNIVERSITY OF TECHNOLOGY》 *
HELMER J,ET AL: "《Mathematical modeling of the high frequency behavior of vacuum interrupters and comparison with measured transients in power systems》", 《PROCEEDINGS OF 17TH INTERNATIONAL SYMPOSIUM ON DISCHARGES AND ELECTRICAL INSULATION IN VACUUM. IEEE》 *
XIN Y, ET AL: "《Modeling and mitigation for high frequency switching transients due to energization in offshore wind farms》", 《ENERGIES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111797524A (en) * 2020-07-02 2020-10-20 天津工业大学 Full-automatic optimization design method for electromagnetic operating mechanism of circuit breaker
CN111797524B (en) * 2020-07-02 2022-06-17 天津工业大学 Full-automatic optimization design method for electromagnetic operating mechanism of circuit breaker

Also Published As

Publication number Publication date
CN107291974B (en) 2020-06-19

Similar Documents

Publication Publication Date Title
CN106443381B (en) Dynamic arc model building method and system
CN104155626B (en) The system that ground potential climbing capacity resisted by a kind of detection voltage transformer
CN105785247A (en) Circuit-breaker alternating current and direct current mixing voltage withstanding wiring loop used for alternating current filter and test method thereof
Van der Sluis et al. A physical arc model for the simulation of current zero behavior of high-voltage circuit breakers
CN105186491B (en) A kind of switching manipulation causes the appraisal procedure of power system primary side overvoltage
CN105866667B (en) A kind of loop resistance test method of two sides earth breaker
CN107291974A (en) A kind of parameter tuning method of spring operation formula vacuum circuit breaker high frequency transient simulation model
Filipović-Grčić et al. Analysis of transient recovery voltage in 400 kV SF6 circuit breaker due to transmission line faults
CN104635087A (en) Inspection method for grounding safety performance of power transmission wire pole tower during lightning wire insulation erection
Uzelac et al. Application of simplified model for the calculation of the pressure rise in MV switchgear due to internal arc fault
He et al. Equivalent waveform parameters of switching overvoltages in UHV systems
Ribic et al. Overvoltage protection using a gas discharge arrester within the MATLAB program tool
Katare et al. Estimation of Arc voltage characteristic for high current fault Arcs
Habedank et al. Zero-crossing measurements as a tool in the development of high-voltage circuit breakers
Katare et al. Evaluation of arc conductance for high current fault arcs
Alessandra et al. Single-phase autoreclosure studies considering a robust and reliable secondary arc model based on a gray-box model
CN217689264U (en) Pure sine wave electronic voltage regulation control box
Župan et al. Capacitively Graded Oil-Paper Insulation Behavior Under Repeated Flashover Conditions
Jin et al. Study on the transient characteristic measurement system of current transformer
Hu et al. Experimental research on minimum approach distances and complex gaps of live working in 110kV substation
Xu et al. Analysis of the Transmission Characteristics of±500kV Metal-Enclosed DC Potential Transformer
Yufei et al. Simulation Study on the Transient Characteristics of HVDC Voltage Divider and Their Effects on undervoltage sensing protection
CN109100620B (en) System and method for verifying suppression effect of suppression guide wire on VFTO of GIS transformer substation
Hileman Specifying the Insulation Strength
Su et al. Discussion on the method of measuring the loop resistance of high voltage circuit breaker by double-ended grounding technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant