CN107267985B - 一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法 - Google Patents

一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法 Download PDF

Info

Publication number
CN107267985B
CN107267985B CN201710360577.7A CN201710360577A CN107267985B CN 107267985 B CN107267985 B CN 107267985B CN 201710360577 A CN201710360577 A CN 201710360577A CN 107267985 B CN107267985 B CN 107267985B
Authority
CN
China
Prior art keywords
magnesium alloy
copper magnesium
workpiece
corrosion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710360577.7A
Other languages
English (en)
Other versions
CN107267985A (zh
Inventor
王维根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Dragon Valley Mdt InfoTech Ltd
Original Assignee
Taizhou Dragon Valley Mdt Infotech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Dragon Valley Mdt Infotech Ltd filed Critical Taizhou Dragon Valley Mdt Infotech Ltd
Priority to CN201710360577.7A priority Critical patent/CN107267985B/zh
Publication of CN107267985A publication Critical patent/CN107267985A/zh
Application granted granted Critical
Publication of CN107267985B publication Critical patent/CN107267985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本发明涉及一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法,属于金属表面处理技术领域。本发明所要解决的铜镁合金的耐腐蚀性提高的问题,采用的技术手段是首先在铜镁合金的表面通过化学镀的方法获得一层中间层,中间层主要是通过化学镀的方法获得含有Ti和B的中间层,再在中间层的基础上通过双阴极等离子溅射沉积方法获得致密化的Nb耐腐蚀层,通过Ti和B的中间层的引入可以提高Nb耐腐蚀层与基材之间的结合力并提高耐腐蚀性。

Description

一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀 层的制备方法
技术领域
本发明涉及一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法,属于金属表面处理技术领域。
背景技术
铜镁合金的比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;比刚度与铝合金和钢相当,远高于纤维增强塑料;耐磨性能比低碳钢好,已超过压铸铝合金A380;减振性能、磁屏蔽性能远优于铝合金。铜镁合金的应用主要集中在铝合金生产、压铸生产、炼钢脱硫三大领域,还用在稀土合金、金属还原及其他领域。
但是铜镁合金在使用过程中存在的腐蚀性问题影响了它的应用范围。目前,大多数研究将研究重点放在添加或减少一些微量合金元素如A1、Fe、B、Re,以期提高铜镁合金的耐腐蚀性能。到目前为止,关于在铜镁合金表面进行镀层处理提高合金耐腐蚀性的报道少。
发明内容
本发明所要解决的铜镁合金的耐腐蚀性提高的问题,采用的技术手段是首先在铜镁合金的表面通过化学镀的方法获得一层中间层,中间层主要是通过化学镀的方法获得含有Ti和B的中间层,再在中间层的基础上通过双阴极等离子溅射沉积方法获得致密化的Nb耐腐蚀层,通过Ti和B的中间层的引入可以提高Nb耐腐蚀层与基材之间的结合力并提高耐腐蚀性。
技术方案是:
一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法,包括如下步骤:
第1步,以铜镁合金以石墨为阳极,铜镁合金为阴极,在电解液中通过电沉积获得Ti-B合金涂层;所述的电解液中包括有如下组分:四氯化钛10~30 g/L、硼盐3~5 g/L、硼酸 12~20 g/L、润湿剂 0.5~0.8g/L,通过H2SO4调节电解液的pH范围是4~6;电解完成后,取出工件,依次经过乙醇、水清洗后,烘干;
第2步,以金属铌作为靶材,在第1步得到的工件表面通过双阴极等离子溅射沉积方法在表面形成致密层Nb。
所述的第1步中,润湿剂选自十二烷基硫酸钠或者十二烷基磺酸钠中的一种或者两种的混合。
所述的第1步中,电流密度范围为2.0~8.0A/dm2,电沉积温度为45~65℃,沉积时间200~600s。
所述的第2步中,靶材电压为650~750 V,工件电压为140~260 V,靶材与工件间距为12~18 mm,Ar气压为25~45 Pa,沉积温度为550~850 ℃,沉积时间为1.5~3.0 h。
所述的第2步中,Nb耐腐蚀层的厚度范围是10~200μm。
所述的第1步中,铜镁合金是指Cu-Mg0.3wt%合金。
本发明还提供了由上述方法所直接制备得到的耐腐蚀的镀层铜镁合金。
另外,还提供了上述铜镁合金在腐蚀环境中的应用。
所述的腐蚀环境是指铜镁合金表面在有外力作用下的盐溶液环境。
所述的外力作用是指超声作用;所述的盐溶液是指NaCl溶液。
有益效果
本发明通过在铜镁合金的表面通过化学镀的方法获得一层中间层,中间层主要是通过化学镀的方法获得含有Ti和B的中间层,再在中间层的基础上通过双阴极等离子溅射沉积方法获得致密化的Nb耐腐蚀层,通过Ti和B的中间层的引入可以提高Nb耐腐蚀层与基材之间的结合力并提高耐腐蚀性。
附图说明
图1是镀层的铜镁合金在0.1mol/L氯化钠溶液中的开路电位曲线图。
具体实施方式
实施例1
第1步,以Cu-Mg0.3wt%铜镁合金以石墨为阳极,铜镁合金为阴极,在电解液中通过电沉积获得Ti-B合金涂层,电流密度范围为2.0A/dm2,电沉积温度为45℃,沉积时间200s;所述的电解液中包括有如下组分:四氯化钛10 g/L、硼盐3g/L、硼酸 12 g/L、十二烷基硫酸钠 0.5g/L,通过H2SO4调节电解液的pH范围是4;电解完成后,取出工件,依次经过乙醇、水清洗后,烘干;
第2步,以金属铌作为靶材,在第1步得到的工件表面通过双阴极等离子溅射沉积方法在表面形成致密层Nb,靶材电压为650 V,工件电压为140V,靶材与工件间距为12mm,Ar气压为25Pa,沉积温度为550℃,沉积时间为1.5h,Nb耐腐蚀层的厚度约50μm。
实施例2
第1步,以Cu-Mg0.3wt%铜镁合金以石墨为阳极,铜镁合金为阴极,在电解液中通过电沉积获得Ti-B合金涂层,电流密度范围为8.0A/dm2,电沉积温度为65℃,沉积时间600s;所述的电解液中包括有如下组分:四氯化钛30 g/L、硼盐5 g/L、硼酸20 g/L、十二烷基硫酸钠 0.8g/L,通过H2SO4调节电解液的pH范围是6;电解完成后,取出工件,依次经过乙醇、水清洗后,烘干;
第2步,以金属铌作为靶材,在第1步得到的工件表面通过双阴极等离子溅射沉积方法在表面形成致密层Nb,靶材电压为750 V,工件电压为260 V,靶材与工件间距为18 mm,Ar气压为45 Pa,沉积温度为850 ℃,沉积时间为3.0 h,Nb耐腐蚀层的厚度约80μm。
实施例3
第1步,以Cu-Mg0.3wt%铜镁合金以石墨为阳极,铜镁合金为阴极,在电解液中通过电沉积获得Ti-B合金涂层,电流密度范围为4.0A/dm2,电沉积温度为55℃,沉积时间500s;所述的电解液中包括有如下组分:四氯化钛15 g/L、硼盐4g/L、硼酸 16 g/L、十二烷基硫酸钠 0.6g/L,通过H2SO4调节电解液的pH范围是5;电解完成后,取出工件,依次经过乙醇、水清洗后,烘干;
第2步,以金属铌作为靶材,在第1步得到的工件表面通过双阴极等离子溅射沉积方法在表面形成致密层Nb,靶材电压为690 V,工件电压为210 V,靶材与工件间距为16mm,Ar气压为35Pa,沉积温度为650 ℃,沉积时间为2.0 h,Nb耐腐蚀层的厚度约70μm。
对照例1
与实施例3的区别在于:在中间层的电解液中未加入四氯化钛。
第1步,以Cu-Mg0.3wt%铜镁合金以石墨为阳极,铜镁合金为阴极,在电解液中通过电沉积获得Ti-B合金涂层,电流密度范围为4.0A/dm2,电沉积温度为55℃,沉积时间500s;所述的电解液中包括有如下组分:硼盐4g/L、硼酸 16 g/L、十二烷基硫酸钠 0.6g/L,通过H2SO4调节电解液的pH范围是5;电解完成后,取出工件,依次经过乙醇、水清洗后,烘干;
第2步,以金属铌作为靶材,在第1步得到的工件表面通过双阴极等离子溅射沉积方法在表面形成致密层Nb,靶材电压为690 V,工件电压为210 V,靶材与工件间距为16mm,Ar气压为35Pa,沉积温度为650 ℃,沉积时间为2.0 h,Nb耐腐蚀层的厚度约70μm。
对照例2
与实施例3的区别在于:直接在铜镁合金表面沉积Nb层。
以Cu-Mg0.3wt%铜镁合金为工作,以金属铌作为靶材,在工件表面通过双阴极等离子溅射沉积方法在表面形成致密层Nb,靶材电压为690 V,工件电压为210 V,靶材与工件间距为16mm,Ar气压为35Pa,沉积温度为650 ℃,沉积时间为2.0 h,Nb耐腐蚀层的厚度约70μm。
对照例3
直接采用Cu-Mg0.3wt%铜镁合金作为对照样品。
耐腐蚀试验
将上述的实施例和对照例1-3中制备得到的试样先置于超声场中进行超声处理1h,再取出后于0.1mol/L的NaCl溶液中进行腐蚀试验,测定电极电位和腐蚀电流。电极电位随时间变化曲线如图1所示。在经过20min试验后,电极电位和腐蚀电流情况如表1所示。
表1
从表1和图1中可以看出,对照例3中的铜镁合金在盐水中的电极电位一直处于快速下降的状态,说明其具有耐腐蚀性不好的问题;而实施例3中的合金的电极电位保持稳定的趋势,说明经过表面镀Nb之后,提高了其耐腐蚀性;实施例3相对于对照例1来说,通过在中间上加入Ti盐进行化学镀处理,可以提高Nb层与基材之间的结合力,在经过超声处理之后,表面未发生破坏,仍然保持有较好的防腐蚀性能;实施例3相对于对照例2来说,由于未加入中间镀层,导致经过超声破坏之后耐腐蚀性下降明显。同时,通过腐蚀电流测试也可以看出,通过中间层和表面Nb耐腐蚀层处理之后,铜镁合金在经过超声处理之后仍然可以保持较好的耐腐蚀性。

Claims (6)

1.镀层铜镁合金在腐蚀环境中的应用, 所述的腐蚀环境是指铜镁合金表面在有外力作用下的盐溶液环境, 所述的外力作用是指超声作用, 所述的盐溶液是指NaCl溶液,
所述的镀层铜镁合金的制备方法包括如下步骤:
第1步,以铜镁合金以石墨为阳极,铜镁合金为阴极,在电解液中通过电沉积获得Ti-B合金涂层;所述的电解液中包括有如下组分:四氯化钛10~30 g/L、硼盐3~5 g/L、硼酸 12~20 g/L、润湿剂 0.5~0.8g/L,通过H2SO4调节电解液的pH范围是4~6;电解完成后,取出工件,依次经过乙醇、水清洗后,烘干;
第2步,以金属铌作为靶材,在第1步得到的工件表面通过双阴极等离子溅射沉积方法在表面形成致密层Nb。
2.根据权利要求1所述的应用,其特征在于,所述的第1步中,润湿剂选自十二烷基硫酸钠或者十二烷基磺酸钠中的一种或者两种的混合。
3.根据权利要求1所述的应用,其特征在于,所述的第1步中,电流密度范围为2.0~8.0A/dm2,电沉积温度为45~65℃,沉积时间200~600s。
4.根据权利要求1所述的应用,其特征在于,所述的第2步中,靶材电压为650~750 V,工件电压为140~260 V,靶材与工件间距为12~18 mm,Ar气压为25~45 Pa,沉积温度为550~850 ℃,沉积时间为1.5~3.0 h。
5.根据权利要求1所述的应用,其特征在于,所述的第2步中,Nb耐腐蚀层的厚度范围是10~200μm。
6.根据权利要求1所述的应用,其特征在于,所述的第1步中,铜镁合金是指Cu-Mg0.3wt%合金。
CN201710360577.7A 2017-05-21 2017-05-21 一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法 Active CN107267985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710360577.7A CN107267985B (zh) 2017-05-21 2017-05-21 一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710360577.7A CN107267985B (zh) 2017-05-21 2017-05-21 一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法

Publications (2)

Publication Number Publication Date
CN107267985A CN107267985A (zh) 2017-10-20
CN107267985B true CN107267985B (zh) 2019-04-19

Family

ID=60064542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710360577.7A Active CN107267985B (zh) 2017-05-21 2017-05-21 一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法

Country Status (1)

Country Link
CN (1) CN107267985B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463436B (zh) * 2020-04-20 2021-11-02 华鼎国联四川动力电池有限公司 一种锂离子电池集流体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078130A (zh) * 2007-06-27 2007-11-28 东北大学 工业铝电解槽纯二硼化钛阴极涂层的制备方法
CN102828157A (zh) * 2012-07-30 2012-12-19 北京航空航天大学 一种Nb离子注入沉积对医用TiNi形状记忆合金进行表面改性的方法
CN105750354A (zh) * 2016-03-31 2016-07-13 常州易藤电气有限公司 一种冷镀锡铁道用铜镁合金绞线的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078130A (zh) * 2007-06-27 2007-11-28 东北大学 工业铝电解槽纯二硼化钛阴极涂层的制备方法
CN102828157A (zh) * 2012-07-30 2012-12-19 北京航空航天大学 一种Nb离子注入沉积对医用TiNi形状记忆合金进行表面改性的方法
CN105750354A (zh) * 2016-03-31 2016-07-13 常州易藤电气有限公司 一种冷镀锡铁道用铜镁合金绞线的制备方法

Also Published As

Publication number Publication date
CN107267985A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
Ranjith et al. Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath
Altun et al. The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy
Zhou et al. Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy
CN109161941A (zh) 一种烧结钕铁硼磁体铜复合石墨烯镀层打底以提高耐蚀性的方法及产品
Robin et al. Co-electrodeposition and characterization of Cu–Si3N4 composite coatings
CN106757195B (zh) 一种高活性多孔隙类材料的表面防护方法
CN104790004A (zh) 镀镍和\或铬部件及其制造方法
Jiang et al. Study on Ni-Ni (S)-Ni (P) multilayer coating by friction-assisted jet electroplating on sintered NdFeB
CN105908228A (zh) 一种镍合金cmma镀层及其制备方法
Liu et al. Electro-deposition metallic tungsten coatings in a Na2WO4–WO3 melt on copper based alloy substrate
Huang et al. Microstructure and electrochemical corrosion behavior of Cr–Ni–Fe alloy deposits electroplated in the presence of trivalent Cr ions
Karahan et al. Electrodeposition and properties of Zn, Zn–Ni, Zn–Fe and Zn–Fe–Ni alloys from acidic chloride–sulphate electrolytes
Offoiach et al. Production and microstructural characterization of Ni matrix composite electrodeposits containing either micro-or nano-particles of Al
Jiang Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt
CN107267985B (zh) 一种基于双阴极等离子溅射沉积技术的铜镁合金表面耐腐蚀层的制备方法
Wang et al. Electrodeposition of Cu coating with high corrosion resistance on Mg–3.0 Nd–0.2 Zn–0.4 Zr magnesium alloy
Maizelis et al. Protection of NdFeB magnets by multilayer coating
CN113463148A (zh) 一种在钛或钛合金基材表面电镀金的方法
Pan et al. Mechanically Durable and Fluorine‐Free Ni–Cr Alloy‐Based Highly Hard Superhydrophobic Coating on Al Alloy
CN104388992B (zh) 离子液体体系中共沉积Al‑Zn合金镀层的方法
CN1281787C (zh) 镁及镁合金高耐蚀性复合镀层及其制备工艺
Bose et al. Fortification of Ni–Y 2 O 3 nanocomposite coatings prepared by pulse and direct current methods
Zhong et al. Enhanced mechanical properties and corrosion resistance of nickel and nickel-phosphorous coatings fabricated by electrodeposition embedding with TiB2 ceramic particles
Basavanna et al. Electrochemical and reflectance studies of bright Zn-Co alloy coatings
Hu et al. Research Progress on the Texture of Electrolytic Copper Foils

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190319

Address after: 225300 Room 102, 156 Meilanxi Road, Hailing District, Taizhou City, Jiangsu Province

Applicant after: Taizhou Dragon Valley Mdt InfoTech Ltd

Address before: 211111 19, 9 9, 12 East Road, Mau Road, Jiangning District, Nanjing, Jiangsu.

Applicant before: Nanjing pan Environmental Protection Technology Co., Ltd.

GR01 Patent grant
GR01 Patent grant