CN107245144A - 一种磷烯‑导电高分子复合材料的制备方法 - Google Patents

一种磷烯‑导电高分子复合材料的制备方法 Download PDF

Info

Publication number
CN107245144A
CN107245144A CN201710494303.7A CN201710494303A CN107245144A CN 107245144 A CN107245144 A CN 107245144A CN 201710494303 A CN201710494303 A CN 201710494303A CN 107245144 A CN107245144 A CN 107245144A
Authority
CN
China
Prior art keywords
phosphorus alkene
polymer composite
conductive polymer
electrode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710494303.7A
Other languages
English (en)
Inventor
祖雷
崔秀国
连慧琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Petrochemical Technology
Original Assignee
Beijing Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Petrochemical Technology filed Critical Beijing Institute of Petrochemical Technology
Priority to CN201710494303.7A priority Critical patent/CN107245144A/zh
Publication of CN107245144A publication Critical patent/CN107245144A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0627Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种磷烯‑导电高分子复合材料的制备方法,包括:将磷烯涂覆于导电金属上制成磷烯电极;将导电高分子单体置于溶液中分散均匀,制得导电高分子电解液;将所述磷烯电极、参比电极和金属对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,从而制得磷烯‑导电高分子复合材料前驱体;将所述磷烯‑导电高分子复合材料前驱体置于pH值不高于5的溶液中浸泡0.1~72h,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯‑导电高分子复合材料。本发明不仅能够有效制备出兼具磷烯和导电高分子两者优点的磷烯‑导电高分子材料,而且操作简单、对设备要求低、产品质量好、产率高,十分适合进行规模化生产。

Description

一种磷烯-导电高分子复合材料的制备方法
技术领域
本发明涉及磷烯复合材料领域,尤其涉及一种磷烯-导电高分子复合材料的制备方法。
背景技术
磷烯材料是由单层磷原子紧密堆积成二维蜂窝状晶格结构的新型磷纳米材料,其特殊的微观稳定结构使其具有优异的电化学性能和热传导性能,因此磷烯材料在电子通信、交通运输等领域具有广阔应用前景。
磷烯材料因磷原子层间具有较强的范德华力和较大的比表面积,因此易于发生层叠现象而形成类似薄膜的片状结构,这种结构会导致比表面积大幅减小,从而会严重损失磷烯特有的吸附、导电、导热等优异性能。此外,磷烯较强的化学活性使其容易被氧气、水等物质侵蚀而失去原有性能。
在现有技术中,制备的磷烯材料比表面积较小,电化学性能较弱,另外对磷烯的层叠现象和容易被氧化侵蚀的缺点没有很好的处理方法,且没有出现磷烯-导电高分子复合材料及其合成方法。
发明内容
针对现有技术中的上述不足之处,本发明提供了一种磷烯-导电高分子复合材料的制备方法,不仅能够有效制备出兼具磷烯和导电高分子两者优点的磷烯-导电高分子材料,而且操作简单、对设备要求低、产品质量好、产率高,十分适合进行规模化生产。该磷烯-导电高分子材料具有良好的赝电容性能,不仅可以有效防止磷烯的片层堆叠,增大比表面积,而且可以有效抑制氧气和水对磷烯的侵蚀,保证磷烯的独特性能不被破坏,因此可广泛应用于电化学储能、电子通信等领域。
本发明的目的是通过以下技术方案实现的:
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤A、将磷烯涂覆于导电金属上制成磷烯电极;
步骤B、将导电高分子单体置于分散溶液中分散均匀,制得导电高分子电解液;
步骤C、将所述磷烯电极、参比电极和金属对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-1~1V、扫描速率为1~100mv/s、扫描次数为5~100次,从而制得磷烯-导电高分子复合材料前驱体;
步骤D、将所述磷烯-导电高分子复合材料前驱体置于pH值不高于5的溶液中浸泡0.1~72h,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
优选地,所述的导电金属为金、铂、银、铜、铁、镍、锌、锡、铅、不锈钢中的至少一种,并且所述导电金属的形状为片状、网状、棒状、丝状或泡沫状。
优选地,所述的导电高分子单体为苯胺、吡咯、吡啶、噻吩中的至少一种。
优选地,所述的分散溶液为水、甲醇、乙醇、丙醇、丙酮、四氢呋喃、四氯化碳、乙腈、乙醚、石油醚、戊烷、己烷、二硫化碳、二氯甲烷、二氯乙烷、三氯甲烷、三氯乙烷、乙酸乙酯、丁酮、苯、甲苯、二甲苯、环己烷、N,N-二甲基甲酰胺、甲醛、硫酸、盐酸、硝酸、乙酸、丙酸、氨水、水合肼、N-甲基吡咯烷酮中的至少一种。
优选地,所述的参比电极为标准氢电极、汞|氧化汞电极、汞|硫酸亚汞电极、饱和甘汞电极、银|氯化银电极中的至少一种。
由上述本发明提供的技术方案可以看出,本发明所提供的磷烯-导电高分子复合材料的制备方法将磷烯涂覆于导电金属上制成磷烯电极,并采用循环伏安法在磷烯电极上电化学聚合生成磷烯-导电高分子复合材料前驱体,然后去除所述磷烯-导电高分子复合材料前驱体中导电金属,从而即制得磷烯-导电高分子复合材料;该磷烯-导电高分子材料具有良好的赝电容性能,不仅可以有效防止磷烯的片层堆叠,而且可以有效抑制氧气和水对磷烯的侵蚀,保证磷烯的独特性能不被破坏,因此可广泛应用于电化学储能、电子通信等领域。本发明所提供的磷烯-导电高分子复合材料的制备方法操作简单、对设备要求低、产品质量好、产率高,十分适合进行规模化生产。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例1所制备的氮掺杂磷烯的扫描电子显微镜照片。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面对本发明所提供的磷烯-导电高分子复合材料的制备方法进行详细描述。
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤A、将磷烯涂覆于导电金属上制成磷烯电极。其中,所述的导电金属为金、铂、银、铜、铁、镍、锌、锡、铅、不锈钢中的至少一种,并且导电金属的形状可以为片状、网状、棒状、丝状或泡沫状。
步骤B、将导电高分子单体置于分散溶液中分散均匀,制得导电高分子电解液。其中,所述的导电高分子单体为苯胺、吡咯、吡啶、噻吩中的至少一种。所述的分散溶液为水、甲醇、乙醇、丙醇、丙酮、四氢呋喃、四氯化碳、乙腈、乙醚、石油醚、戊烷、己烷、二硫化碳、二氯甲烷、二氯乙烷、三氯甲烷、三氯乙烷、乙酸乙酯、丁酮、苯、甲苯、二甲苯、环己烷、N,N-二甲基甲酰胺、甲醛、硫酸、盐酸、硝酸、乙酸、丙酸、氨水、水合肼、N-甲基吡咯烷酮中的至少一种。
步骤C、将所述磷烯电极、参比电极和金属对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-1~1V、扫描速率为1~100mv/s、扫描次数为5~100次,从而制得磷烯-导电高分子复合材料前驱体。其中,所述的参比电极为标准氢电极、汞|氧化汞电极、汞|硫酸亚汞电极、饱和甘汞电极、银|氯化银电极中的至少一种。
步骤D、将所述磷烯-导电高分子复合材料前驱体置于pH值不高于5的溶液中浸泡0.1~72h,以去除所述磷烯-导电高分子复合材料前驱体中的导电金属,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
具体地,本发明所提供的磷烯-导电高分子复合材料的制备方法将磷烯涂覆于导电金属上制成磷烯电极,并采用循环伏安法在磷烯电极上电化学聚合生成磷烯-导电高分子复合材料前驱体,然后去除所述磷烯-导电高分子复合材料前驱体中导电金属,从而即制得磷烯-导电高分子复合材料;该磷烯-导电高分子材料具有良好的导电性、导热性、稳定性、柔性和赝电容性能,不仅可以有效防止磷烯的片层堆叠,而且可以有效抑制氧气和水对磷烯的侵蚀,保证磷烯的独特性能不被破坏,因此可广泛应用于电化学储能、电子通信等领域。本发明所提供的磷烯-导电高分子复合材料的制备方法操作简单、对设备要求低、产品质量好、产率高,十分适合进行规模化生产。
为了更加清晰地展现出本发明所提供的技术方案及所产生的技术效果,下面以具体实施例对本发明实施例所提供的磷烯-导电高分子复合材料的制备方法进行详细描述。
实施例1
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤a1、将磷烯涂覆于不锈钢网上制成磷烯电极。
步骤b1、将苯胺置于水中分散均匀,制得导电高分子电解液。
步骤c1、将所述磷烯电极、饱和甘汞电极(作为参比电极)和金箔对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-1~1V、扫描速率为2mv/s、扫描次数为5次,从而制得磷烯-导电高分子复合材料前驱体。
步骤d1、将所述磷烯-导电高分子复合材料前驱体置于pH值为0.001的盐酸溶液中浸泡0.5h,以去除所述磷烯-导电高分子复合材料前驱体中的不锈钢,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得如图1所示的磷烯-导电高分子复合材料。
具体地,现有技术中普通磷烯材料的比表面积约为60m2/g,而本发明实施例1所提供的磷烯-导电高分子复合材料的比表面积大于1000m2/g,并且赝电容性能远高于普通磷烯材料。
实施例2
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤a2、将磷烯涂覆于铜棒上制成磷烯电极。
步骤b2、将吡咯置于乙醇中分散均匀,制得导电高分子电解液。
步骤c2、将所述磷烯电极、汞|氧化汞电极(作为参比电极)和铂对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-0.7~1V、扫描速率为20mv/s、扫描次数为20次,从而制得磷烯-导电高分子复合材料前驱体。
步骤d2、将所述磷烯-导电高分子复合材料前驱体置于pH值为0.01的硫酸和乙腈的混合溶液中浸泡10h,以去除所述磷烯-导电高分子复合材料前驱体中的铜,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
实施例3
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤a3、将磷烯涂覆于锌棒上制成磷烯电极。
步骤b3、将吡咯置于乙醇中分散均匀,制得导电高分子电解液。
步骤c3、将所述磷烯电极、汞|氧化汞电极(作为参比电极)和铂对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-0.7~0.9V、扫描速率为20mv/s、扫描次数为20次,从而制得磷烯-导电高分子复合材料前驱体。
步骤d3、将所述磷烯-导电高分子复合材料前驱体置于pH值为0.1的硝酸溶液中浸泡10h,以去除所述磷烯-导电高分子复合材料前驱体中的锌,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
实施例4
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤a4、将磷烯涂覆于铝网上制成磷烯电极。
步骤b4、将吡啶置于二硫化碳中分散均匀,制得导电高分子电解液。
步骤c4、将所述磷烯电极、汞|硫酸亚汞电极(作为参比电极)和铝对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-0.5~0.8V、扫描速率为40mv/s、扫描次数为40次,从而制得磷烯-导电高分子复合材料前驱体。
步骤d4、将所述磷烯-导电高分子复合材料前驱体置于pH值为1的硝酸和石油醚溶液中浸泡24h,以去除所述磷烯-导电高分子复合材料前驱体中的铝,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
实施例5
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤a5、将磷烯涂覆于镍网上制成磷烯电极。
步骤b5、将吡啶置于二硫化碳中分散均匀,制得导电高分子电解液。
步骤c5、将所述磷烯电极、汞|硫酸亚汞电极(作为参比电极)和镍泡沫对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-0.5~0.8V、扫描速率为70mv/s、扫描次数为70次,从而制得磷烯-导电高分子复合材料前驱体。
步骤d5、将所述磷烯-导电高分子复合材料前驱体置于pH值为3的乙酸溶液中浸泡48h,以去除所述磷烯-导电高分子复合材料前驱体中的镍,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
实施例6
一种磷烯-导电高分子复合材料的制备方法,包括以下步骤:
步骤a6、将磷烯涂覆于铁丝上制成磷烯电极。
步骤b6、将噻吩和吡啶混合物置于N,N-二甲基甲酰胺中分散均匀,制得导电高分子电解液。
步骤c6、将所述磷烯电极、银|氯化银电极(作为参比电极)和铁棒对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-0.2~0.4V、扫描速率为100mv/s、扫描次数为100次,从而制得磷烯-导电高分子复合材料前驱体。
步骤d6、将所述磷烯-导电高分子复合材料前驱体置于pH值为5的丙酸溶液中浸泡72h,以去除所述磷烯-导电高分子复合材料前驱体中的铁,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
综上可见,本发明实施例不仅能够有效制备出兼具磷烯和导电高分子两者优点的磷烯-导电高分子材料,而且操作简单、对设备要求低、产品质量好、产率高,十分适合进行规模化生产。该磷烯-导电高分子材料具有良好的赝电容性能,不仅可以有效防止磷烯的片层堆叠,而且可以有效抑制氧气和水对磷烯的侵蚀,保证磷烯的独特性能不被破坏,因此可广泛应用于电化学储能、电子通信等领域。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (6)

1.一种磷烯-导电高分子复合材料的制备方法,其特征在于,包括以下步骤:
步骤A、将磷烯涂覆于导电金属上制成磷烯电极;
步骤B、将导电高分子单体置于分散溶液中分散均匀,制得导电高分子电解液;
步骤C、将所述磷烯电极、参比电极和金属对电极置于所述导电高分子电解液中,并采用循环伏安法进行反应,电压范围为-1~1V、扫描速率为1~100mv/s、扫描次数为5~100次,从而制得磷烯-导电高分子复合材料前驱体;
步骤D、将所述磷烯-导电高分子复合材料前驱体置于pH值不高于5的溶液中浸泡0.1~72h,然后进行固液分离,并对固液分离得到的固体进行干燥,从而制得磷烯-导电高分子复合材料。
2.根据权利要求1所述的磷烯-导电高分子复合材料的制备方法,其特征在于,所述的导电金属为金、铂、银、铜、铁、镍、锌、锡、铅、不锈钢中的至少一种。
3.根据权利要求1或2所述的磷烯-导电高分子复合材料的制备方法,其特征在于,所述的导电金属的形状为片状、网状、棒状、丝状或泡沫状。
4.根据权利要求1或2所述的磷烯-导电高分子复合材料的制备方法,其特征在于,所述的导电高分子单体为苯胺、吡咯、吡啶、噻吩中的至少一种。
5.根据权利要求1或2所述的磷烯-导电高分子复合材料的制备方法,其特征在于,所述的分散溶液为水、甲醇、乙醇、丙醇、丙酮、四氢呋喃、四氯化碳、乙腈、乙醚、石油醚、戊烷、己烷、二硫化碳、二氯甲烷、二氯乙烷、三氯甲烷、三氯乙烷、乙酸乙酯、丁酮、苯、甲苯、二甲苯、环己烷、N,N-二甲基甲酰胺、甲醛、硫酸、盐酸、硝酸、乙酸、丙酸、氨水、水合肼、N-甲基吡咯烷酮中的至少一种。
6.根据权利要求1或2所述的磷烯-导电高分子复合材料的制备方法,其特征在于,所述的参比电极为标准氢电极、汞|氧化汞电极、汞|硫酸亚汞电极、饱和甘汞电极、银|氯化银电极中的至少一种。
CN201710494303.7A 2017-06-26 2017-06-26 一种磷烯‑导电高分子复合材料的制备方法 Pending CN107245144A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710494303.7A CN107245144A (zh) 2017-06-26 2017-06-26 一种磷烯‑导电高分子复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710494303.7A CN107245144A (zh) 2017-06-26 2017-06-26 一种磷烯‑导电高分子复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107245144A true CN107245144A (zh) 2017-10-13

Family

ID=60013516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710494303.7A Pending CN107245144A (zh) 2017-06-26 2017-06-26 一种磷烯‑导电高分子复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107245144A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107778745A (zh) * 2017-11-10 2018-03-09 湖南辰砾新材料有限公司 一种基于黑磷烯的半导体复合材料及其制备方法与应用
CN115521479A (zh) * 2022-09-15 2022-12-27 上海应用技术大学 一种木质素衍生物的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69024578D1 (de) * 1989-09-28 1996-02-15 Applied Materials Inc Integrierte Schaltungsstruktur mit einer zusammengesetzten Borphosphorsilikatglasschicht auf einer Halbleiterscheibe und verbesserte Herstellungsmethode dafür
CN102723209A (zh) * 2012-05-25 2012-10-10 上海第二工业大学 一种石墨烯纳米片/导电聚合物纳米线复合材料的制备方法
CN105742079A (zh) * 2016-03-09 2016-07-06 东华大学 一种棉布为基底的石墨烯/聚苯胺复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69024578D1 (de) * 1989-09-28 1996-02-15 Applied Materials Inc Integrierte Schaltungsstruktur mit einer zusammengesetzten Borphosphorsilikatglasschicht auf einer Halbleiterscheibe und verbesserte Herstellungsmethode dafür
CN102723209A (zh) * 2012-05-25 2012-10-10 上海第二工业大学 一种石墨烯纳米片/导电聚合物纳米线复合材料的制备方法
CN105742079A (zh) * 2016-03-09 2016-07-06 东华大学 一种棉布为基底的石墨烯/聚苯胺复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘玉荣: "《碳材料在超级电容器中的应用》", 31 January 2013, 国防工业出版社 *
国家创新力评估课题组: "《面向智能社会的国家创新力 智能化大趋势》", 31 May 2017, 郑州大学出版社 *
王倩,张燕,王波,沈友琼,梅毅,廉培超: "黑磷及黑磷烯在储能领域的应用研究进展", 《化工新型材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107778745A (zh) * 2017-11-10 2018-03-09 湖南辰砾新材料有限公司 一种基于黑磷烯的半导体复合材料及其制备方法与应用
CN115521479A (zh) * 2022-09-15 2022-12-27 上海应用技术大学 一种木质素衍生物的制备方法

Similar Documents

Publication Publication Date Title
Huang et al. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@ polyaniline
Arvas et al. One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications
Fisher et al. Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials
Huang et al. High performance fully paper‐based all‐solid‐state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide‐modified pulp fibers
Wu et al. Construction of self-supported porous TiO2/NiO core/shell nanorod arrays for electrochemical capacitor application
CN104517739B (zh) 氧化钛基超级电容器电极材料及其制备方法
Liu et al. Flexible asymmetric supercapacitor with high energy density based on optimized MnO2 cathode and Fe2O3 anode
Jeyalakshmi et al. Nanostructured nickel doped β-V2O5 thin films for supercapacitor applications
Aldama et al. A procedure for evaluating the capacity associated with battery-type electrode and supercapacitor-type one in composite electrodes
Chen et al. Hierarchical Nickel Cobaltate/Manganese Dioxide Core‐Shell Nanowire Arrays on Graphene‐Decorated Nickel Foam for High‐Performance Supercapacitors
Li et al. Synthesis of highly effective MnO2 coated carbon nanofibers composites as low cost counter electrode for efficient dye-sensitized solar cells
Jiang et al. Fabrication of NiO@ Co3O4 core/shell nanofibres for high-performance supercapacitors
Huang et al. Symmetric transparent and flexible supercapacitor based on bio-inspired graphene-wrapped Fe2O3 nanowire networks
Xiao et al. Electrochemical co-deposition and characterization of MnO 2/SWNT composite for supercapacitor application
He et al. Three-dimensional polypyrrole/MnO2 composite networks deposited on graphite felt as free-standing electrode for supercapacitors
CN109003840A (zh) 一种复合纸基柔性电极材料的制备方法
Zhang et al. Construction of hairbrush-like (Ni3S2/NiSe-3: 1)/carboxymethylcellulose derived carbon heterostructure as high-performance electrodes for supercapacitors
Cheng et al. Hierarchical NiCo2S4/PANI/CNT nanostructures grown on graphene polyamide blend fiber as effective electrode for supercapacitors
Shakir et al. Ultra-thin and uniform coating of vanadium oxide on multiwall carbon nanotubes through solution based approach for high-performance electrochemical supercapacitors
Hao et al. Facile synthesis of 3D hierarchical flower-like Co3-xFexO4 ferrite on nickel foam as high-performance electrodes for supercapacitors
Zhang et al. Hierarchically porous nickel oxide nanoflake arrays grown on carbon cloth by chemical bath deposition as superior flexible electrode for supercapacitors
CN105405680A (zh) 一种碳颗粒/二氧化锰复合电极材料的制备方法
Wang et al. Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells
Ates et al. A ternary nanocomposites of graphene/TiO2/polypyrrole for energy storage applications
CN107245144A (zh) 一种磷烯‑导电高分子复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171013

RJ01 Rejection of invention patent application after publication