CN107251297A - 发电气体分离系统和方法 - Google Patents

发电气体分离系统和方法 Download PDF

Info

Publication number
CN107251297A
CN107251297A CN201680012253.8A CN201680012253A CN107251297A CN 107251297 A CN107251297 A CN 107251297A CN 201680012253 A CN201680012253 A CN 201680012253A CN 107251297 A CN107251297 A CN 107251297A
Authority
CN
China
Prior art keywords
gas
flue gas
anode exhaust
component
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680012253.8A
Other languages
English (en)
Other versions
CN107251297B (zh
Inventor
H·盖泽尔-阿亚格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuelcell Energy Inc
Original Assignee
Fuelcell Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuelcell Energy Inc filed Critical Fuelcell Energy Inc
Publication of CN107251297A publication Critical patent/CN107251297A/zh
Application granted granted Critical
Publication of CN107251297B publication Critical patent/CN107251297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes

Abstract

发电系统被配置为利用从烟气生成组件输出的烟气,其中烟气包括二氧化碳和氧气。发电系统包括燃料电池,燃料电池包括阳极部分和阴极部分,其中阴极部分被配置为接收包含从烟气生成组件输出的烟气的入口氧化剂气体。发电系统还包括气体分离组件,该气体分离组件被配置为接收从燃料电池的阳极部分输出的阳极排气,并且包括冷却器组件,该冷却器组件被配置为将阳极排气变凉到预定温度,以便液化阳极排气中的二氧化碳。燃料电池和冷却器组件被配置为使得由燃料电池产生的废热用于驱动冷却器组件。

Description

发电气体分离系统和方法
相关专利申请的交叉引用
本申请要求2015年2月25日提交的美国专利申请No.14/631,239的优先权和权益,该美国专利申请的公开内容(包括说明书、附图、权利要求书和摘要)以其全部内容以引用方式并入本文。
技术领域
本申请涉及燃料电池发电系统,并且特别地涉及燃料电池发电气体分离系统和方法。
背景技术
燃料电池是通过电化学反应将存储在燃料中的化学能直接转化为电能的设备。通常,燃料电池包括由电解质分离的阳极和阴极,电解质用于传导带电离子。熔融碳酸盐燃料电池(MCFC)通过使反应物燃气穿过阳极,同时使氧化气体(诸如二氧化碳和氧气)穿过阴极来进行操作。
基于燃烧的发电装置通过燃烧包括煤、天然气、沼气和合成气的基于可燃的碳氢化合物的燃料来产生能量。作为燃烧过程的结果,基于燃烧的发电装置生成烟气,常常通过大气排放物除掉该烟气。然而,此类排放物对环境是有害的,因为此类排放物含有有助于全球气候改变的二氧化碳。
于是,已经使用了许多做法来控制或限制来自基于燃烧的发电装置的二氧化碳排放量。然而,由于作为应用二氧化碳捕获系统的结果而能量(功率和/或热量)的显著损失,所以将二氧化碳与燃烧后烟气分离不是成本有效的。
在美国专利No.5,232,793中公开了一种系统,其中使用与发电装置串联的碳酸盐燃料减少化石燃料发电装置的烟气中的二氧化碳排放量。在该系统中,将烟气添加到氧化剂供应源中,并且组合气体用作熔融碳酸盐燃料电池的阴极的进料气体。然后,燃料电池中的电化学反应导致将进料气体中的二氧化碳从阴极传递到燃料电池的阳极。因此,阳极废气变成用二氧化碳气体进行浓缩。这准许二氧化碳气体与烟气分离。'793专利的系统使用外部重整燃料电池系统。在该系统中,除了一氧化碳、甲烷和水的量之外,阳极废气还具有大量的氢气。大部分的水可冷凝,然而,'793专利没有供给用于从阳极排气分离剩余的氢气、甲烷和一氧化碳的成本有效的方法。在将二氧化碳封存或转化成有用形式之前,需要通过去除氢气、一氧化碳和甲烷来净化阳极排气流中的二氧化碳。
由美国专利No.7,396,603公开了一种集成发电系统,其中用于处理基于化石的燃料的化石燃料发电装置与具有阳极和阴极的碳酸盐燃料电池串联布置。在'603专利的系统中,发电装置的烟气用作用于燃料电池的阴极部分的入口气体。此外,'603的系统使用内部重整碳酸盐燃料电池,这将阳极排气内的甲烷量减少到可忽略的量。然而,离开燃料电池的阳极部分的阳极废气含有大量的氢气、一氧化碳和水杂质。使用二氧化碳分离器,阳极废气经历包括净化和捕获废气中的二氧化碳的处理。然而,'603专利的集成发电系统不能回收存在于烟气中的热量或有用气体,并且没有公开从阳极排气CO2分离的细节。
发明内容
根据示例性实施例,发电系统被配置为利用从烟气生成组件输出的烟气。烟气包括二氧化碳和氧气,并且发电系统包括燃料电池,燃料电池包括阳极部分和阴极部分,阴极部分被配置为接收包含从烟气生成组件输出的烟气的入口氧化剂气体;以及气体分离组件,该气体分离组件被配置为接收从燃料电池的阳极部分输出的阳极排气,并且包括冷却器组件,该冷却器组件被配置为将阳极排气变凉到预定温度,以便液化阳极排气中的二氧化碳。燃料电池和冷却器组件被配置为使得由燃料电池产生的废热用于驱动冷却器组件。
根据另一个示例性实施例,用于发电系统中的气体分离方法利用从烟气生成组件输出的烟气。烟气包括二氧化碳和氧气,并且该方法包括接收从烟气生成组件输出的烟气,并且将烟气作为入口氧化剂气体提供到燃料电池的阴极部分;操作具有阳极部分和阴极部分的燃料电池,其中在燃料电池的操作期间从燃料电池的阳极部分输出阳极排气;通过在冷却器组件中将阳极排气变凉到预定温度,以便液化在阳极排气中的二氧化碳,使阳极排气中的二氧化碳和残余燃料分离;以及利用通过操作燃料电池生成的废热驱动冷却器组件。
根据另一个示例性实施例,气体分离组件被配置为用于与烟气生成组件集成的燃料电池系统中。该燃料电池系统包括阳极部分和阴极部分,其中阴极部分被配置为接收包含从烟气生成组件输出的烟气的入口气体,并且其中烟气含有二氧化碳和氧气。气体分离组件包括:冷却器组件,冷却器组件被配置为接收阳极排气,并且将阳极排气变凉到预定温度,以便液化阳极排气中的二氧化碳;以及热回收组件,热回收组件被配置为回收由燃料电池产生的废热。热回收组件和冷却器组件被配置为使得由热回收组件回收的废热用于驱动冷却器组件。
附图说明
图1A示出燃料电池的示意图。
图1B示出根据示例性实施例的集成发电系统。
图2示出发电气体分离和封存系统的图示。
图3示出用于发电系统的气体分离方法的流程图。
具体实施方式
本申请涉及一种集成发电系统或燃料电池系统,燃料电池系统可与包括发电装置、锅炉或任何类型的燃烧器(诸如水泥厂的窑炉以及钢铁行业中的焦炉)的化石燃料设备、设施或安装设备集成,并且包括燃料电池排气中气体(特别是二氧化碳)的有效分离。本申请还公开了高纯度二氧化碳与燃料电池排气的分离,使得分离的二氧化碳可用于其它行业。
根据示例性实施例,提供了一种发电系统,并且该发电系统适于与化石燃料安装设备、设施或设备集成,并且适于利用由化石燃料安装设备、设施或设备输出的含有二氧化碳和氧气的烟气。发电系统包括:燃料电池,燃料电池包括阳极部分和阴极部分,其中到燃料电池的阴极部分的入口氧化剂气体包含由化石燃料安装设备、设施或设备输出的烟气;以及气体分离组件,气体分离组件接收从燃料电池的阳极部分输出的阳极排气,并且包括用于将阳极排气变凉到预定温度,以便液化阳极排气中的二氧化碳的冷却器组件,其中由燃料电池产生的废热用于驱动冷却器组件。在一些实施例中,供应到燃料电池的阴极部分的入口氧化剂气体仅包含由化石燃料安装设备、设施或设备输出的烟气的全部或部分。在某些实施例中,冷却器组件包括一个或多个吸收式冷却器,而在其它实施例中,冷却器组件包括一个或多个吸收式冷却器。气体分离组件从由燃料电池的阴极部分输出的阴极排气回收废热,并且利用回收的废热的至少一部分驱动冷却器组件。
在一些实施例中,气体分离组件另外包括用于从阳极排气分离水,并且用于输出经水分离的阳极排气的除水组件,并且冷却器组件接收经水分离的阳极排气。气体分离组件另外包括压缩机,该压缩机用于在将经水分离的阳极排气输送到冷却器组件之前压缩从除水组件输出的经水分离的阳极排气。在一些实施例中,压缩机将阳极排气压缩到至少200psi,并且其中冷却器组件将阳极排气冷却到大约-40℃或更暖的温度。所述压缩机的压力越高,要采用的冷却器的温度越暖。设计点是具有较大占空比的更冷的冷却器与具有较高寄生功率消耗的较大压缩机之间权衡研究的结果。而且,气体分离组件另外包括气体分离设备,该气体分离设备接收来自冷却器组件的冷却的阳极排气,并且用于将液化的二氧化碳与冷却的阳极排气中的残余燃气分离。在一些实施例中,气体分离组件另外包括用于在将阳极排气输送到除水组件之前将阳极排气中的一氧化碳转化为二氧化碳的变换反应器。
在一些实施例中,发电系统还包括氧化器,该氧化器接收由化石燃料安装设备、设施或设备输出的烟气,以及由气体分离设备分离的残余燃气,并且使残余的燃料氧化,以加热烟气,其中氧化器将加热的烟气输出到燃料电池的阴极部分。发电系统还包括至少一个热交换器,至少一个热交换器用于利用阴极排气中的废热来加热要被输入到阳极部分的燃气,以及由化石燃料安装设备、设施或设备输出的烟气中的至少一种。在一些实施例中,燃料电池是内部重整熔融碳酸盐燃料电池(MCFC),而在其它实施例中,燃料电池是外部重整MCFC。
还描述了用于发电系统中且利用从化石燃料安装设备、设施或设备输出的含有二氧化碳和氧气的烟气的气体分离方法。而且,还提供了包括化石燃料安装设备、设施或设备以及上述发电系统的集成发电系统。而且,还描述了用于与化石燃料安装设备、设施或设备集成的燃料电池系统中的气体分离组件。
图1A示出了燃料电池1的示意图。燃料电池1包括电解质基质2、阳极3和阴极4。阳极3和阴极4通过基质2彼此分离。来自燃烧排气供应单元的烟气作为氧化剂气体被馈送到阴极4。在燃料电池1中,燃气和氧化剂气体在存在于电解质基体2的孔隙中的碳酸盐电解质的存在下进行电化学反应。在下面公开的例示性系统中,燃料电池1包括燃料电池堆组件,其中多个单独的燃料电池1堆叠且串联连接。
图1B示出了根据示例性实施例的由烟气生成组件6和发电气体分离和二氧化碳捕获以供封存的系统200组成的集成发电系统1,烟气生成组件6包括化石燃料安装设备、设施或设备、锅炉、燃烧器、水泥厂中的熔炉和窑炉中的一种或多种(以下称为“化石燃料安装设备、设施或设备”),系统200包括碳酸盐燃料电池组件10和气体分离组件25。如图所示,碳酸盐燃料电池组件10包括阴极部分12和阳极部分14,并且在本例示性实施例中,燃料电池组件10是内部重整熔融碳酸盐燃料电池组件或直接熔融碳酸盐燃料电池组件,其中在组件中内部重整用于阳极的燃料。在其它例示性实施例中,也可采用外部重整碳酸盐燃料电池组件,在这种情况下,重整器将用于在将燃料递送到燃料电池阳极部分之前重整燃料。
如图所示,化石燃料安装设备、设施或设备6和发电气体分离和封存系统200的燃料电池组件10串联布置,使得组件的阴极部分12被供应有来自化石燃料安装设备、设施或设备的烟气。在图1B所示的实施例中,阴极部分12仅被供应有来自化石燃料安装设备、设施或设备的烟道废气。特别地,化石燃料诸如煤、天然气或其他烃类燃料连同从空气供应源4递送的空气一起从化石燃料供应源2被递送到化石燃料安装设备、设施或设备6。在化石燃料安装设备、设施或设备6中,化石燃料和空气进行燃烧反应,从而发电,并且导致输出烟气排气。烟气排气通常包括约3%至15%的二氧化碳、10%至20%的水以及5%至15%的氧气,余量为氮气。这些组分的精确量将取决于化石燃料的类型和来自空气供应源4的空气量。在进入燃料电池阴极部分12之前,氧含量可通过调整空气供应源4或者通过将补充空气7添加到烟气8中变化。补充空气的目的是在烟气8中没有燃料电池操作所需的足够的氧气的情况下增加组合流9的氧气部分。
如图所示,管线9将烟道废气的一部分或全部耦接到阴极部分12的入口12A,使得供应到阴极入口的氧化剂气体包括烟气排气。在所示的实施例中,烟气与可能的补充空气流的组合是供应到入口12A的专用氧化剂气体。同时,来自供应源16的燃料诸如煤气、天然气或其它含氢燃料通过管线15递送到阳极部分14的入口14A。在燃料电池组件10中,阴极部分12中包括烟气排气的氧化剂气体和阳极部分14中的重整氢气进行电化学反应,以产生功率输出。再者,该电化学反应导致烟气中二氧化碳的大部分(约65%至85%或更多)从阴极部分传递到电池的阳极部分。更特别地,烟气中的二氧化碳和氧气在燃料电池的阴极部分12中进行反应,以产生碳酸根离子,碳酸根离子通过燃料电池电解质被运送到电池的阳极部分14。在阳极部分14处,碳酸根离子被来自燃料的氢气还原,以产生水和二氧化碳。最终结果是上面提及的将烟气中的大部分二氧化碳从阴极部分传递到阳极部分。因此,燃料电池10的阳极室的出口14B处的阳极废气的二氧化碳浓度高,从而准许使用二氧化碳(CO2)封存系统更容易且更有效地捕获和隔离二氧化碳气体。
在图1B中所示的实施例中,耗尽二氧化碳的烟气经由管线18通过阴极出口12B离开阴极部分12,并且主要含有二氧化碳以及未反应的氢气、一氧化碳、水蒸气和痕量的其它气体的阳极废气离开阳极出口14B,并且由管线20输送到气体分离组件25。如图1B所示,并且如下面更详细描述的和图2所示的,气体分离组件25至少包括用于回收来自阳极排气的水的除水组件21,以及用于将二氧化碳与剩余的阳极排气分离的二氧化碳分离组件22。下面参考图2更详细地描述了二氧化碳分离组件22。而且,因为阴极气体在高温下离开燃料电池,所以由一个或多个热回收单元17回收来自该流的全部或部分显热,并且来自该流的全部或部分显热可用于预热传入燃料电池组件10中的气体。在一些实施例中,在被输送到气体分离组件25之前,可从离开燃料电池阳极部分的阳极废气中回收热量。
图2更详细地示出了根据示例性实施例的发电气体分离和封存系统200。系统200从燃烧排气供应源205接收主要含有二氧化碳、水、氧气和氮气且由可燃的碳氢化合物(包括例如基于燃烧的发电装置、化石燃料安装设备、设施或设备等中的煤、天然气、沼气、合成气和其它烃类燃料诸如乙醇)的燃烧产生的烟气。燃烧排气供应源205通过气流管道210a将烟气排气供应到痕量致污/污染气体去除设备215。痕量致污/污染气体去除设备215去除包括氧化硫气体(诸如SO2)、汞、微粒和氧化氮气体(NOx)的燃烧副产物。在图2所示的例示性实施例中,副产物气体去除设备215通过气流管道210b将经清洁的烟气输出到烟气鼓风机220。烟气鼓风机220增加经清洁的烟气的压力,使得烟气被推过系统200。
在所示的例示性实施例中,烟气鼓风机220将烟气输出到第一热交换器225,第一热交换器225被配置为将烟气加热到约500℃到650℃的温度。如果需要,在烟气为热的情况下,第一热交换器225还可从烟气中去除热量,并且转移热量用于热回收。如图2所示,第一热交换器225通过气流管道210b接收来自燃烧排气供应源205的经清洁的烟气,并且还接收从燃料电池235的阴极侧236输出的阴极排气。在第一热交换器225中将烟气加热到期望的温度之后,加热的烟气被输出到包括氧化器230的氧化器组件。氧化器230还接收包含燃料的气体,诸如阳极排气的一部分或与在下文所述的气体分离设备275中的阳极排气分离的残余燃料的全部或一部分。在氧化器230中,包含气体的燃料在烟气的存在下被氧化,从而另外加热烟气。氧化器230通过气流管道210c将另外加热的烟气输出到燃料电池235。
燃料电池235包括阴极部分236和阳极部分237。如上面所讨论的,在图2的例示性实施例中,燃料电池235是内部重整熔融碳酸盐燃料电池(MCFC)。然而,在其他实施例中,燃料电池可能为外部重整燃料电池,或者可使用外部重整和内部重整两者,在这种情况下,还提供了外部重整器以在燃料被输送到阳极部分237之前对燃料进行重整。阴极部分236经由气流管道210a-气流管道210c耦接到燃烧排气供应源205,并且在副产物气体去除设备215中已经处理烟气且在第一热交换器225和氧化器230中已经加热烟气之后,通过气流管道210b-气流管道210c接收来自燃烧排气供应源205的烟气。在本例示性实施例中,阴极部分236仅接收从燃烧排气供应源205提供的烟气或经处理的烟气。然而,在其它实施例中,烟气或经处理的烟气可与来自其他源的空气或氧化剂气体混合。
在燃料电池中进行电化学反应之后,阴极部分236通过气流管道212将阴极排气输出到第二热交换器240,第二热交换器240还通过燃料供应管道242从燃料供应源241接收燃料,诸如天然气。在图2的例示性实施例中,天然气被用作燃料;然而,燃料源可为其他类型的燃料,包括但不限于来源于煤的合成气、厌氧消化池气体,以及可再生燃料诸如乙醇或氢气。还在其它实施例中,在燃料电池中使用之前,可需要从燃料电池有害的致污物诸如含硫物质中清除烟气。在第二热交换器240中,使用来自阴极排气的废热将所接收的燃料加热到约450℃到650℃的温度,并且然后将加热的燃料从第二热交换器240输送到燃料电池235的阳极部分237。第二热交换器还输出变凉的阴极排气,然后通过第一热交换器225输送冷却的阴极排气以预热经清洁的烟气。
如图2所示,阳极部分237接收预热的燃料,通常通过经由管道252添加水使预热的燃料潮湿,并且在气体在燃料电池235中进行电化学反应之后,阳极部分237经由管道214将阳极排气输出到气体分离组件25。在图2的实施例中,气体分离组件25包括变换反应器245、除水组件250、压缩机260,以及二氧化碳分离组件22,二氧化碳分离组件22包括由燃料电池235的废热驱动的冷却器组件265和闪蒸槽275或另一种合适的气液分离设备。
在图2的系统中,变换反应器245根据以下反应,大体上将存在于阳极排气中的全部一氧化碳转化为二氧化碳:
CO+H2O→CO2+H2
使得从变换反应器245输出的阳极排气大体上包括二氧化碳、氢气和水。然后,从变换反应器245输出的阳极排气被输送到包括冷凝器等的除水组件250,其中存在于阳极排气中的水通过冷凝与剩余的气体诸如二氧化碳和氢气分离。除水组件250通过除水管道251输出冷凝水,冷凝水从除水管道251被再循环回到系统200,或冷凝水从除水管道251输出产物水收集器255,用于在系统200外部使用和/或再循环回到系统。如图2所示,冷凝水的全部或一部分可通过经由水再循环管道252将水引导到燃料供应管道242而被再循环用于燃料加湿。还如图所示,冷凝水的剩余部分从系统200输出,或被收集在产物水收集器255中,并且可在需要时再循环回系统200。
冷凝器组件250通过气流管道216将经水分离的阳极排气输出到压缩机260,压缩机260将阳极排气压缩到大约200磅/平方英寸(psi)或更高的压力。所述压缩机的压力越高,可由冷却器供给的温度越高。设计点是在较大和更凉的冷却器或更高的压缩功率消耗之间的权衡。压缩机260将压缩的阳极排气输出到冷却器组件265。冷却器组件265包括一个或多个设备,该一个或多个设备使用热量来驱动压缩的经水分离的阳极排气变凉,以便引起阳极排气内的各种气体的分离。如图2所示,冷却器组件265包括一个或多个吸收式冷却器,即,一个或多个吸收式冷冻机。在一些实施例中,可使用串联连接的多个吸收式冷却器的组件,其中吸收式冷却器中的每个吸收式冷却器从压缩机260接收压缩的经水分离的阳极排气的全部或一部分。在其它实施例中,代替吸收式冷却器,可使用一个或多个吸收式冷却器。
在冷却器组件265中,将经水分离的压缩的阳极排气冷却到预定的温度,同时维持其压缩状态。特别地,将阳极排气变凉到大约-40℃或更暖的温度,同时维持气体的高压,即,处于大约200psi或更高。在该温度和压力下,存在于阳极排气中的二氧化碳被液化,引起二氧化碳与其它气体(诸如存在于阳极废气中的残余氢燃料)分离。冷却器组件265利用由燃料电池237生成的以及在热回收组件270中从燃料电池排气回收的废热。具体地,阴极排气在穿过第二热交换器240且穿过第一热交换器225之后,经由管道266被输送到热回收组件270。热回收组件270从阴极排气口回收剩余的废热,并且利用回收的废热来驱动冷却器组件265。在通过热回收组件270输送之后,从系统200去除阴极排气,并且通过排气管道271由系统排气导管280将阴极排气排放到大气中。
冷却器组件265将变凉的阳极排气输出到气液分离设备275,在冷却的阳极排气中,二氧化碳已被液化,而残余燃料处于气体状态。也被称为闪蒸槽的气体分离设备275是罐,该罐将液化的二氧化碳与残余燃气分离,并且将分离的几乎纯的且液化的二氧化碳输出到封存组件280(诸如地下储存库)。可使用泵281等,以促进来自气体分离设备275的分离的且液化的纯的二氧化碳的流动。例如,泵281可用于将液化的二氧化碳压力增加至大于2200psi,以便将二氧化碳转换到超临界状态,以促进其长距离运输到280封存地点。在一些实施例中,由其他过程和应用(诸如增强的石油回收(EOR)、生产化学品)利用分离的二氧化碳,并且在食品行业中使用分离的二氧化碳。气体分离组件275还通过燃气再循环管道276输出分离的残余燃气,诸如氢气。在图2的例示性实施例中,燃气再循环管道276耦接到氧化器单元230,使得分离的残余燃料输出从气体分离设备275输出到氧化器单元230,用于预热烟气。在其他实施例中,可利用分离的残余燃气作为其它过程(包括但不限于不包含在系统200内的精炼厂、燃气轮机,以及其它燃料电池)中的合成气副产物。
图3示出了图2所示的系统的操作,图3示出了使用图2的发电气体分离和封存系统的气体分离方法的流程图。在图3的步骤305中,由基于燃烧的发电装置产生的且包括二氧化碳、水、氧气和氮气的烟气被供应到系统,并且可被处理以去除硫氧化物和其他痕量物质。在步骤310中,使用来自燃料电池阴极排气的废热和/或通过在氧化器中使燃料氧化加热步骤305中供应和处理的烟气。如上面关于图2所讨论的,提供给氧化器的燃料可为与燃料电池阳极排气分离的氢燃料。在步骤315中,将预热的烟气提供到燃料电池的阴极部分,其中烟气用于与氢燃料进行电化学反应,以发电且输出功率。在步骤320中,包括废燃料、二氧化碳、水和一氧化碳的阳极排气从燃料电池的阳极部分输出,并且在变换反应器中被处理以将一氧化碳转化成二氧化碳,并且使用除水组件从阳极排气去除水。在步骤325中,将步骤320中产生的经水分离的阳极排气提供到二氧化碳分离组件,其中阳极排气被压缩到预定压力,诸如200psi或更高。在下一个步骤330中,在冷却器组件中将压缩的阳极排气冷却或变凉到预定温度,以便引起二氧化碳液化,同时维持残余燃料(氢气)处于气态。如上面所讨论的,根据压缩机出口压力,预定温度为-40℃或更暖。在步骤330中,从阴极排气回收由燃料电池产生的废热,并且在冷却器组件中利用该废热,以驱动变凉/冷却操作。在步骤335中,在气体分离设备中液化的二氧化碳与残余燃气分离。由步骤335中气体分离而分离的二氧化碳大体上是纯的,并且具有至少90%且优选99%或以上的纯度。高纯度的分离的二氧化碳适合于由其他行业(诸如增强的石油回收(EOR))的运输、封存和/或使用。最后,在步骤340中,将步骤335中从阳极排气分离的残余燃料被提供到氧化器,在氧化器中残余燃料被氧化且被用于预热传入的烟气。残余燃料或其一部分可被用作气体分离系统之外的其他过程诸如锅炉、燃气轮机或精炼厂中的合成气。
图2和图3中所示的系统和方法提供在燃料电池系统中烟气的有效使用,以及从阳极排气分离出高纯度二氧化碳和残余燃料。特别地,通过使用吸收式冷却器以将阳极排气变凉到二氧化碳液化且可容易地与残余燃料分离的温度,完成阳极排气中二氧化碳与残余燃料的分离。吸收式冷却器是可商购的设备,该可商购的设备可适于与燃料电池系统一起使用,从而导致制造效率。此外,如上所述,吸收式冷却器利用由燃料电池系统产生的废热,因此增加整个系统的操作效率,同时还获得适合于其他行业中封存和使用的高纯度二氧化碳。
如本文所利用的,术语“约”、“大约”、“大体上”以及类似术语旨在具有由本公开的主题属于的领域中的普通技术人员的常见和接受的用法一致的广泛含义。由回顾本公开的本领域技术人员应当理解,这些术语旨在允许所描述的和所要求保护的某些特征的描述,而不将这些特征的范围限制到所提供的精确数值范围。于是,这些术语应当被释义为指示所描述的和所要求保护的主题的非实质的或无关紧要的修改或更改被认为在如所附权利要求中叙述的本发明的范围内。
如本文所使用的,术语“耦接”、“连接”等意指两个部件直接或间接地彼此接合。此类接合可为静止的(例如,永久的)或可移动的(例如,可移除或可释放的)。可用两个构件或两个构件与任何额外的中间构件彼此整体地形成为单个一件体,或用两个构件或两个构件与任何额外的中间构件彼此附接,实现此类接合。
本文中对元件的位置(例如,“顶部”、“底部”、“上面”、“下面”等等)的引用仅用于描述附图中各种元件的取向。应当注意,根据其它示例性实施例,各种元件的取向可不同,并且旨在由本公开包含此类变化。
各种示例性实施例的元件的构造和布置仅是说明性的。虽然仅详细描述了本公开的几个实施例,但是回顾本公开的本领域技术人员将容易了解,在没有实质上脱离所叙述的主题的新颖性教导和优点的情况下,许多修改是可能的(例如,各种元件的大小、尺寸、结构、形状和比例,参数的值,安装布置,材料的使用,颜色,取向等的变化)。例如,示出为整体形成的元件可由多个零件或元件构成,元件的位置可颠倒或以其他方式变化,并且分立元件的性质或数量或位置可更改或变化。
额外地,词语“示例性”用于意指用作示例、实例或说明。本文中描述为“示例性”的任何实施例或设计不一定被解释为比其他实施例或设计优选或有利(并且此类术语并不旨在意味着此类实施例必然是非惯例的或最佳的示例)。相反,词语“示例性”的使用旨在以具体的方式呈现概念。于是,全部此类修改旨在包括在本公开的范围内。在不脱离所附权利要求书的范围的情况下,可在优选和其它示例性实施例的设计、操作条件以及布置中作出其他替换、修改、改变以及省略。
在不脱离本发明的范围的情况下,也可在各种示例性实施例的设计、操作条件以及布置中作出其他替换、修改、改变以及省略。例如,在一个实施例中所公开的任何元件可并入本文所公开的任何其它实施例,或与本文所公开的任何其它实施例一起使用。再者,例如,根据供选择的实施例,任何过程或方法步骤的次序或顺序可变化或重新排序。在不脱离所附权利要求书的范围的情况下,可在优选和其它示例性实施例的设计、操作配置以及布置中作出其他替换、修改、改变以及省略。

Claims (40)

1.一种发电系统,所述发电系统被配置为利用从烟气生成组件输出的烟气,其中所述烟气包括二氧化碳和氧气,并且所述发电系统包括:
燃料电池,所述燃料电池包括阳极部分和阴极部分,所述阴极部分被配置为接收包含从所述烟气生成组件输出的所述烟气的入口氧化剂气体;以及
气体分离组件,所述气体分离组件被配置为接收从所述燃料电池的所述阳极部分输出的阳极排气,并且包括被配置为将所述阳极排气变凉到预定温度以便液化所述阳极排气中的二氧化碳的冷却器组件;
其中所述燃料电池和所述冷却器组件被配置为使得由所述燃料电池产生的废热用于驱动所述冷却器组件。
2.根据权利要求1所述的发电系统,其中所述燃料电池的所述阴极部分被配置为接收由所述烟气生成组件输出的所述烟气的全部或部分组成的入口氧化剂气体。
3.根据权利要求1所述的发电系统,其中所述冷却器组件包括一个或多个吸收式冷却器。
4.根据权利要求1所述的发电系统,其中所述气体分离组件被配置为从由所述燃料电池的所述阴极部分输出的阴极排气回收废热,并且利用所回收的废热的至少一部分驱动所述冷却器组件。
5.根据权利要求1所述的发电系统,其中所述气体分离组件另外包括除水组件,所述除水组件被配置为从所述阳极排气分离水,并且输出经水分离的阳极排气,其中所述冷却器组件被配置为接收所述经水分离的阳极排气。
6.根据权利要求5所述的发电系统,其中所述气体分离组件另外包括压缩机,所述压缩机被配置为在所述经水分离的阳极排气被输送到所述冷却器组件之前压缩从所述除水组件输出的所述经水分离的阳极排气。
7.根据权利要求6所述的发电系统,其中所述气体分离组件另外包括气体分离设备,所述气体分离设备被配置为从所述冷却器组件接收冷却的阳极排气,并且将液化的二氧化碳与所述冷却的阳极排气中的残余燃气分离。
8.根据权利要求7所述的发电系统,其中所述气体分离组件另外包括变换反应器,所述变换反应器被配置为在所述阳极排气被输送到所述除水组件之前将所述阳极排气中的一氧化碳转化为二氧化碳。
9.根据权利要求7所述的发电系统,另外包括氧化器,所述氧化器被配置为接收由所述烟气生成组件输出的烟气,以及由所述气体分离设备分离的残余燃气,并且使所述残余燃料氧化,以加热所述烟气,其中所述氧化器被配置为将加热的烟气输出到所述燃料电池的所述阴极部分。
10.根据权利要求9所述的发电系统,另外包括至少一个热交换器,所述至少一个热交换器被配置为利用所述阴极排气中的废热来加热要被输入到所述阳极部分的燃气,以及由所述烟气生成组件输出的烟气中的至少一种。
11.根据权利要求7所述的发电系统,其中所述气体分离设备包括闪蒸槽。
12.根据权利要求6所述的发电系统,其中所述压缩机被配置为将所述阳极排气压缩到至少200psi,并且其中所述冷却器组件被配置为基于压缩机出口压力将所述阳极排气冷却到-40℃或更暖。
13.根据权利要求1所述的发电系统,其中所述烟气生成组件选自由以下组成的组:(i)化石燃料烟气生成组件;(ii)锅炉;(iii)燃烧器,以及(iv)水泥厂的熔炉和窑炉。
14.根据前述权利要求中任一项所述的发电系统,其中所述燃料电池是内部重整熔融碳酸盐燃料电池(MCFC)。
15.一种用于发电系统中的气体分离方法,所述气体分离方法利用从烟气生成组件输出的烟气,其中所述烟气包括二氧化碳和氧气,并且所述方法包括:
接收从所述烟气生成组件输出的所述烟气,并且将所述烟气作为入口氧化剂气体提供到燃料电池的阴极部分;
操作具有阳极部分和所述阴极部分的燃料电池,其中在所述燃料电池的操作期间,从所述燃料电池的所述阳极部分输出阳极排气;
通过在冷却器组件中将所述阳极排气变凉到预定温度,以便液化所述阳极排气中的所述二氧化碳,使所述阳极排气中的二氧化碳和残余燃料分离;以及
利用通过操作所述燃料电池生成的废热驱动所述冷却器组件。
16.根据权利要求15所述的气体分离方法,其中由所述烟气生成组件输出的所述烟气的全部或部分仅作为所述入口氧化剂气体被提供到所述燃料电池的所述阴极部分。
17.根据权利要求15所述的气体分离方法,其中所述冷却器组件包括一个或多个吸收式冷却器。
18.根据权利要求15所述的气体分离方法,另外包括从由所述燃料电池的所述阴极部分输出的阴极排气回收废热,其中在利用步骤中利用所回收的废热的至少一部分驱动所述冷却器组件。
19.根据权利要求15所述的气体分离方法,另外包括在分离所述阳极排气中的所述二氧化碳和所述残余燃料之前,从所述阳极排气中分离水,并且输出经水分离的阳极排气。
20.根据权利要求19所述的气体分离方法,另外包括在分离所述阳极排气中的所述二氧化碳和所述残余燃料之前压缩经水分离的阳极排气。
21.根据权利要求20所述的气体分离方法,另外包括在从所述阳极排气中分离水之前将所述阳极排气中的一氧化碳转化为二氧化碳。
22.根据权利要求20所述的气体分离方法,另外包括使在分离步骤中分离的残余燃气,以及由所述烟气生成组件输出的所述烟气氧化,并且将加热的烟气输出到所述燃料电池的所述阴极部分。
23.根据权利要求22所述的气体分离方法,另外包括利用从所述阴极排气回收的废热来加热要被输入到所述燃料电池的所述阳极部分的燃气,以及由所述烟气生成组件输出的烟气中的至少一种。
24.根据权利要求20所述的气体分离方法,其中所述压缩包括将所述经水分离的阳极排气压缩到至少200psi,并且其中所述预定温度为-40℃或更暖。
25.根据权利要求15至权利要求24中任一项所述的气体分离方法,其中所述烟气生成组件是化石燃料烟气生成组件。
26.根据权利要求15至权利要求24中任一项所述的气体分离方法,其中所述烟气生成组件是锅炉。
27.根据权利要求15至权利要求24中任一项所述的气体分离方法,其中所述烟气生成组件是燃烧器。
28.根据权利要求15至权利要求24中任一项所述的气体分离方法,其中所述烟气生成组件包括水泥厂的熔炉和窑炉。
29.根据权利要求15所述的气体分离方法,其中从在所述阳极排气中分离二氧化碳和残余燃料的步骤获得的所述二氧化碳具有至少90%的纯度。
30.根据权利要求29所述的气体分离方法,其中从在所述阳极排气中分离二氧化碳和残余燃料的所述步骤获得的所述二氧化碳具有至少99%的纯度。
31.根据权利要求29所述的气体分离方法,其中从在所述阳极排气中分离二氧化碳和残余燃料的所述步骤获得的液态二氧化碳适合于存储在存储介质中。
32.根据权利要求29所述的气体分离方法,其中从在所述阳极排气中分离二氧化碳和残余燃料的所述步骤获得的所述液态二氧化碳适合于用于增强的石油回收中。
33.根据权利要求29所述的气体分离方法,其中从在所述阳极排气中分离二氧化碳和残余燃料的所述步骤获得的所述液态二氧化碳适合于用于食品行业中。
34.一种用于与烟气生成组件集成的燃料电池系统中的气体分离组件,其中所述燃料电池系统包括阳极部分和阴极部分,其中所述阴极部分被配置为接收包含从所述烟气生成组件输出的烟气的入口气体,其中所述烟气含有二氧化碳和氧气,并且其中所述气体分离组件包括:
冷却器组件,所述冷却器组件被配置为接收阳极排气,并且将所述阳极排气变凉到预定温度,以便液化所述阳极排气中的二氧化碳;以及
热回收组件,所述热回收组件被配置为回收由所述燃料电池产生的废热;
其中所述热回收组件和所述冷却器组件被配置为使得由所述热回收组件回收的所述废热用于驱动所述冷却器组件。
35.根据权利要求34所述的气体分离组件,其中所述冷却器组件包括一个或多个吸收式冷却器。
36.根据权利要求34所述的气体分离组件,另外包括:
除水组件,所述除水组件被配置为从所述阳极排气分离水,并且输出经水分离的阳极排气;以及
压缩机,所述压缩机被配置为压缩从所述除水组件输出的所述经水分离的阳极排气,并且将压缩的经水分离的阳极排气输出到所述冷却器组件。
37.根据权利要求36所述的气体分离组件,另外包括变换反应器,所述变换反应器被配置为在将所述阳极排气输送到所述除水组件之前将所述阳极排气中的一氧化碳转化为二氧化碳。
38.根据权利要求36所述的气体分离组件,其中所述压缩机被配置为将所述经水分离的阳极排气压缩到至少500psi,并且其中所述冷却器组件被配置为将所述阳极排气冷却到-29℃或更低。
39.根据权利要求36所述的气体分离组件,另外包括气体分离设备,所述气体分离设备被配置为从所述冷却器组件接收冷却的阳极排气,并且将液化的二氧化碳与所述冷却的阳极排气中的残余燃气分离。
40.根据权利要求34所述的气体分离组件,其中所述烟气生成组件选自由以下组成的组:(i)化石燃料烟气生成组件;(ii)锅炉;(iii)燃烧器;以及(iv)水泥厂的熔炉和窑炉。
CN201680012253.8A 2015-02-25 2016-02-22 发电气体分离系统和方法 Active CN107251297B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/631,239 2015-02-25
US14/631,239 US9812723B2 (en) 2015-02-25 2015-02-25 Power producing gas separation system and method
PCT/IB2016/050940 WO2016135613A1 (en) 2015-02-25 2016-02-22 Power producing gas separation system and method

Publications (2)

Publication Number Publication Date
CN107251297A true CN107251297A (zh) 2017-10-13
CN107251297B CN107251297B (zh) 2022-11-08

Family

ID=56693235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680012253.8A Active CN107251297B (zh) 2015-02-25 2016-02-22 发电气体分离系统和方法

Country Status (7)

Country Link
US (2) US9812723B2 (zh)
EP (1) EP3262703B1 (zh)
JP (1) JP6546667B2 (zh)
KR (1) KR102132600B1 (zh)
CN (1) CN107251297B (zh)
CA (1) CA2977016C (zh)
WO (1) WO2016135613A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108744872A (zh) * 2018-07-18 2018-11-06 崔德亮 一种碳氢化合物的制备方法及装置
CN112856219A (zh) * 2019-11-12 2021-05-28 现代自动车株式会社 与原料气体汽化系统连接的重整系统
CN114303266A (zh) * 2019-07-19 2022-04-08 博隆能源股份有限公司 集成发电、二氧化碳分离以及下游处理系统及方法
CN115427347A (zh) * 2020-03-11 2022-12-02 燃料电池能有限公司 用于碳捕获的蒸汽甲烷重整单元
US11949135B2 (en) 2016-04-21 2024-04-02 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899864B2 (en) * 2015-04-10 2018-02-20 Enovate Medical, Llc Bidirectional power converter
AT517934B1 (de) * 2016-04-28 2017-06-15 Mair Christian Anlage und Verfahren zur gaskompressionsfreien Rückgewinnung und Speicherung von Kohlenstoff in Energiespeichersystemen
KR20210018528A (ko) 2016-04-29 2021-02-17 퓨얼 셀 에너지, 인크 이산화탄소 포집을 증진시키기 위한 애노드 배기가스의 메탄화
US10141776B2 (en) * 2016-06-20 2018-11-27 General Electric Company Distribution of power commands in an energy storage system
CN111244501B (zh) * 2016-12-30 2022-04-12 上海恒劲动力科技有限公司 基于双功能水循环的一体式可逆燃料电池系统及其电堆
CN108675656B (zh) * 2018-07-06 2023-05-23 唐山市丰南区金泉冶金能源新技术开发有限公司 一种利用回收二氧化碳发电的电烧石灰窑
JP6698763B2 (ja) * 2018-08-20 2020-05-27 東京瓦斯株式会社 液化二酸化炭素回収型燃料電池発電システム
JP7117191B2 (ja) * 2018-08-20 2022-08-12 東京瓦斯株式会社 二酸化炭素回収型燃料電池発電システム
US11149636B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
US11149634B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
JP2021009820A (ja) * 2019-07-02 2021-01-28 株式会社デンソー エネルギマネジメントシステム
CN111649328A (zh) * 2020-06-29 2020-09-11 中国华能集团清洁能源技术研究院有限公司 一种应用于熔融碳酸盐燃料电池的天然气加热炉系统和方法
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942734A (en) * 1989-03-20 1990-07-24 Kryos Energy Inc. Cogeneration of electricity and liquid carbon dioxide by combustion of methane-rich gas
US20030143449A1 (en) * 2000-03-08 2003-07-31 Rudolf Hunik Fuel cell with an improved effeciency for generating electric power
CN101427408A (zh) * 2004-06-03 2009-05-06 燃料电池能有限公司 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统
US20100279181A1 (en) * 2009-05-01 2010-11-04 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
JP2011141967A (ja) * 2010-01-05 2011-07-21 Chugoku Electric Power Co Inc:The 発電システム
US20140329160A1 (en) * 2010-08-16 2014-11-06 Clearedge Power Corporation System and method for thermal priority operation of a fuel cell power plant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499946A (en) 1981-03-10 1985-02-19 Mason & Hanger-Silas Mason Co., Inc. Enhanced oil recovery process and apparatus
US5232793A (en) 1989-09-19 1993-08-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of and apparatus for utilizing and recovering co2 in combustion exhaust gas
JPH06325783A (ja) * 1993-05-11 1994-11-25 Toyo Eng Corp 内部改質型溶融炭酸塩型燃料電池システム
DE19908905C2 (de) 1999-03-02 2003-03-20 Daimler Chrysler Ag Brennstoffzellensystem mit zugeordneter Wasserstofferzeugungsanlage
JP4527243B2 (ja) * 2000-05-29 2010-08-18 太平洋セメント株式会社 石灰焼成炉の利用方法
US20040219400A1 (en) 2003-01-22 2004-11-04 Said Al-Hallaj Hybrid fuel cell/desalination systems and method for use
US20070059415A1 (en) 2005-09-13 2007-03-15 Meenakshi Sundaram Co2 containing antimicrobial formulations to treat food products during processing steps
CA2569006C (en) 2006-11-20 2013-12-24 Jose Lourenco Method to condense and recover carbon dioxide from fuel cells
US7901485B2 (en) 2007-07-11 2011-03-08 Mccutchen Co. Radial counterflow carbon capture and flue gas scrubbing
EP2149769A1 (en) * 2008-07-31 2010-02-03 BP Alternative Energy International Limited Separation of carbon dioxide and hydrogen
JP5044628B2 (ja) 2009-11-09 2012-10-10 日本碍子株式会社 コーティング体
JP5398755B2 (ja) * 2011-02-08 2014-01-29 株式会社日立製作所 Co2回収方法およびco2回収装置
JP2015146225A (ja) * 2012-05-18 2015-08-13 パナソニック株式会社 固体酸化物形燃料電池システム
KR20150129790A (ko) * 2013-03-15 2015-11-20 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 통합형 발전에서 NOx의 경감

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942734A (en) * 1989-03-20 1990-07-24 Kryos Energy Inc. Cogeneration of electricity and liquid carbon dioxide by combustion of methane-rich gas
US20030143449A1 (en) * 2000-03-08 2003-07-31 Rudolf Hunik Fuel cell with an improved effeciency for generating electric power
CN101427408A (zh) * 2004-06-03 2009-05-06 燃料电池能有限公司 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统
US20100279181A1 (en) * 2009-05-01 2010-11-04 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
JP2011141967A (ja) * 2010-01-05 2011-07-21 Chugoku Electric Power Co Inc:The 発電システム
US20140329160A1 (en) * 2010-08-16 2014-11-06 Clearedge Power Corporation System and method for thermal priority operation of a fuel cell power plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949135B2 (en) 2016-04-21 2024-04-02 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
CN108744872A (zh) * 2018-07-18 2018-11-06 崔德亮 一种碳氢化合物的制备方法及装置
CN114303266A (zh) * 2019-07-19 2022-04-08 博隆能源股份有限公司 集成发电、二氧化碳分离以及下游处理系统及方法
CN112856219A (zh) * 2019-11-12 2021-05-28 现代自动车株式会社 与原料气体汽化系统连接的重整系统
CN115427347A (zh) * 2020-03-11 2022-12-02 燃料电池能有限公司 用于碳捕获的蒸汽甲烷重整单元
CN115427347B (zh) * 2020-03-11 2024-01-02 燃料电池能有限公司 用于碳捕获的蒸汽甲烷重整单元
US11975969B2 (en) 2020-03-11 2024-05-07 Fuelcell Energy, Inc. Steam methane reforming unit for carbon capture

Also Published As

Publication number Publication date
CN107251297B (zh) 2022-11-08
CA2977016C (en) 2022-08-09
WO2016135613A1 (en) 2016-09-01
US10673084B2 (en) 2020-06-02
US20160248110A1 (en) 2016-08-25
EP3262703A1 (en) 2018-01-03
KR20170118802A (ko) 2017-10-25
US20180131025A1 (en) 2018-05-10
US9812723B2 (en) 2017-11-07
EP3262703A4 (en) 2018-10-31
CA2977016A1 (en) 2016-09-01
KR102132600B1 (ko) 2020-07-10
JP2018511907A (ja) 2018-04-26
EP3262703B1 (en) 2021-12-22
JP6546667B2 (ja) 2019-07-17

Similar Documents

Publication Publication Date Title
CN107251297A (zh) 发电气体分离系统和方法
CN107690722B (zh) 具有二氧化碳捕集组件的高效燃料电池系统及其方法
EP2969999B1 (en) Integration of molten carbonate fuel cells in cement processing
KR102143864B1 (ko) 연료 전지로부터 co2를 포집하기 위한 시스템
KR102372516B1 (ko) 이산화탄소 포집을 증진시키기 위한 애노드 배기가스의 메탄화
US20140272613A1 (en) Integrated power generation and carbon capture using fuel cells
CN108604696A (zh) 具有增强的co2捕集的燃料电池系统
US10840530B2 (en) High efficiency fuel cell system with intermediate CO2 recovery system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant