CN107219283B - 一种光致电化学测定谷胱甘肽的方法 - Google Patents

一种光致电化学测定谷胱甘肽的方法 Download PDF

Info

Publication number
CN107219283B
CN107219283B CN201710446136.9A CN201710446136A CN107219283B CN 107219283 B CN107219283 B CN 107219283B CN 201710446136 A CN201710446136 A CN 201710446136A CN 107219283 B CN107219283 B CN 107219283B
Authority
CN
China
Prior art keywords
nanomos
pani
glutathione
gold electrode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710446136.9A
Other languages
English (en)
Other versions
CN107219283A (zh
Inventor
混旭
王佳平
张跃
王世玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Gaohang Intellectual Property Operation Co ltd
Nanjing Puguang Biotechnology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710446136.9A priority Critical patent/CN107219283B/zh
Publication of CN107219283A publication Critical patent/CN107219283A/zh
Application granted granted Critical
Publication of CN107219283B publication Critical patent/CN107219283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明属于分析化学领域,具体涉及一种光致电化学测定谷胱甘肽的方法。利用液相超声剥离法将本体MoS2超声剥离成nanoMoS2,由化学氧化法聚合苯胺单体得到PANI。然后将PANI与nanoMoS2用共混法混合成纳米复合材料。将纳米复合材料修饰到金电极表面,制备一种新型的光致电化学传感器,实现对谷胱甘肽的高灵敏度检测。方法具有简单、灵敏度高的优势。

Description

一种光致电化学测定谷胱甘肽的方法
技术领域
本发明属于分析化学领域,具体涉及一种光致电化学测定谷胱甘肽的方法。
背景技术
N-(N-L-γ-谷氨酰-L-半胱氨酰)甘氨酸,即谷胱甘肽,是一种非常重要的硫醇化三肽和内源抗氧化剂,广泛存在于细胞内环境中,是机体内重要的活性物质之一。它在人体生理学中起关键作用。例如,异生生物代谢、对氧化应激的保护、内源性毒性代谢物解毒、酶活性以及硫和氮代谢等。然而,异常水平的谷胱甘肽直接与许多疾病相关,包括癌症、阿尔茨海默氏病和心血管疾病。因此谷胱甘肽含量的检测具有重要的化学与生理学意义。目前,已经开发了许多分析方法来检测谷胱甘肽浓度,包括发光分析法[Fruehauf J P,Jr MF.Reactive oxygen species:a breath of life or death[J].Clinical CancerResearch,2007,13(3): 789-794.],荧光测定法[Niu L Y,Guan Y S,Chen Y Z,etal.Bodipy-based ratiometric fluorescent sensor for highly selective detectionof glutathione over cysteine and homocysteine[J].Journal of the AmericanChemical Society,2012, 134(46):18928-18931.],比色法[Durocher S,Rezaee A,HammC,et al.Disulfide- linked,gold nanoparticle based reagent for detecting smallmolecular weight thiols[J]. Journal of the American Chemical Society,2009,131(7):2475-2477.],电化学方法 [Wang Y,Lu J,Tang L,et al.Graphene oxide amplifiedelectrogenerated chemiluminescence of quantum dots and its selective sensingfor glutathione from thiol-containing compounds[J].Analytical Chemistry,2009,81(23):9710-9715. ],核磁共振波谱法[Opstad K S,Provencher S W,B.A.Bell,etal.Detection of elevated glutathione in meningiomas by quantitative in vivo1H MRS[J].Magnetic Resonance in Medicine,2003,49(4):632-637.Mandal P K,Tripathi M,Sugunan S. Brain oxidative stress:detection and mapping of anti-oxidant marker‘glutathione’in different brain regions of healthy male/female,MCI and 1lzheimer patients using non- invasive magnetic resonancespectroscopy[J].Biochemical&Biophysical Research Communications,2012,417(1):43-48.]和表面增强拉曼散射法[Huang G G, Hossain M K,Han X X,et al.A novelreversed reporting agent method for surface- enhanced Raman scattering;highlysensitive detection of glutathione in aqueous solutions[J].The Analyst,2009,134(12):2468-2474.Huang G G,Han X X,Hossain M K,et al.Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detectionof glutathione in aqueous solutions.[J].Analytical Chemistry,2009,81(14):5881-5888.]等。然而,这些方法都具有灵敏度低,选择性差,检测时间长,费力和昂贵,以及临床应用的可靠性差等缺点。因此,开发新型便捷的检测方法是科研工作者的目标之一。鉴于现有技术的不足,本发明基于聚苯胺和纳米二硫化钼纳米复合材料开发了一种新型的光致电化学传感器用于谷胱甘肽的高灵敏度检测,方法具有灵敏度高、选择性好、操作简单的特点。
发明内容
本发明旨在发明一种方法简单、灵敏度高的测定谷胱甘肽的方法。
鉴于现有技术的不足,本发明的目的在于提供一种光致电化学测定谷胱甘肽的方法。
实现本发明目的技术方案是:
一种光致电化学测定谷胱甘肽的方法。其原理是利用聚苯胺和nanoMoS2复合材料修饰金电极,研制了一种新型的光致电化学传感器,用于谷胱甘肽的传感检测。首先,利用液相超声剥离法将本体MoS2超声剥离成nanoMoS2,由化学氧化法聚合苯胺单体得到PANI。然后将PANI与nanoMoS2用共混法混合成纳米复合材料。将纳米复合材料修饰到金电极表面,制备一种新型的光致电化学传感器,实现对谷胱甘肽的高灵敏度检测。
本发明是通过以下措施来实现的:一种光致电化学测定谷胱甘肽的方法,其特征是包括以下步骤:
(1)PANI与nanoMoS2的制备;
(2)修饰电极的制备;
(3)光致电化学检测;
优选的,所述的PANI与nanoMoS2的制备包括以下步骤:
称取0.0500g本体MoS2分散于DMF中,搅拌10min,超声波震荡0.2到 12个小时将本体MoS2进行剥离,形成浓度为0.1mg/mL~10.0mg/mL的MoS2悬浊液,得到nanoMoS2,放置于4℃冰箱内保存备用。
苯胺使用前,通过减压蒸馏除去杂质纯化苯胺本体。量取12.3mL苯胺本体,置于含10mL~100mL 1mol/L HCl溶液的三口烧瓶中。在冰浴条件下搅拌 0.2h~2h。同时,量取5.7050g的过硫酸铵置于含10mL~100mL三次蒸馏水中的烧杯中,冰浴1h。然后将引发剂过硫酸铵溶液缓慢滴加入到苯胺溶液中,继续搅拌混合液1h,控制反应温度在4℃。反应结束后得到鲜绿色的聚苯胺沉淀,过滤收集。用HCl洗涤沉淀。将洗涤后的沉淀置于干燥箱中干燥。将得到的聚苯胺研磨成粉末,收集起来放置在4℃冰箱内保存备用。
优选的,所述的修饰电极的制备包括以下步骤:
金电极的预准备:金电极经粒径为1.0μm、0.3μm、0.05μm的α-Al2O3抛光粉抛光后,用三次蒸馏水冲洗干净,经乙醇,三次蒸馏水分别超声清洗3-5 min,高纯氮气吹干备用。
NanoMoS2修饰金电极的制备:取2μL~50μL nanoMoS2悬浊液滴加到经α- Al2O3抛光粉抛光后的金电极表面,在室温条件下自然干燥并过夜,得到 nanoMoS2/GE。
PANI修饰金电极的制备:用三次蒸馏水将PANI配成0.1mg/mL~4mg/mL 的分散液,超声半小时,得到悬浊液。然后,取2μL~50μL滴加到金电极表面上,在室温条件下自然干燥并过夜,得到PANI/GE。
PANI/nanoMoS2纳米复合材料修饰金电极的制备:将nanoMoS2与PANI按一定比例混合,分散在三次蒸馏水中,超声半小时得到悬浊液,然后取2μL ~50μL的悬浊液滴加到金电极表面,在室温条件下自然干燥并过夜,得到 nanoMoS2/PANI/GE。
光致电化学检测包括以下步骤:
开启电化学工作站,50S后打开LED灯,每10s自动控制开关一次LED 灯,偏压设置为-0.1-0.5V。采用三电极体系,将GE、nanoMoS2/GE、 PANI/GE、PANI/nanoMoS2/CPE等工作电极插入含有谷胱甘肽的PBS溶液中,以光致电化学方法为检测手段,实现对谷胱甘肽的高灵敏度检测。
发明的优点与效果
当谷胱甘肽的浓度0.1nmoL/L到100μmoL/L之间时,随着谷胱甘肽浓度的变化,光致电化学信号有明显变化。其光致电化学信号与谷胱甘肽浓度的对数成良好的线性关系:ΔI/μA=0.1676log(C/M)+1.9628,其中相关系数R2= 0.9982,ΔI=I–I0,I和I0是PANI/nanoMoS2/GE工作电极在含谷胱甘肽和不含谷胱甘肽的光致电化学信号。实验检出限为3.1×10-11mol/L。对该方法的重现性进行了评价研究,通过用10根不同的PANI/nanoMoS2/GEs对浓度为2.0× 10-8mol/L谷胱甘肽检测,10次测量结果的相对标准偏差(RSD)在3.2%,表明本发明的测定方法有较好的重现性。
附图说明
图1PANI/nanoMoS2纳米复合材料的制备示意图及其对谷胱甘肽的光致电化学检测。
图2不同工作电极的光致电化学信号图。A图为光致电化学信号曲线图;B 图为光致电化学信号柱状图。a,GE;b,PANI/GE;c,nanoMoS2/GE;d, PANI/nanoMoS2/GE。
图3谷胱甘肽的浓度与光致电化学信号关系图。A图为光致电化学信号曲线图;B图为光致电化学信号与浓度线性关系。从a到h谷胱甘肽浓度依次为0 M,0.1nM,1nM,10nM,100nM,1μM,10μM,100μM。
具体实施方式
下面的实例将进一步说明本发明的操作方法,但不构成对发明的进一步限制。
实例1:一种光致电化学测定谷胱甘肽的方法
1.实验部分
1.1 仪器与试剂
1.1.1 仪器设备
将自制的光源系统与电化学工作站CHI-830D联用(上海辰华仪器有限公司)作为PEC检测系统;采用三电极系统进行测试,参比电极是232型饱和甘汞电极(SCE),辅助电极是213型铂丝电极(上海雷磁仪器厂)。电子天平 (FA1004N型,上海精密科学仪器有限公司);高速离心机(Anke-TGL-16C 飞翁牌,上海市安亭科学仪器厂);超声波清洗器(KQ-50E型,500W,昆山市超声仪器有限公司)。
1.1.2 试剂
本体MoS2(天津巴斯夫化工有限公司);苯胺(国药集团化学试剂有限公司);N,N-二甲基甲酰胺(DMF,天津富宇精细化工有限公司);浓盐酸(天津迪博化工股份有限公司);过硫酸铵(天津广成化学试剂有限公司);氨水 (天津市大茂化工试剂厂);谷胱甘肽(国药集团化学试剂有限公司);十二水合磷酸氢二钠(天津迪博化工股份有限公司);二水合磷酸二氢钠(天津市鼎盛鑫化工有限公司);实验室所用试剂均为分析纯,实验用水为三次蒸馏水。0.1mol/L磷酸盐缓冲溶液(PBS)由0.2mol/L十二水合磷酸氢二钠和0.2 mol/L二水合磷酸二氢钠按比例配制,其中含有0.1mol/L氯化钾。将谷胱甘肽溶解于0.1mol/L的PBS溶液中配制成谷胱甘肽的标准液。
1.2 PANI与nanoMoS2的制备
称取0.0500g本体MoS2分散于20mL DMF中,搅拌10min,超声波震荡 4个小时将本体MoS2进行剥离,形成浓度为2.5mg/mL的MoS2悬浊液。得到 nanoMoS2。放置于4℃冰箱内保存备用。
苯胺使用前,首先通过减压蒸馏除去被氧化的杂质纯化苯胺本体。量取12.2826mL苯胺本体,置于50mL 1mol/L的HCL溶液的三口烧瓶中。在冰浴条件下搅拌1h。同时,量取5.705g的过硫酸铵(APS)置于50mL三次蒸馏水中,冰浴1h。然后将引发剂过硫酸铵溶液缓慢滴加入到苯胺溶液中,继续搅拌混合液1h,控制反应温度在4℃。反应结束后得到鲜绿色的聚苯胺沉淀,过滤收集。用1mol/L的HCL洗涤沉淀。将洗涤后的沉淀置于干燥箱中干燥。将得到的聚苯胺研磨成粉末,收集起来放置在4℃冰箱内保存备用。
1.3 修饰电极的制备
金电极的预准备:金电极(GE)经粒径为1.0μm、0.3μm、0.05μm的α- Al2O3抛光粉抛光后,用三次蒸馏水冲洗干净,经乙醇,三次蒸馏水分别超声清洗3-5min,高纯氮气吹干备用。
NanoMoS2修饰的金电极(nanoMoS2/GE)的制备:取10μL悬浊液滴加到经α-Al2O3抛光粉抛光后的金电极表面,在室温条件下自然干燥并过夜,得到 nanoMoS2/GE。
PANI修饰的金电极(PANI/GE)的制备:用三次蒸馏水将PANI配成0.4 mg/mL的分散液,超声半小时,得到悬浊液。然后,取10μL滴加到金电极表面上,在室温条件下自然干燥并过夜,得到PANI/GE。
PANI/nanoMoS2纳米复合材料修饰的金电极(PANI/nanoMoS2/GE)的制备:将nanoMoS2与PANI按一定比例混合,分散在三次蒸馏水中,超声半小时得到悬浊液,然后取10μL的悬浊液滴加到金电极表面,在室温条件下自然干燥并过夜,得到nanoMoS2/PANI/GE。
1.4 光致电化学检测
开启电化学工作站,50S后打开LED灯,每10s自动控制开关一次LED 灯,偏压设置为-0.1-0.5V(vs-SCE)。采用三电极体系,将GE、 nanoMoS2/GE、PANI/GE、PANI/nanoMoS2/CPE等工作电极插入含有谷胱甘肽的PBS溶液中,以光致电化学方法为检测手段,实现对谷胱甘肽的高灵敏度检测。
实例2:不同工作电极的光致电化学信号比较
将GE、nanoMoS2/GE、PANI/GE、PANI/nanoMoS2/CPE等工作电极插入含有1μM的谷胱甘肽的PBS溶液中,进行光致电化学测定,发现GE、 nanoMoS2/GE、PANI/GE、PANI/nanoMoS2/CPE对应信号分别为46nA、412 nA、198nA、716nA(图2),说明PANI/nanoMoS2/CPE测定谷胱甘肽的光致电化学具有高的信号响应。
实例3:样品测定
将含谷胱甘肽的样品溶液进行光致电化学测定,根据光致电化学信号和上述所得标准曲线可以获取谷胱甘肽的含量。根据发明的方法对血液中谷胱甘肽含量进行了测定,并采用标准加入法对方法进行了评价,测定结果如表1所示,样品测定回收率为99.5-102.7%,本发明的方法在谷胱甘肽检测中具有精密度高的特点。
表1.样品分析测定结果
编号 含量<sup>a,b</sup> 加入量 总量 回收率
1 12.29 10.00 22.45 101.6%
2 13.50 10.00 23.77 102.7%
3 14.01 10.00 23.96 99.5%
a 7次测量结果
b单位:nM。

Claims (4)

1.一种光致电化学测定谷胱甘肽的方法,利用聚苯胺和nanoMoS2复合材料修饰金电极,研制了一种新型的光致电化学传感器,用于谷胱甘肽的传感检测;首先,利用液相超声剥离法将本体MoS2超声剥离成nanoMoS2,由化学氧化法聚合苯胺单体得到PANI,然后将PANI与nanoMoS2用共混法混合成纳米复合材料,将纳米复合材料修饰到金电极表面,制备一种新型的光致电化学传感器用于谷胱甘肽的测定,实现对谷胱甘肽的高灵敏度检测,其特征是包括以下步骤:
(1)PANI与nanoMoS2的制备;
(2)修饰电极的制备;
(3)光致电化学检测。
2.一种如权利要求1所述的光致电化学测定谷胱甘肽的方法,PANI与nanoMoS2的制备包括以下步骤:
称取0.0500g本体MoS2分散于DMF中,搅拌10min,超声波震荡0.2到12个小时将本体MoS2进行剥离,形成浓度为0.1mg/mL~10.0mg/mL的MoS2悬浊液,得到nanoMoS2,放置于4℃冰箱内保存备用;
苯胺使用前,通过减压蒸馏除去杂质纯化苯胺本体;量取12.3mL苯胺本体,置于含10mL~100mL 1mol/L HCl溶液的三口烧瓶中;在冰浴条件下搅拌0.2h~2h;同时,量取5.7050g的过硫酸铵置于含10mL~100mL三次蒸馏水中的烧杯中,冰浴1h;然后将引发剂过硫酸铵溶液缓慢滴加入到苯胺溶液中,继续搅拌混合液1h,控制反应温度在4℃;反应结束后得到鲜绿色的聚苯胺沉淀,过滤收集;用HCl洗涤沉淀,将洗涤后的沉淀置于干燥箱中干燥;将得到的聚苯胺研磨成粉末,收集起来放置在4℃冰箱内保存备用。
3.一种如权利要求1所述的光致电化学测定谷胱甘肽的方法,修饰电极的制备包括以下步骤:
金电极的预准备:金电极经粒径为1.0μm、0.3μm、0.05μm的α-Al2O3抛光粉抛光后,用三次蒸馏水冲洗干净,经乙醇,三次蒸馏水分别超声清洗3-5min,高纯氮气吹干备用;
NanoMoS2修饰金电极的制备:取2μL~50μL nanoMoS2悬浊液滴加到经α-Al2O3抛光粉抛光后的金电极表面,在室温条件下自然干燥并过夜,得到nanoMoS2/GE;
PANI修饰金电极的制备:用三次蒸馏水将PANI配成0.1mg/mL~4mg/mL的分散液,超声半小时,得到悬浊液;然后,取2μL~50μL滴加到金电极表面上,在室温条件下自然干燥并过夜,得到PANI/GE;
PANI/nanoMoS2纳米复合材料修饰金电极的制备:将nanoMoS2与PANI按一定比例混合,分散在三次蒸馏水中,超声半小时得到悬浊液,然后取2μL~50μL的悬浊液滴加到金电极表面,在室温条件下自然干燥并过夜,得到nanoMoS2/PANI/GE。
4.一种如权利要求1所述的光致电化学测定谷胱甘肽的方法,光致电化学检测包括以下步骤:
开启电化学工作站,50S后打开LED灯,每10s自动控制开关一次LED灯,偏压设置为-0.1-0.5V;采用三电极体系,将GE、nanoMoS2/GE、PANI/GE、PANI/nanoMoS2/CPE工作电极插入含有谷胱甘肽的PBS溶液中,以光致电化学方法为检测手段,实现对谷胱甘肽的高灵敏度检测。
CN201710446136.9A 2017-06-14 2017-06-14 一种光致电化学测定谷胱甘肽的方法 Active CN107219283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710446136.9A CN107219283B (zh) 2017-06-14 2017-06-14 一种光致电化学测定谷胱甘肽的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710446136.9A CN107219283B (zh) 2017-06-14 2017-06-14 一种光致电化学测定谷胱甘肽的方法

Publications (2)

Publication Number Publication Date
CN107219283A CN107219283A (zh) 2017-09-29
CN107219283B true CN107219283B (zh) 2019-05-28

Family

ID=59948744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710446136.9A Active CN107219283B (zh) 2017-06-14 2017-06-14 一种光致电化学测定谷胱甘肽的方法

Country Status (1)

Country Link
CN (1) CN107219283B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760844B (zh) * 2018-08-30 2020-09-01 混隽雅 一种检测谷胱甘肽的光致电化学传感器制备方法
CN111426736B (zh) * 2020-05-27 2022-09-09 青岛科技大学 一种CoAl-LDH/PANI修饰电极的制备方法
CN112858441B (zh) * 2021-03-11 2022-03-08 中南大学 一种水体中铅离子浓度的光电化学检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364464A (zh) * 2013-07-31 2013-10-23 盐城工学院 一种用于还原型谷胱甘肽检测的光电化学传感器的构建方法
CN104466105A (zh) * 2014-11-12 2015-03-25 中国科学院深圳先进技术研究院 二硫化钼/聚苯胺复合材料、制备方法及锂离子电池
CN105999267A (zh) * 2016-07-05 2016-10-12 天津大学 二硫化钼纳米点/聚苯胺纳米杂化物及制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364464A (zh) * 2013-07-31 2013-10-23 盐城工学院 一种用于还原型谷胱甘肽检测的光电化学传感器的构建方法
CN104466105A (zh) * 2014-11-12 2015-03-25 中国科学院深圳先进技术研究院 二硫化钼/聚苯胺复合材料、制备方法及锂离子电池
CN105999267A (zh) * 2016-07-05 2016-10-12 天津大学 二硫化钼纳米点/聚苯胺纳米杂化物及制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication of glutathione photoelectrochemical biosensor using graphene–CdS nanocomposites;Xiaomei Zhao等;《The Royal Society of Chemistry》;20120613;第137卷;摘要和第3698页右栏 Instrument部分
Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material;Sajid Ali Ansari等;《Journal of Colloid and Interface Science》;20170520;第504卷;第2.4节、第3.3节和附图1、4

Also Published As

Publication number Publication date
CN107219283A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
Dong et al. Enzymatic hydrogelation-induced fluorescence turn-off for sensing alkaline phosphatase in vitro and in living cells
Huang et al. Fluorescence turn-on sensing of ascorbic acid and alkaline phosphatase activity based on graphene quantum dots
Wang et al. A highly selective turn-on near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells
CN106970061B (zh) 碳点/铜纳米簇复合物比率荧光多巴胺探针的制备方法
Hu et al. Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols
CN105524612B (zh) 一种异佛尔酮类荧光探针及其制备与应用
CN107219283B (zh) 一种光致电化学测定谷胱甘肽的方法
Yang et al. A facile fluorescence assay for rapid and sensitive detection of uric acid based on carbon dots and MnO 2 nanosheets
CN105693703B (zh) 一种用于细胞内溶酶体pH成像的新型比率型荧光探针
Lu et al. Colorimetric and fluorescent dual-mode sensing of alkaline phosphatase activity in L-02 cells and its application in living cell imaging based on in-situ growth of silver nanoparticles on graphene quantum dots
Liu et al. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis
Wu et al. Nitrogen-doped carbon nanodots prepared from polyethylenimine for fluorometric determination of salivary uric acid
Chen et al. Photoelectrochemical biosensor for histone acetyltransferase detection based on ZnO quantum dots inhibited photoactivity of BiOI nanoflower
Liu et al. Imaging of living cells and zebrafish in vivo using a ratiometric fluorescent probe for hydrogen sulfide
Tang et al. A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper (II)-coupled lanthanide complexes
Yue et al. Research on mitochondrial oxidative stress accompanying the diabetic process under airborne particulate matter pollution by NIR fluorescence imaging of cysteine
CN105606681B (zh) 一种基于金铜-多壁碳纳米管-二氧化锰构建的生物传感器的制备方法及应用
CN107703112A (zh) 基于碳量子点猝灭的荧光标记dna的比例性荧光方法检测肝素钠
CN107936035A (zh) 一种半胱氨酸改性的石墨烯量子点gqcy及制备方法与制备多巴胺荧光检测试剂上的应用
CN104698164A (zh) 一种电化学发光免疫分析仪用缓冲液及其制备方法
CN107271502B (zh) 一种光致电化学传感器及测定dna的方法
Long et al. On-site discrimination of biothiols in biological fluids by a novel fluorescent probe and a portable fluorescence detection device
CN104267013A (zh) 一种利用石墨烯量子点荧光探针检测重铬酸钾和抗坏血酸的方法
Tan et al. A MnO 2 nanosheets–o-phenylenediamine oxidative system for the sensitive fluorescence determination of alkaline phosphatase activity
CN105372220A (zh) 二维石墨炔材料用于生物标志物荧光检测的非诊断目的的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221222

Address after: 510000 2414-2416 of the main building 371, five mountain road, Tianhe District, Guangzhou, Guangdong.

Patentee after: GUANGDONG GAOHANG INTELLECTUAL PROPERTY OPERATION Co.,Ltd.

Address before: 266000 Qingdao University of Science & Technology, 53 Zhengzhou Road, Shibei District, Qingdao, Shandong

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

Effective date of registration: 20221222

Address after: 210000 south side of floor 2, building A02, accelerator phase III, No. 142, Huakang Road, Jiangbei new area, Nanjing, Jiangsu Province

Patentee after: Nanjing Puguang Biotechnology Co.,Ltd.

Address before: 510000 2414-2416 of the main building 371, five mountain road, Tianhe District, Guangzhou, Guangdong.

Patentee before: GUANGDONG GAOHANG INTELLECTUAL PROPERTY OPERATION Co.,Ltd.