CN107234137A - 冷连轧机组升降速过程的乳化液流量控制方法 - Google Patents

冷连轧机组升降速过程的乳化液流量控制方法 Download PDF

Info

Publication number
CN107234137A
CN107234137A CN201610181798.3A CN201610181798A CN107234137A CN 107234137 A CN107234137 A CN 107234137A CN 201610181798 A CN201610181798 A CN 201610181798A CN 107234137 A CN107234137 A CN 107234137A
Authority
CN
China
Prior art keywords
mrow
emulsion
function
mill speed
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610181798.3A
Other languages
English (en)
Other versions
CN107234137B (zh
Inventor
王欣
王康健
赵会平
郑涛
羌菊兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201610181798.3A priority Critical patent/CN107234137B/zh
Publication of CN107234137A publication Critical patent/CN107234137A/zh
Application granted granted Critical
Publication of CN107234137B publication Critical patent/CN107234137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product

Abstract

本发明涉及冶金领域,尤其涉及一种乳化液流量控制方法。一种冷连轧机组升降速过程的乳化液流量控制方法,包括以下步骤,构造出轧制速度与乳化液流量函数;以在轧制过程中尽量保证轧制力的稳定性为目标,构造目标函数;通过目标函数的最优解得到流量函数中的待定系数,实现对乳化液流量的控制。本发明冷连轧机组升降速过程的乳化液流量控制方法通过调节乳化液流量大小来保证在冷连轧机组升降速过程中的轧制力稳定性,使乳化液流量随轧制速度变化而变化,实现了对乳化液流量的精确控制,提高了板形质量;另外,在控制乳化液流量过程中,为了定量控制的精确性,避免了乳化液冗余设定的浪费,节约了乳化液的消耗,为企业创造了经济效益。

Description

冷连轧机组升降速过程的乳化液流量控制方法
技术领域
本发明涉及冶金领域,尤其涉及一种乳化液流量控制方法。
背景技术
如图1所示,冷连轧机组是带钢轧制的主要设备,是决定带钢轧制生产线能力的关键性设备。在冷连轧过程中喷洒乳化液实现冷却和润滑是必不可少的关键工艺;现有技术,中国专利CN201310304133.3中公开了一种双机架六辊轧机冷轧中乳化液总流量设定方法,其乳化液流量设定分配主要考虑的条件是轧制压力、轧制功率、打滑、滑伤和板形质量。可以看出现有技术中,乳化液流量分配设定主要考虑的问题是打滑与热滑伤、轧制压力、轧制功率以及板形,只要满足上述几个条件的一定范围内的乳化液流量值都是可行的,但具体的流量大小则是根据设备条件和现场经验来设定的,这种流量的设定很容易出现乳化液的浪费,增加了生产成本;
此外,由于乳化液流量的大小会影响摩擦系数,在机组升降速过程中,由于轧制速度的变化,导致带钢摩擦系数出现变化,这就可能造成摩擦力和轧制力的变化过大,超出允许范围,此时生产出的带钢品质也会降低,给企业带来损失。
因此,针对以上乳化液流量控制缺陷,同时结合冷连轧机组的设备与工艺特点,需要一种适合于冷连轧机组升降速过程的乳化液流量优化设定方法。
发明内容
本发明所要解决的技术问题是提供一种冷连轧机组升降速过程的乳化液流量控制方法,该方法以保证轧制力稳定性为目标,通过带钢轧制速度来计算乳化液流量,以解决现场生产中轧制力剧烈变化所造成的影响,提高了带钢板形质量,节约了乳化液的消耗,为企业创造了经济效益。
本发明是这样实现的:一种冷连轧机组升降速过程的乳化液流量控制方法,包括以下步骤:
S1,构造出轧制速度与乳化液流量函数f(V),Q=f(V),Q为乳化液流量,V为轧制速度,所述轧制速度与乳化液流量函数f(V)中具有若干个待定系数,将若干个待定系数组成数组X;
S2,以在轧制过程中尽量保证轧制力的稳定性为目标,构造出数组X的目标函数G(X);
S3,求出满足目标函数G(X)最小值的最优解Xy,得到函数f(V)中待定系数的最优解;
S4,利用函数f(V)根据轧制速度V对乳化液流量Q进行控制。
所述轧制速度与乳化液流量函数f(V)为,
Q=a·th(bV) (1)
式中,th为双曲正切函数,e为自然常数;
a、b为待定系数,数组X={a,b}。
所述步骤S3中,求出满足目标函数G(X)最小值的最优解Xy为采用Powell法优化求得。
所述的目标函数G(X)以轧制力平衡原理构造,
式中,α为权重系数,0<α<1;
为轧制力平均值;
m为将轧制速度V分为m段,其中,j=1,2,……,m;
Pj为在第j段轧制速度下的轧制力;
Pmax=max{Pj},Pmin=min{Pj};
本发明冷连轧机组升降速过程的乳化液流量控制方法通过调节乳化液流量大小来保证在冷连轧机组升降速过程中的轧制力稳定性,使乳化液流量随轧制速度变化而变化,实现了对乳化液流量的精确控制,提高了板形质量;另外,在控制乳化液流量过程中,为了定量控制的精确性,避免了乳化液冗余设定的浪费,节约了乳化液的消耗,为企业创造了经济效益。
附图说明
图1为现有的冷连轧机组示意图;
图2为本发明冷连轧机组升降速过程的乳化液流量控制方法的流程框图;
图3为本发明中使用Powell法优化求得最优解的流程框图;
图4为使用本发明前后的轧制力随时间变化曲线图;
图中:…为采用本发明控制方法前的曲线,-为采用本发明控制方法后的曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明表述的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
如图2所示,一种冷连轧机组升降速过程的乳化液流量控制方法,包括以下步骤:
S1,构造出轧制速度与乳化液流量函数f(V),Q=f(V),Q为乳化液流量,V为轧制速度,轧制速度采用机架出口侧速度,所述轧制速度与乳化液流量函数f(V)中具有若干个待定系数,将若干个待定系数组成数组X;
在本实施例中,所构造的轧制速度与乳化液流量函数f(V)如公式1所示,
Q=a·th(bV) (1)
式中,th为双曲正切函数,e为自然常数,在本实施例中取e=2.71828;
a、b为待定系数,数组X={a,b}。
S2,以在轧制过程中尽量保证轧制力的稳定性为目标,构造出数组X的目标函数G(X);
所述目标函数G(X)根据轧制力平衡原理构造,在本实施例中,
式中,α为权重系数,0<α<1;
为轧制力平均值;
m为将轧制速度V分为m段,其中,j=1,2,……,m;
Pj为在第j段轧制速度下的轧制力;
Pmax=max{Pj},Pmin=min{Pj}
S3,求出满足目标函数G(X)最小值的最优解Xy,得到函数f(V)中待定系数的最优解;
在本实施例中,求出满足目标函数G(X)最小值的最优解Xy为采用Powell法优化求得,具体包括以下步骤:
该冷连轧机组的机架数为n,i=1,2,……,n;
a)收集现场参数,包括:第i机架入口厚度hi-1,第i机架出口厚度hi,第i机架轧辊半径Ri,第i机架带材宽度Bi,带材杨氏模量E,带材泊松比v,第i机架平均变形抗力Kmi,第i机架的入口张应力σi-1,第i机架的出口张应力σi,第i机架换辊后的轧制吨位Zi,第i机架工作辊换辊后轧制公里数Li,第i机架最高速度Vimax
b)收集机组摩擦特性参数,包括:速度指数衰减系数BV,轧制公里数指数衰减系数BL,轧制吨位指数衰减系数BZ,乳化液流量指数衰减系数BQ,第i机架速度线性回归系数CVi,第i机架轧制公里数线性回归系数CLi,第i机架轧制吨位线性回归系数CZi,第i机架乳化液流量线性回归系数CQi,第i机架压下率线性回归系数Cri,第i机架入口张应力线性回归系数Cσ(i-1),第i机架出口张应力线性回归系数Cσi,第i机架后张力线性回归系数CT(i-1),第i机架变形抗力线性回归系数Cki,第i机架出口厚度线性回归系数Chi,第i机架入口厚度线性回归系数Ch(i-1),第i机架基准摩擦系数μ0i
c)初始化i:令i=1;即,从第1机架开始分别计算各个机架的待定系数ai和bi,所述ai和bi为第i机架的轧制速度与乳化液流量函数中的待定系数;
d)将第i机架两个待定系数构成数组Xi={ai,bi};
e)如图3所示,利用目标函数G(X),采用Powell法,按以下步骤进行:
式中,αi为第i机架权重系数,0<αi<1;
为第i机架的轧制力平均值;
m为将第i机架的轧制速度Vi分为m段,其中,j=1,2,……,m;
Pij为第i机架在第j段轧制速度下的轧制力;
Pimax=max{Pij},Pimin=min{Pij}
e1)设定待定系数的搜索初始数组Xi0={ai0,bi0}及其初始搜索步长ΔXi0={Δai0,Δbi0};
e2)定义优化参数k,初始化k=0;
e3)Xi=Xik+ΔXik
e4)初始化j:令j=1;
e5)计算第i机架在第j段轧制速度下的乳化液流量Qij
Vimax为第i机架的最大轧制速度;
e6)计算第i机架在第j段轧制速度下的摩擦系数μij
式中:ri为第i机架压下率,
Vij为第i机架的第j段轧制速度值;
e7)采用Hill公式计算第i机架在第j段轧制速度下的轧制压力Pij
式中:
Δhi为第i机架绝对压下量,Δhi=hi-1-hi
ξi为第i机架等效张力影响系数,ξi=0.3σi+0.7σi-1
R'ij为第i机架在第j段轧制速度下的工作辊弹性压扁半径,
e8)令j=j+1,并判断j≤m是否成立?成立则转入步骤e5;不成立则转入步骤e9;
e9)选定第i机架权重系数αi后,利用公式2计算得到G(Xi):
e10)判断Powell条件是否成立?成立则进入步骤e11;不成立则令k=k+1,Xik=Xi,重新计算并更新搜索步长ΔXik={Δaik,Δbik},转入步骤e3;
e11)计算出满足目标函数G(Xi)最小值的第i机架两个待定系数的最优解Xiy={aiy,biy};
f)由最优解Xiy={aiy,biy}得到第i机架的乳化液流量Qi的计算公式:Qi=aiy·th(biyVi);aiy,biy为第i机架轧制速度与乳化液流量函数中的最优系数,Vi为第i机架的轧制速度;
g)令i=i+1,顺次计算后续各机架函数中的最优系数,直到所有机架计算完毕,即当i≤n时回到步骤e;当i>n时进入步骤h;
h)综合上述步骤,可以得到该机组n个机架各自的乳化液流量随轧制速度变化的函数Q=f(V);
S4,利用函数f(V)根据轧制速度V对乳化液流量Q进行控制。
以某厂四辊五机架冷连轧生产线为例,详细地介绍该机组升降速过程中乳化液流量的确定和工作效果。
a)收集现场生产设备和工艺参数,包括:五个机架入口和出口厚度hi-1,hi(mm){(2.50,1.85),(1.85,1.16),(1.16,0.82),(0.82,0.56),(0.56,0.45)},五个机架轧辊半径Ri(mm){265,237,249,266,264},五个机架带材宽度Bi=1800(mm),带钢弹性模量E=210GPa,泊松比v=0.3,五个机架平均变形抗力kmi(Mpa){373,475,541,576,612},五个机架带钢入口和出口张力σi-1i(Mpa){(49,160),(160,170),(160,170),(170,180),(180,69)},五个机架换辊后的轧制吨位Zi(ton){2228,1940,1880,2000,2320},五个机架工作辊换辊后轧制公里数Li(km){150,140,130,160,180},五个机架最高轧制速度Vimax(m/min){1400,1440,1480,1500,1550},冷连轧机组的机架数量数n=5;
b)收集机组摩擦特性参数,包括:速度指数衰减系数BV=-0.0036,轧制公里数指数衰减系数BL=-0.00082,轧制吨位指数衰减系数BZ=-5.0×10-6,乳化液流量指数衰减系数BQ=-0.173,五个机架速度线性回归系数CVi={1.6×10-2,2.5×10-2,3.2×10-2,4.5×10-2,5.2×10-2},五个机架轧制公里数线性回归系数CLi={0.140,0.185,0.200,0.248,0.253},五个机架轧制吨位线性回归系数CZi={0.013,0.015,0.017,0.018,0.022},五个机架乳化液流量线性回归系数CQi={6.1×10-3,6.3×10-3,7.4×10-3,8.2×10-3,1.0×10-2},五个机架压下率线性回归系数Cri={0.179,0.162,0.154,0.142,0.132},五个机架后前张力线性回归系数Cσi={1.67×10-4,2.13×10-4,2.53×10-4,2.99×10-4,3.05×10-4},五个机架后张力线性回归系数Cσ(i-1)={-1.45×10-4,-1.83×10-4,-2.35×10-4,-2.76×10-4,-2.89×10-4},五个机架变形抗力线性回归系数Cki={-1.27×10-5,-0.921×10-5,-0.613×10-5,-0.321×10-5,-0.120×10-5},五个机架出口厚度线性回归系数Chi={-6.18×101,-6.09×101,-6.00×101,-5.97×101,-5.94×101},五个机架入口厚度线性回归系数Ch(i-1)={5.84×101,6.01×101,6.21×101,6.37×101,6.51×10-2},五个机架的基准摩擦系数μ0i{-1.27×10-1,-1.74×10-1,-1.86×10-1,-2.44×10-1,-0.51×10-1};
c)计算第1机架两个待定参数:通过图3所示框图得到G(X1)的最优解X1y={891,1.47×10-3};
d)得到第1机架的轧制速度影响下的乳化液流量计算模型Q1的计算公式:Q1=891·th(1.47×10-3V1);采用该函数控制后得到如图4所示的轧制力变化曲线图,从该图中可以明显看出,轧制力波动明显下降。
e)同理重复上述步骤,可以得到其余四个机架乳化液流量计算公式:
Q2=922·th(1.49×10-3V2),Q3=945·th(1.45×10-3V3),
Q4=958·th(1.40×10-3V4),Q5=989·th(1.33×10-3V5)。

Claims (4)

1.一种冷连轧机组升降速过程的乳化液流量控制方法,其特征是,包括以下步骤:
S1,构造出轧制速度与乳化液流量函数f(V),Q=f(V),Q为乳化液流量,V为轧制速度,所述轧制速度与乳化液流量函数f(V)中具有若干个待定系数,将若干个待定系数组成数组X;
S2,以在轧制过程中尽量保证轧制力的稳定性为目标,构造出数组X的目标函数G(X);
S3,求出满足目标函数G(X)最小值的最优解Xy,得到函数f(V)中待定系数的最优解;
S4,利用函数f(V)根据轧制速度V对乳化液流量Q进行控制。
2.如权利要求1所述的冷连轧机组升降速过程的乳化液流量控制方法,其特征是:所述轧制速度与乳化液流量函数f(V)为,
Q=a·th(bV) (1)
式中,th为双曲正切函数,e为自然常数;
a、b为待定系数,数组X={a,b}。
3.如权利要求1或2所述的冷连轧机组升降速过程的乳化液流量控制方法,其特征是:所述步骤S3中,求出满足目标函数G(X)最小值的最优解Xy为采用Powell法优化求得。
4.如权利要求1或2所述的冷连轧机组升降速过程的乳化液流量控制方法,其特征是:所述的目标函数G(X)以轧制力平衡原理构造,
<mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;alpha;</mi> <msqrt> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>P</mi> <mi>j</mi> </msub> <mo>-</mo> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <msup> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mn>2</mn> </msup> </mfrac> </msqrt> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>P</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mi>min</mi> </msub> </mrow> <mo>)</mo> </mrow> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式中,α为权重系数,0<α<1;
为轧制力平均值;
m为将轧制速度V分为m段,其中,j=1,2,……,m;
Pj为在第j段轧制速度下的轧制力;
Pmax=max{Pj},Pmin=min{Pj};
<mrow> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>P</mi> <mi>j</mi> </msub> <mo>.</mo> </mrow> 1
CN201610181798.3A 2016-03-28 2016-03-28 冷连轧机组升降速过程的乳化液流量控制方法 Active CN107234137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610181798.3A CN107234137B (zh) 2016-03-28 2016-03-28 冷连轧机组升降速过程的乳化液流量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610181798.3A CN107234137B (zh) 2016-03-28 2016-03-28 冷连轧机组升降速过程的乳化液流量控制方法

Publications (2)

Publication Number Publication Date
CN107234137A true CN107234137A (zh) 2017-10-10
CN107234137B CN107234137B (zh) 2019-03-05

Family

ID=59983843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610181798.3A Active CN107234137B (zh) 2016-03-28 2016-03-28 冷连轧机组升降速过程的乳化液流量控制方法

Country Status (1)

Country Link
CN (1) CN107234137B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530434A (zh) * 2018-12-11 2019-03-29 佛山市诚德新材料有限公司 一种不锈钢带的冷轧系统
CN111872131A (zh) * 2020-07-27 2020-11-03 广西钢铁集团有限公司 动态调整冷连轧机乳化液流量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283402A (ja) * 1985-06-07 1986-12-13 Hitachi Ltd 冷間圧延における潤滑油制御方法
DE3425129C2 (zh) * 1984-07-07 1988-04-28 Bbc Brown Boveri Ag, 6800 Mannheim, De
CN104289530A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双机架四辊轧机的机架间乳化液流量分配方法
CN104289525A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双机架六辊轧机冷轧中乳化液总流量设定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425129C2 (zh) * 1984-07-07 1988-04-28 Bbc Brown Boveri Ag, 6800 Mannheim, De
JPS61283402A (ja) * 1985-06-07 1986-12-13 Hitachi Ltd 冷間圧延における潤滑油制御方法
CN104289530A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双机架四辊轧机的机架间乳化液流量分配方法
CN104289525A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双机架六辊轧机冷轧中乳化液总流量设定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530434A (zh) * 2018-12-11 2019-03-29 佛山市诚德新材料有限公司 一种不锈钢带的冷轧系统
CN109530434B (zh) * 2018-12-11 2023-12-08 佛山市诚德新材料有限公司 一种不锈钢带的冷轧系统
CN111872131A (zh) * 2020-07-27 2020-11-03 广西钢铁集团有限公司 动态调整冷连轧机乳化液流量的方法
CN111872131B (zh) * 2020-07-27 2022-04-29 广西钢铁集团有限公司 动态调整冷连轧机乳化液流量的方法

Also Published As

Publication number Publication date
CN107234137B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN105312321A (zh) 一种冷连轧机组的工艺润滑制度优化方法
CN101683660B (zh) 冷连轧机乳化液分段冷却控制方法
DE112013000350B9 (de) Verfahren zum Ausführen einer Vorschub-Dicken-Regelung in einem Tandemkaltwalzwerk
CN104338748B (zh) 一种用于变厚度带材轧制的两道次轧制方法
CN101739514B (zh) 双ucm机型的二次冷轧机组轧制工艺参数综合优化方法
CN101934290B (zh) 不锈钢冷连轧负荷分配调整方法
CN103357670B (zh) 适用于五机架ucm机型冷连轧机组的压下规程优化方法
CN104338757B (zh) 一种控制轧机启动轧制阶段轧制力的方法
CN103978043B (zh) 适于双机架四辊平整机组轧制力与张力协调控制方法
CN101477579B (zh) 高强度钢平整机的辊型曲线设计方法
CN104785539B (zh) 一种用于轧制力调节的张力优化补偿的方法
CN104889175B (zh) 一种提高平整稳定性和产品表面质量的张力设定方法
CN109550791A (zh) 一种冷连轧机组以开腔防治为目标的张力制度优化方法
CN104942019A (zh) 一种带钢冷轧过程宽度自动控制方法
CN111014307A (zh) 一种炉卷和精轧机组连轧的轧机速度控制方法
CN103962391A (zh) 一种热连轧机精轧机组的轧制负荷优化方法
CN106269896B (zh) 冷轧单机架可逆轧制控制设备及方法
CN110434172A (zh) 一种炉卷和精轧机组连轧的负荷分配计算方法
CN107234137A (zh) 冷连轧机组升降速过程的乳化液流量控制方法
CN105013835A (zh) 冷连轧机组极薄带轧制中基于热凸度的原始辊缝设定方法
CN104338753A (zh) 一种冷连轧机的动态变规格控制方法
KR101514625B1 (ko) 연속 주조 프로세스에서 제조된 예비 스트립을 연속 오스테나이트 압연하기 위한 방법 및 그러한 방법을 실시하기 위한 조합된 주조 및 압연 설비
CN104923571B (zh) 一种热连轧板带钢轧制规程动态设定方法
CN108838211B (zh) 一种冷连轧过程的乳化液浓度优化方法
CN105868432A (zh) 一种热连轧机工作辊辊型的简便计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant