CN107235721B - 一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用 - Google Patents

一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用 Download PDF

Info

Publication number
CN107235721B
CN107235721B CN201710301010.2A CN201710301010A CN107235721B CN 107235721 B CN107235721 B CN 107235721B CN 201710301010 A CN201710301010 A CN 201710301010A CN 107235721 B CN107235721 B CN 107235721B
Authority
CN
China
Prior art keywords
whitlockite
scaffold
dimensional printing
bioceramic
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710301010.2A
Other languages
English (en)
Other versions
CN107235721A (zh
Inventor
窦源东
吴成铁
孙先昌
陈振华
任志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Zhenghai Bio-Tech Co Ltd
Original Assignee
Yantai Zhenghai Bio-Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Zhenghai Bio-Tech Co Ltd filed Critical Yantai Zhenghai Bio-Tech Co Ltd
Priority to CN201710301010.2A priority Critical patent/CN107235721B/zh
Publication of CN107235721A publication Critical patent/CN107235721A/zh
Application granted granted Critical
Publication of CN107235721B publication Critical patent/CN107235721B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用。本发明首先通过将白硅钙石粉体、烧结助剂和一定比例的粘结剂水溶液进行调和后得到浆料,之后利用三维打印技术制备获得具有可控多孔结构的陶瓷支架坯体,再通过高温烧结得到具有多孔结构与良好力学性能的白硅钙石陶瓷支架材料。本发明所制备的三维打印白硅钙石生物陶瓷支架,其孔径和孔隙率可控,生物相容性好,力学性能显著优于同结构的磷酸钙陶瓷支架,同时具有优异的诱导成骨活性以及成血管活性,预期可用于促进各种类型缺损骨组织的再生修复。

Description

一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与 应用
技术领域
本发明属于生物医用材料领域,具体涉及一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用。
背景技术
由创伤、肿瘤、先天性畸形、老龄化及事故等原因导致的骨缺损是威胁人体健康的主要原因。目前被视作临床金标准的自体骨移植经常受供体来源和二次创伤的限制,同种异体或异种骨修复材料存在病毒传播及免疫排斥等风险,因此具有良好的促进骨再生特性的人工合成骨修复材料有着迫切的临床需求和广阔的发展前景。
目前在临床中广泛使用的合成骨修复材料为磷酸盐类生物陶瓷,如羟基磷灰石和β-磷酸三钙陶瓷,其显著优点在于组成与天然骨组织的无机组分类似,因此具有良好的生物相容性和骨传导性,但存在不能主动诱导骨再生及降解过慢等不足。近年来,钙硅基生物活性材料由于在力学、降解性及生物学效应方面表现出了显著优于传统磷酸盐陶瓷的独特优点,因此获得了大量的关注和研究。白硅钙石(bredigite,Ca7MgSi4O16)作为一类具有代表性的硅酸盐生物活性陶瓷,表现出了优异的生物相容性、磷灰石矿化能力和生物活性。白硅钙石生物陶瓷在模拟体液中浸泡后能在其表面形成一层羟基磷灰石矿化层,成骨细胞可在其表面进行良好的贴附和铺展(Wu C,Chang J,Wang J,et al.Preparation andcharacteristics of a calcium magnesium silicate(bredigite)bioactive ceramic.[J].Biomaterials,2005,26(16):2925-2931.),同时在降解过程中白硅钙石陶瓷可释放Ca2+,Mg2+,Si4+等多种离子产物,Ca2+和Si4+能够促进骨髓间充质干细胞增殖和分化,Mg2+也被证实可通过免疫调控过程对血管化和骨再生有显著的促进作用,是制备具有骨诱导功能再生修复材料的理想组成(Wang M,Yu Y,Dai K,et al.Improved osteogenesis andangiogenesis of magnesium-doped calcium phosphate cement via macrophageimmunomodulation[J].Biomaterials Science,2016,4(11):1574-1583.)。
除在组成上含有可促进成骨及成血管的营养元素外,理想的骨修复材料还需要具有良好的多孔结构与优异的力学强度。传统采用造孔剂法、发泡法及冻干法等制备得到的多孔骨修复支架材料存在孔径连通性差、力学性能不足等问题,限制了其在骨缺损修复中的应用。
发明内容
本发明的目的在于提供一种三维打印白硅钙石生物陶瓷支架及其制备方法和用途。该生物陶瓷支架通过三维打印成型可以获得可控的多孔结构,通过高温烧结可以获得致密的微结构与良好的力学性能,并具有良好的生物相容性、成骨以及成血管活性。
本发明的第一方面是提供一种生物陶瓷支架。
本发明所提供的生物陶瓷支架,是利用三维打印技术制备的白硅钙石生物陶瓷支架,即三维打印白硅钙石生物陶瓷支架。
所述三维打印白硅钙石生物陶瓷支架,具有可控的孔结构,孔径为100~500μm,孔隙率为20%~80%。
所述三维打印白硅钙石生物陶瓷支架,由白硅钙石和烧结助剂组成,其中白硅钙石的质量分数为80~99%。
所述烧结助剂具体可为生物玻璃。
本发明的第二方面是提供上述三维打印白硅钙石生物陶瓷支架的制备方法,包括以下步骤:
(1)将白硅钙石粉末、烧结助剂与粘结剂水溶液混合,得到三维打印浆料;
(2)以所述三维打印浆料为原料利用三维打印技术制备白硅钙石生物陶瓷支架坯体;
(3)将所述白硅钙石生物陶瓷支架坯体进行烧结,得到所述生物陶瓷支架。
上述方法步骤(1)中,所述白硅钙石粉末由溶胶凝胶法或沉淀法合成。
上述方法步骤(1)中,所述烧结助剂具体可为生物玻璃。
上述方法步骤(1)中,烧结助剂与白硅钙石粉末的质量比为:0.01~0.2:1。
上述方法步骤(1)中,所述粘结剂可选自:F127、P123、聚乙烯醇、海藻酸钠、羧甲基纤维素钠、羧甲基淀粉、羧甲基壳聚糖、胶原蛋白、透明质酸钠、明胶以及它们的混合物。
上述方法步骤(1)中,所述三维打印浆料中粘结剂水溶液的质量分数为30~50%,所述粘结剂水溶液中粘结剂的质量分数为1~30%。
上述方法步骤(3)中,所述烧结的温度可为1150~1450℃,具体可为1300℃、1350℃,烧结的时间为2~15小时,具体可为3小时、4小时、5小时。
上述三维打印白硅钙石生物陶瓷支架在各种类型骨缺损再生修复材料中的应用也属于本发明的保护范围。
本发明的有益效果为:
(1)支架材料的孔径连通性好,孔隙率高,且可方便地通过三维打印设备的控制参数进行调节。
(2)支架材料经过高温烧结成型,微结构致密,无粘结剂残留。
(3)生物陶瓷支架的主相为白硅钙石,生物相容性好,生物活性高,具有诱导成骨活性以及成血管活性。
(4)力学性能显著优于同结构的磷酸盐陶瓷支架,同时降解性与骨再生同步。
本发明采用三维打印技术制备的生物陶瓷支架由于具有完全贯通的孔结构,同时力学强度也显著优于模板法制备的支架材料,在体内应用时能够促进骨组织长入以及营养物质的传输,有利于促进早期成骨,提升骨再生效果。
附图说明
图1为本发明实施例1制备的三维打印白硅钙石生物陶瓷支架的外观照片(a、b),实施例2制备的结构精细的三维打印白硅钙石生物陶瓷支架的外观照片(c、d)和实施例3制备得到的圆片形三维打印白硅钙石生物陶瓷支架的外观照片(e、f)。
图2为本发明实施例1制备的三维打印白硅钙石生物陶瓷支架的微观照片(a)和SEM照片(b)。
图3为本发明实施例1制备的三维打印白硅钙石生物陶瓷支架的XRD分析结果。
图4为本发明实施例3制备的三维打印白硅钙石生物陶瓷支架与三维打印β-TCP陶瓷支架的抗压强度测试结果。
图5为在兔子桡骨缺损处植入本发明实施例4制备的三维打印白硅钙石生物陶瓷支架与三维打印β-TCP陶瓷支架12周后的Micro-CT照片(a)和组织切片染照片(b)。
具体实施方式
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1、三维打印白硅钙石生物陶瓷支架的制备
1.原料准备:
(1)白硅钙石粉体合成
以四水硝酸钙、六水硝酸镁及正硅酸乙酯为原料,硝酸作为催化剂,采用溶胶-凝胶法制备白硅钙石(Ca7MgSi4O16)粉体。
取112mL正硅酸乙酯与72mL水及40mL的2mol·L-1硝酸(取69.4mL市售65~68%浓硝酸与适量水搅拌混合后定容至500mL,可得2mol·L-1硝酸)混合,搅拌水解0.5h。依次加入206.6g四水硝酸钙和64.1g硝酸镁,搅拌5h。密封在60℃陈化24h后在120℃干燥48h得到干凝胶。干凝胶球磨后在1150℃温度下煅烧3h,自然冷却后球磨并过200目筛,得到白硅钙石粉体。
(2)粘结剂水溶液的准备
粘结剂选择F127和海藻酸钠。称量20g购买的F127固体粉末和10g海藻酸钠放入玻璃瓶,加入100ml去离子水,盖封,放入-20℃环境30min,取出磁力搅拌30min,得到粘结剂水溶液。
(3)烧结助剂的准备
烧结助剂选择购买的45S5生物活性玻璃粉体。
(4)三维打印设备的准备
三维打印机使用德国GeSiM公司成产的Nano-Plotter TM 2.1,送料气压3.0~5.5个大气压,打印速度6mm/s,打印针头内径0.9mm。
2.三维打印制备白硅钙石生物陶瓷支架:
(1)称取4.5g白硅钙石粉末、0.5g生物玻璃粉体、2.5g粘结剂水溶液充分调和混匀,制备三维打印浆料;
(2)打印浆料放入料筒,安装好针头,装入三维打印机,按照预先设定的程序(层高0.8mm,股间距1.45mm)制备白硅钙石生物陶瓷支架坯体;
(3)将白硅钙石生物陶瓷支架坯体以2℃/min的升温速率升至1300℃,保温3h后自然冷却,即可得到三维打印白硅钙石生物陶瓷支架(图1a,b)。由图2可以看出支架具有大孔结构,孔径约0.4mm,阿基米德法测得孔隙率为44.6%。
实施例2、结构精细的三维打印白硅钙石生物陶瓷支架的制备
1.原料准备:
(1)白硅钙石粉体合成,原料和方法与实施例1相同。
(2)粘结剂水溶液的准备,原料和方法与实施例1相同。
(3)烧结助剂的准备
烧结助剂选择购买的45S5生物活性玻璃粉体。
(4)三维打印设备的准备
三维打印机使用德国GeSiM公司成产的Nano-Plotter TM 2.1,送料气压2.0~3.0个大气压,打印速度6.5mm/s,打印针头内径0.41mm。
2.三维打印制备白硅钙石生物陶瓷支架:
(1)称取4.3g白硅钙石粉末、0.7g生物玻璃粉体、2.8g粘结剂水溶液充分调和混匀,制备三维打印浆料;;
(2)打印浆料装入料筒,开启3D打印机,按照预先设定的程序(层高0.36mm,股间距1.2mm)制备白硅钙石生物陶瓷支架坯体;
(3)将白硅钙石生物陶瓷支架坯体以3℃/min的升温速率升至1350℃,保温5h后自然冷却,即可得到三维打印白硅钙石生物陶瓷支架。
图1(c)和(d)为制备得到结构精细的三维打印白硅钙石生物陶瓷支架的外观照片。
实施例3、圆片形三维打印白硅钙石生物陶瓷支架的制备
1.原料准备:
(1)白硅钙石粉体合成,原料和方法与实施例1相同。
(2)粘结剂水溶液的准备
粘结剂选择聚乙烯醇(聚合度:1750±50)。称量6g购买的聚乙烯醇加入100ml沸水中,搅拌至溶解,得到粘结剂水溶液。
(3)烧结助剂的准备
烧结助剂选择购买的45S5生物活性玻璃粉体。
(4)三维打印设备的准备
三维打印机使用德国GeSiM公司成产的Nano-Plotter TM 2.1,送料气压2.5~3.5个大气压,打印速度6.0mm/s,打印针头内径0.41mm。
2.三维打印制备白硅钙石生物陶瓷支架:
(1)称取6.2g白硅钙石粉末、0.3g生物玻璃粉体、3.5g粘结剂水溶液充分调和混匀,制备三维打印浆料;
(2)打印浆料装入料筒,开启3D打印机,按照预先设定的程序(层高0.36mm,股间距1.1mm)制备白硅钙石生物陶瓷支架坯体;
(3)将白硅钙石生物陶瓷支架坯体以2℃/min的升温速率升至1300℃,保温4h后自然冷却,即可得到三维打印白硅钙石生物陶瓷支架(图1e,f)。
实施例4、三维打印白硅钙石生物陶瓷支架的抗压强度
1.实验组准备:
以实施例1的方法制备出φ8mm×10mm的三维打印白硅钙石生物陶瓷支架,作为实验组。
2.对照组准备:
制备φ8mm×10mm的三维打印β-TCP陶瓷支架作为对照组,粘结剂和打印方法与实施例1相同。
(1)称取5gβ-磷酸三钙粉末、2.75g粘结剂水溶液充分调和混匀,制备浆料;
(2)打印浆料放入料筒,安装好针头,装入三维打印机,制备β-磷酸三钙陶瓷支架坯体;
(3)将β-磷酸三钙陶瓷支架坯体以2℃/min的升温速率升至1100℃,保温3h后自然冷却,即可得到三维打印β-磷酸三钙陶瓷支架。
3.力学强度测试:
将白硅钙石生物陶瓷支架,β-磷酸三钙陶瓷支架各取9个,通过力学测试机(AG-I,Shimadzu,Japan)进行测试,压头速度为0.5mm/min。
记录测试所得抗压强度并进行对比,实验结果见图4。
实施例5、三维打印白硅钙石生物陶瓷支架的体内成骨活性
为验证本发明在体内的成骨活性,对制备的三维打印白硅钙石生物陶瓷支架进行动物实验验证。
本实验选择的动物模型为健康的新西兰大白兔桡骨间断缺损模型。以实施例1的方法制备出的三维打印白硅钙石生物陶瓷支架,作为实验组植入体;以的三维打印β-磷酸三钙陶瓷支架,作为对照组植入体;植入前均进行高温蒸汽灭菌处理。
实验中,选用12只体重在2-2.5kg的雄性新西兰大白兔,随机分配成2组。在无菌状态下,肌肉注射5%的戊巴比妥使之麻醉;然后在左腿桡骨处划开2-2.5cm的矢状切口,在桡骨中间将1cm长的骨连同表面骨膜一起截取;植入三维打印陶瓷支架,经过0.9%无菌生理盐水冲洗后,将肌肉和皮肤分别复位、缝合。手术后正常饲养,注射抗生素3天。
术后12周处死动物取种植体,将标本在福尔马林磷酸盐缓冲液中固定24-48h。
样品通过Micro-CT(μCT-100,Scanco Medical AG,Switzerland)扫描后,采用GEHC MicroView软件(GE Healthcare BioSciences,Chalfont St.Giles,UK)进行三维成像处理并获得3维图像来显示整体形态学。
此外,样本经梯度乙醇(70%、80%、90%、100%)逐级脱水后放入聚甲基丙烯酸甲酯(PMMA)进行包埋,然后使用硬组织切片机(SP1600;Leica,Wetzlar,Germany)纵向切片,切片经打磨、抛光处理后进行Van Gieson(苦味酸品红)染色。切片在显微镜下进行观察和拍照,照片中,成熟骨组织呈鲜红色。
Micro-CT图片显示出两组支架种植在兔子桡骨缺损12周后周围新骨形成的形态,实验组比对照组有更好的骨再生效果:缺损处的重新连接程度更高、再生形态更规则。VanGieson染色结果显示两组支架材料周围都有新骨形成,且实验组比对照组有更多的新骨生成量(图5)。
结论:本发明的三维打印白硅钙石生物陶瓷支架具有良好的组织相容性和体内成骨能力和骨修复效果,可在骨组织工程用于硬骨组织缺损的修复和再生。
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限制。对于所属领域的技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或改进,凡是在本发明的精神和原则的前提下所作的任何变化和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (4)

1.一种生物陶瓷支架,是利用三维打印技术制备的白硅钙石生物陶瓷支架,即三维打印白硅钙石生物陶瓷支架;
该支架具有可控的孔结构,孔径为100~500 μm,孔隙率为20%~80%;
制备所述生物陶瓷支架的方法,包括以下步骤:
(1) 将白硅钙石粉末、烧结助剂与粘结剂水溶液混合,得到三维打印浆料;
(2) 以所述三维打印浆料为原料利用三维打印技术制备白硅钙石生物陶瓷支架坯体;
(3) 将所述白硅钙石生物陶瓷支架坯体进行烧结,得到所述生物陶瓷支架;
所述方法步骤(1)中,所述烧结助剂为生物玻璃;
烧结助剂与白硅钙石粉末的质量比为:0.01~0.2:1;
所述粘结剂选自:F127、P123、聚乙烯醇、海藻酸钠、羧甲基纤维素钠、羧甲基淀粉、羧甲基壳聚糖、胶原蛋白、透明质酸钠、明胶以及它们的混合物;
所述三维打印浆料中粘结剂水溶液的质量分数为30~50%,所述粘结剂水溶液中粘结剂的质量分数为1~30%;
三维打印机使用德国GeSiM公司成产的Nano-Plotter TM 2.1,送料气压3.0~5.5个大气压,打印速度6 mm/s,打印针头内径0.9 mm。
2.根据权利要求1所述的生物陶瓷支架,其特征在于:所述方法步骤(1)中,所述白硅钙石粉末由溶胶凝胶法或沉淀法合成。
3.根据权利要求1所述的生物陶瓷支架,其特征在于:所述方法步骤(3)中,所述烧结的温度为1150~1450℃,烧结的时间为2~15小时。
4.权利要求1-3中任一项所述的生物陶瓷支架在各种类型骨缺损再生修复材料中的应用。
CN201710301010.2A 2017-05-02 2017-05-02 一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用 Active CN107235721B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710301010.2A CN107235721B (zh) 2017-05-02 2017-05-02 一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710301010.2A CN107235721B (zh) 2017-05-02 2017-05-02 一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107235721A CN107235721A (zh) 2017-10-10
CN107235721B true CN107235721B (zh) 2019-12-13

Family

ID=59984335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710301010.2A Active CN107235721B (zh) 2017-05-02 2017-05-02 一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107235721B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108324987B (zh) * 2018-02-09 2020-11-24 华南理工大学 一种中空多孔球形颗粒人工骨及其制备方法和应用
CN109910131A (zh) * 2019-04-08 2019-06-21 南京航空航天大学 一种增强型硅酸盐多孔陶瓷支架的浆料及成形方法
CN113209376B (zh) * 2021-05-05 2022-07-26 西北工业大学 一种强韧兼顾功能型ha/cmcs复合生物陶瓷骨支架的常温中性制备方法
CN114292103B (zh) * 2021-12-24 2023-11-10 中国科学院上海硅酸盐研究所 一种具有齿轮沟槽状结构的生物活性支架及其制备方法和应用
CN115192782A (zh) * 2022-05-18 2022-10-18 浙江大学 一种用于引导骨组织再生的薄层多孔支架及其制备方法
CN114956793A (zh) * 2022-06-01 2022-08-30 东南大学 3d打印陶瓷电子电路的陶瓷浆料及其制备技术和混合增材制造方法
CN115054725B (zh) * 2022-06-27 2023-09-15 点云生物(杭州)有限公司 一种锂皂石3d打印人工骨支架及制备方法
CN115745583A (zh) * 2022-12-05 2023-03-07 中国人民解放军海军工程大学 一种3d打印成型废弃粉煤灰空心微球填充骨架的多级孔陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623952A (zh) * 2004-10-28 2005-06-08 中国科学院上海硅酸盐研究所 白硅钙石生物陶瓷及其制备方法和用途
CN101690828A (zh) * 2009-09-29 2010-04-07 西北工业大学 梯度多孔生物陶瓷支架的制备方法
CN105196398A (zh) * 2015-09-16 2015-12-30 华南理工大学 用于气压挤出式三维打印的陶瓷浆料及生物陶瓷支架的制备方法
CN106178101A (zh) * 2016-07-20 2016-12-07 上海理工大学 一种多孔生物活性玻璃陶瓷支架的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177997B1 (ko) * 2010-10-08 2012-08-28 단국대학교 산학협력단 인산칼슘 시멘트와 콜라겐의 마이크로입자형 전달체의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623952A (zh) * 2004-10-28 2005-06-08 中国科学院上海硅酸盐研究所 白硅钙石生物陶瓷及其制备方法和用途
CN101690828A (zh) * 2009-09-29 2010-04-07 西北工业大学 梯度多孔生物陶瓷支架的制备方法
CN105196398A (zh) * 2015-09-16 2015-12-30 华南理工大学 用于气压挤出式三维打印的陶瓷浆料及生物陶瓷支架的制备方法
CN106178101A (zh) * 2016-07-20 2016-12-07 上海理工大学 一种多孔生物活性玻璃陶瓷支架的制备方法

Also Published As

Publication number Publication date
CN107235721A (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
CN107235721B (zh) 一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用
Ribas et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review
Baino et al. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances
Baino et al. Bioceramics and scaffolds: a winning combination for tissue engineering
Dorozhkin Calcium orthophosphates as bioceramics: state of the art
Liu et al. Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: A mini-review and meta-analysis
CN106348785A (zh) 一种生物活性多孔陶瓷管状棒材、制备方法及其应用
Dadkhah et al. Preparation and characterisation of an innovative injectable calcium sulphate based bone cement for vertebroplasty application
R Naqshbandi et al. Development of porous calcium phosphate bioceramics for bone implant applications: A review
Cai et al. Macro-mesoporous composites containing PEEK and mesoporous diopside as bone implants: characterization, in vitro mineralization, cytocompatibility, and vascularization potential and osteogenesis in vivo
US8871167B2 (en) Biocompatible ceramic-polymer hybrids and calcium phosphate porous body
CN108553691B (zh) 可注射自固化人工骨修复材料及其制备方法
Ning Biomaterials for bone tissue engineering
Zhao et al. Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models
ES2837750T3 (es) Soporte polimérico poroso y método de preparación del mismo
Shao et al. Degradation and biological performance of porous osteomimetic biphasic calcium phosphate in vitro and in vivo
JP2011189052A (ja) リン酸カルシウム/生分解性ポリマーハイブリッド材料並びにその製法及びハイブリッド材料を用いたインプラント
CN109331223B (zh) 一种载药生物活性玻璃复合磷酸钙骨水泥及其应用
Miao et al. Multi-stage controllable degradation of strontium-doped calcium sulfate hemihydrate-tricalcium phosphate microsphere composite as a substitute for osteoporotic bone defect repairing: degradation behavior and bone response
EP2933241B1 (en) Method for producing a porous calcium polyphosphate structure
CN109432493B (zh) 纳米羟基磷灰石涂层多孔钛支架及其制备方法和应用
CN108079369B (zh) 具有表面纳米结构的硅酸盐骨水泥支架及其制备方法和用途
CN104984401A (zh) 一种温敏水凝胶/磷酸三钙材料的制备方法
Sa et al. Fabrication and evaluation of 3D β-TCP scaffold by novel direct-write assembly method
CN109394394B (zh) 仿热狗结构生物活性支架及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 264006 No.7 Nanjing Street, Yantai Economic and Technological Development Zone, Yantai City, Shandong Province

Patentee after: YANTAI ZHENGHAI BIO-TECH Co.,Ltd.

Address before: No.10 Hengshan Road, Yantai City, Shandong Province 264006

Patentee before: YANTAI ZHENGHAI BIO-TECH Co.,Ltd.

CP02 Change in the address of a patent holder