CN107243356A - 一种具有镍钴氮化物三维结构的电催化剂及其应用 - Google Patents

一种具有镍钴氮化物三维结构的电催化剂及其应用 Download PDF

Info

Publication number
CN107243356A
CN107243356A CN201710221150.9A CN201710221150A CN107243356A CN 107243356 A CN107243356 A CN 107243356A CN 201710221150 A CN201710221150 A CN 201710221150A CN 107243356 A CN107243356 A CN 107243356A
Authority
CN
China
Prior art keywords
elctro
catalyst
nickel
graphite fibre
nickel cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710221150.9A
Other languages
English (en)
Other versions
CN107243356B (zh
Inventor
刘宏
刘志贺
谭华
苏晓文
桑元华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201710221150.9A priority Critical patent/CN107243356B/zh
Publication of CN107243356A publication Critical patent/CN107243356A/zh
Application granted granted Critical
Publication of CN107243356B publication Critical patent/CN107243356B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种具有镍钴氮化物三维结构的电催化剂,由如下方法制得:以硝酸镍和硝酸钴的水溶液为电解质溶液,以石墨纤维作为工作电极,铂片电极作为对电极,银/氯化银作为参比电极,恒电压沉积在石墨纤维上,然后对沉积在石墨纤维上的镍钴氧化物在氨气气氛下灼烧氮化,得到的纳米片/纳米球多级结构的镍钴氮化物三维结构即为电催化剂。本发明的电催化剂具有较低的过电势和优异的电催化性能,在电催化分解水领域具有广泛的应用。

Description

一种具有镍钴氮化物三维结构的电催化剂及其应用
技术领域
本发明涉及一种三维结构的电催化剂及其应用,尤其涉及一种以石墨纤维为衬底的具有镍钴氮化物三维结构的电催化剂及其应用。
背景技术
随着全球不可再生能源的消耗,化石燃料的短缺和伴随的环境问题成为了广大研究学者关注的焦点。这就促使科研工作者开展大量的工作探索和利用各种各样廉价、绿色的可再生能源转化和存储技术。在这其中,电催化分解水被广泛地认为是一种有前景的生产持续、安全、绿色的氢能。电催化分解水可被分为两个半反应:阴极的析氢反应和阳极的析氧反应。两个半反应的效率是决定电催化分解水的关键因素,然而,析氧反应因为较低的动力学参数而使其具有高的过电势极大地影响了分解水的过程。这就需要一种合适的电催化剂来降低过电势从而促进另一端的析氢反应。
目前,一些贵金属及其氧化物例如Pt基和Ir基的复合纳米材料被认为是较好的析氧反应的电催化剂。虽然如此,但是由于其地球中含量较少和价格昂贵阻碍了其广泛地应用。最近有研究学者报道了利用地球中含量较丰富的材料作为电催化剂,例如磷化钴、钙钛矿氧化物和过渡金属氧化物及过氧化物作为析氧反应电催化剂,过渡金属硫化物和钼镍合金作为析氢反应的电催化。然而其难以在一个综合统一的电解池中进行电催化分解水。鉴于此,制备一种能够在同一种电解质溶液中同时进行析氢和析氧反应的电催化剂成为了当今的挑战性课题。目前有学者提出了用MoO2,CoP,NiP等作为具有析氢和析氧反应双重催化性能的电催化剂,但经检索未见利用双金属氮化物作为具有析氢和析氧反应双重催化性能的电催化剂的报道。
发明内容
针对现有技术的不足,本发明要解决的问题是提供一种具有析氢和析氧反应双重催化性能的具有镍钴氮化物三维结构的电催化剂及其应用。
本发明的技术方案是:选取具有优良导电性能的石墨纤维作为集流体,通过电沉积的方法在石墨纤维上沉积镍钴的氧化物,然后在氨气气氛下对氧化物进行灼烧氮化,制得具有纳米片/纳米球多级结构的、形貌良好、具有较低的过电势催化性能突出的三维结构的电催化剂。
本发明所述的具有镍钴氮化物三维结构的电催化剂,其特征在于,所述电催化剂由如下方法制得:以硝酸镍和硝酸钴的水溶液为电解质溶液,以石墨纤维作为工作电极,铂片电极作为对电极,银/氯化银作为参比电极,-1V~-10V恒电压沉积在石墨纤维上,然后对沉积在石墨纤维上的镍钴氧化物在氨气气氛下灼烧氮化,得到的纳米片/纳米球多级结构的镍钴氮化物三维结构即为电催化剂;其中:所述硝酸镍的浓度为2~50mM,硝酸钴的浓度为4~100mM,石墨纤维直径为7~20微米;所述恒电压沉积时间为10~15min;所述在氨气气氛下灼烧氮化的温度为400~800℃;所述纳米片厚度为2~10nm,所述纳米球的直径为10~50nm。
上述具有镍钴氮化物三维结构的电催化剂优选由如下方法制得:以硝酸镍和硝酸钴的水溶液为电解质溶液,以石墨纤维作为工作电极,铂片电极作为对电极,银/氯化银作为参比电极,-5V恒电压沉积在石墨纤维上,然后对沉积在石墨纤维上的镍钴氧化物在氨气气氛下灼烧氮化,得到的纳米片/纳米球多级结构的镍钴氮化物三维结构即为电催化剂;其中:所述硝酸镍的浓度为24mM,硝酸钴的浓度为48mM,石墨纤维直径为10~20微米;所述恒电压沉积时间为10min;所述在氨气气氛下灼烧氮化的温度为600℃,升温速度为1℃/min,保温2h;所述纳米片厚度为2~8nm,所述纳米球的直径为10~40nm。
本发明所述具有镍钴氮化物三维结构的电催化剂在电催化分解水中的应用。
应用上述制备的电催化剂在1M KOH溶液中实施电催化分解水,产氢和产氧的过电势分别为60mV~100mV和150mV~230mV。
本发明公开的具有镍钴氮化物三维结构的电催化剂首次以石墨纤维作为集流体,原位生成双金属氧化物之后进行氮化,得到双金属氮化物,并且形成三维结构,具有较低的过电势和优异的电催化性能,在电催化分解水领域具有广泛的应用。
附图说明
图1为本发明所述石墨纤维的扫描电镜照片图。
图2为石墨纤维负载了镍钴氧化物的扫描电镜照片。
图3为本发明所述石墨纤维负载了镍钴氮化物的扫描电镜照片。
图4为本发明所述电催化剂析氢析氧的线性伏安曲线。
具体实施方式
下面结合实施例及附图,对本发明的保护内容做进一步阐述。
实施例1
本发明所述三维电催化剂的制备
①配制含有4mM硝酸钴和2mM硝酸镍的电解质溶液,以石墨纤维为工作电极,铂片电极为对电极,银/氯化银为参比电极,-1V恒压沉积10min。得到以石墨纤维为衬底的镍钴氧化物。将沉积在石墨纤维上的镍钴氧化物在60℃烘箱中烘干。
②将沉积在石墨纤维上的镍钴氧化物,在氨气气氛下800℃灼烧,升温速度为1℃/min,保温2h。得到的纳米片/纳米球多级结构的镍钴氮化物三维结构即为电催化剂;其中:所述石墨纤维直径为7~20微米;所述纳米片厚度为2~10nm,所述纳米球的直径为10~50nm。
用上述制备的电催化剂在1M KOH溶液中作为电催化分解水,产氢和产氧的过电势分别为70mV和200mV。
实施例2
①配制含有48mM硝酸钴和24mM硝酸镍的电解质溶液,以石墨纤维为工作电极,铂片电极为对电极,银/氯化银为参比电极,-5V恒压沉积10min。得到以石墨纤维为衬底的镍钴氧化物。将沉积在石墨纤维上的镍钴氧化物在60℃烘箱中烘干。
②将沉积在石墨纤维上的镍钴氧化物,在氨气气氛下600℃灼烧,升温速度为1℃/min,保温2h。得到的纳米片/纳米球多级结构的镍钴氮化物三维结构即为电催化剂;其中:所述石墨纤维直径为10~20微米;所述纳米片厚度为2~8nm,所述纳米球的直径为10~40nm。
用上述制备的电催化剂在1M KOH溶液中作为电催化分解水,产氢和产氧的过电势分别为60mV和150mV。
实施例3
①配制含有100mM硝酸钴和24mM硝酸镍的电解质溶液,以石墨纤维为工作电极,铂片电极为对电极,银/氯化银为参比电极,-10V恒压沉积10min。得到以石墨纤维为衬底的镍钴氧化物。将沉积在石墨纤维上的镍钴氧化物在60℃烘箱中烘干。
②将沉积在石墨纤维上的镍钴氧化物,在氨气气氛下600℃灼烧,升温速度为1℃/min,保温2h。其中:所述石墨纤维直径为10~20微米;所述纳米片厚度为5~10nm,所述纳米球的直径为30~50nm。
用上述制备的电催化剂在1M KOH溶液中作为电催化分解水,产氢和产氧的过电势分别为100mV和230mV。

Claims (3)

1.一种具有镍钴氮化物三维结构的电催化剂,其特征在于,所述电催化剂由如下方法制得:以硝酸镍和硝酸钴的水溶液为电解质溶液,以石墨纤维作为工作电极,铂片电极作为对电极,银/氯化银作为参比电极,-1V~-10V恒电压沉积在石墨纤维上,然后对沉积在石墨纤维上的镍钴氧化物在氨气气氛下灼烧氮化,得到的纳米片/纳米球多级结构的镍钴氮化物三维结构即为电催化剂;其中:所述硝酸镍的浓度为2~50mM,硝酸钴的浓度为4~100mM,石墨纤维直径为7~20微米;所述恒电压沉积时间为10~15min;所述在氨气气氛下灼烧氮化的温度为400~800℃;所述纳米片厚度为2~10nm,所述纳米球的直径为10~50nm。
2.如权利要求1所述具有镍钴氮化物三维结构的电催化剂,其特征在于,所述电催化剂由如下方法制得:以硝酸镍和硝酸钴的水溶液为电解质溶液,以石墨纤维作为工作电极,铂片电极作为对电极,银/氯化银作为参比电极,-5V恒电压沉积在石墨纤维上,然后对沉积在石墨纤维上的镍钴氧化物在氨气气氛下灼烧氮化,得到的纳米片/纳米球多级结构的镍钴氮化物三维结构即为电催化剂;其中:所述硝酸镍的浓度为24mM,硝酸钴的浓度为48mM,石墨纤维直径为10~20微米;所述恒电压沉积时间为10min;所述在氨气气氛下灼烧氮化的温度为600℃,升温速度为1℃/min,保温2h;所述纳米片厚度为2~8nm,所述纳米球的直径为10~40nm。
3.权利要求1所述具有镍钴氮化物三维结构的电催化剂在电催化分解水中的应用。
CN201710221150.9A 2017-04-06 2017-04-06 一种具有镍钴氮化物三维结构的电催化剂及其应用 Expired - Fee Related CN107243356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710221150.9A CN107243356B (zh) 2017-04-06 2017-04-06 一种具有镍钴氮化物三维结构的电催化剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710221150.9A CN107243356B (zh) 2017-04-06 2017-04-06 一种具有镍钴氮化物三维结构的电催化剂及其应用

Publications (2)

Publication Number Publication Date
CN107243356A true CN107243356A (zh) 2017-10-13
CN107243356B CN107243356B (zh) 2019-07-23

Family

ID=60017522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710221150.9A Expired - Fee Related CN107243356B (zh) 2017-04-06 2017-04-06 一种具有镍钴氮化物三维结构的电催化剂及其应用

Country Status (1)

Country Link
CN (1) CN107243356B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468066A (zh) * 2018-04-27 2018-08-31 华南理工大学 一种催化氧析出电极及其制备方法和应用
CN109331856A (zh) * 2018-11-06 2019-02-15 北京航空航天大学 一种制备铁钴二元金属氮化物电解水析氢纳米催化材料的方法
CN109603859A (zh) * 2018-12-18 2019-04-12 山东大学 一种具有纳米网三维结构的亚硒酸镍钴电催化剂及其应用
CN109860634A (zh) * 2019-02-21 2019-06-07 三峡大学 一种锰钴氧化物与氮掺杂碳原位复合电极的制作方法
CN110492112A (zh) * 2019-07-11 2019-11-22 江苏师范大学 一种氧还原复合催化剂及其制备方法
CN113174584A (zh) * 2021-01-16 2021-07-27 黄辉 一种多孔氮化物电极及其制备方法和应用
CN113718278A (zh) * 2020-05-26 2021-11-30 湖南师范大学 一种基于过渡金属磷/氮化物异质结催化剂的制备方法及高效电解水析氢研究
CN114618539A (zh) * 2022-02-23 2022-06-14 燕山大学 一种分级结构硼氢化钠产氢催化剂及其制备方法和应用
CN115011989A (zh) * 2022-05-31 2022-09-06 武汉工程大学 一种镍锰氮化物催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707640A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种非贵金属氧还原催化剂及其制备和应用
CN105148971A (zh) * 2015-08-26 2015-12-16 中国科学院理化技术研究所 一种高性能电化学全分解水产氢产氧的超薄氮化物电催化剂及其合成方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707640A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种非贵金属氧还原催化剂及其制备和应用
CN105148971A (zh) * 2015-08-26 2015-12-16 中国科学院理化技术研究所 一种高性能电化学全分解水产氢产氧的超薄氮化物电催化剂及其合成方法与应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468066A (zh) * 2018-04-27 2018-08-31 华南理工大学 一种催化氧析出电极及其制备方法和应用
CN108468066B (zh) * 2018-04-27 2019-07-16 华南理工大学 一种催化氧析出电极及其制备方法和应用
CN109331856A (zh) * 2018-11-06 2019-02-15 北京航空航天大学 一种制备铁钴二元金属氮化物电解水析氢纳米催化材料的方法
CN109603859A (zh) * 2018-12-18 2019-04-12 山东大学 一种具有纳米网三维结构的亚硒酸镍钴电催化剂及其应用
CN109860634A (zh) * 2019-02-21 2019-06-07 三峡大学 一种锰钴氧化物与氮掺杂碳原位复合电极的制作方法
CN109860634B (zh) * 2019-02-21 2021-08-31 三峡大学 一种锰钴氧化物与氮掺杂碳原位复合电极的制作方法
CN110492112A (zh) * 2019-07-11 2019-11-22 江苏师范大学 一种氧还原复合催化剂及其制备方法
CN113718278A (zh) * 2020-05-26 2021-11-30 湖南师范大学 一种基于过渡金属磷/氮化物异质结催化剂的制备方法及高效电解水析氢研究
CN113174584A (zh) * 2021-01-16 2021-07-27 黄辉 一种多孔氮化物电极及其制备方法和应用
CN114618539A (zh) * 2022-02-23 2022-06-14 燕山大学 一种分级结构硼氢化钠产氢催化剂及其制备方法和应用
CN115011989A (zh) * 2022-05-31 2022-09-06 武汉工程大学 一种镍锰氮化物催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN107243356B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN107243356B (zh) 一种具有镍钴氮化物三维结构的电催化剂及其应用
Li et al. Spinel LiMn2O4 nanofiber: an efficient electrocatalyst for N2 reduction to NH3 under ambient conditions
Chen et al. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting
Patil et al. Co-metal–organic framework derived CoSe2@ MoSe2 core–shell structure on carbon cloth as an efficient bifunctional catalyst for overall water splitting
Xu et al. In situ grown Ni phosphate@ Ni12P5 nanorod arrays as a unique core–shell architecture: competitive bifunctional electrocatalysts for urea electrolysis at large current densities
Ren et al. Cobalt–borate nanowire array as a high-performance catalyst for oxygen evolution reaction in near-neutral media
Xiong et al. Mo-doped Co3O4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting
Wang et al. A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes
Shi et al. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values
Yan et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting
Zhou et al. Ni 3 S 2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution
Yu et al. A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes
Balasubramanian et al. Engineering of oxygen vacancies regulated core-shell N-doped carbon@ NiFe2O4 nanospheres: A superior bifunctional electrocatalyst for boosting the kinetics of oxygen and hydrogen evaluation reactions
Muthurasu et al. Fabrication of nonmetal-modulated dual metal–organic platform for overall water splitting and rechargeable zinc–air batteries
Xu et al. A hierarchical Ni–Co–O@ Ni–Co–S nanoarray as an advanced oxygen evolution reaction electrode
CN108630438A (zh) 硒化钴/钛网分解水制氧电极及其制备方法
Yun et al. Ni and Fe nanoparticles, alloy and Ni/Fe-Nx coordination co-boost the catalytic activity of the carbon-based catalyst for triiodide reduction and hydrogen evolution reaction
Liu et al. Hematite nanorods array on carbon cloth as an efficient 3D oxygen evolution anode
CN106757143A (zh) 一种水分解反应用催化电极及其制备方法
Zeng et al. Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells
CN109621981A (zh) 一种金属氧化物-硫化物复合析氧电催化剂及其制备方法和应用
CN107376945A (zh) 一种铁基催化剂、制备方法及其在高效电催化水裂解方面的应用
Sun et al. High-performance alkaline hydrogen evolution electrocatalyzed by a Ni 3 N–CeO 2 nanohybrid
Jiang et al. Electric field-driven interfacial alloying for in situ fabrication of nano-Mo2C on carbon fabric as cathode toward efficient hydrogen generation
Guo et al. Walnut-like transition metal carbides with three-dimensional networks by a versatile electropolymerization-assisted method for efficient hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190723