CN107214946A - 一种复频电流体动力学打印装置及其打印方法 - Google Patents

一种复频电流体动力学打印装置及其打印方法 Download PDF

Info

Publication number
CN107214946A
CN107214946A CN201710559208.0A CN201710559208A CN107214946A CN 107214946 A CN107214946 A CN 107214946A CN 201710559208 A CN201710559208 A CN 201710559208A CN 107214946 A CN107214946 A CN 107214946A
Authority
CN
China
Prior art keywords
multifrequency
electric field
voltage
frequency
electrohydrodynamics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710559208.0A
Other languages
English (en)
Other versions
CN107214946B (zh
Inventor
于影
左雨欣
左春柽
曹倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN201710559208.0A priority Critical patent/CN107214946B/zh
Publication of CN107214946A publication Critical patent/CN107214946A/zh
Application granted granted Critical
Publication of CN107214946B publication Critical patent/CN107214946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

一种复频电流体动力学打印装置及其打印方法。主要解决现有聚合物金属纳米颗粒复合材料在现有加工方法中存在操作复杂且参数难于控制、在电流体动力学加工方法中电压施加难以控制等问题。其特征在于:所述直流电场、高频交流电场、中频交流电场共同形成复频电压;所述复频电压为v,v=v0+v1(sinω1t)+v2(sinω2t+φ)。其优点在于复频电压可使绝缘性能下降的聚合物纳米颗粒复合材料在电流体动力学打印过程中不会因超高电压的施加而产生电击穿,又可保证超高电压条件下打印液滴表面电荷密度增加不致产生电晕放电现象。

Description

一种复频电流体动力学打印装置及其打印方法
技术领域
本发明涉及一种3D打印技术领域,具体涉及一种复频电流体动力学打印装置及其打印方法。
背景技术
聚合物金属纳米颗粒复合材料的3D打印是目前增材制造研究中新的研究方向和重点发展领域之一。聚合物金属纳米颗粒复合材料由于添加了金属而改变了聚合物的物理化学性质并产生不同于聚合物基体和金属纳米颗粒本身的新特征,通过3D打印可产生特殊微纳结构且具有多种新功能(磁性、介电、压电、光电等超功能),其应用领域十分广泛,从超材料、量子隧道效应、柔性传感器到各种纳米功能器件等领域都有应用前景。
聚合物金属纳米复合材料制备的主要方法有溶液涂膜、高能球磨法、离子溅射法或溶剂浇铸成型等。此外,兰缪尔-布洛吉特沉积法、电沉积以及逐层沉积法等也被用于聚合物纳米颗粒复合薄膜的制备。但是,上述技术几乎都采用水作为溶剂,并且兰缪尔-布洛吉特分子必须具有两亲性,即需要具有亲水基团和疏水基团使分子在空间上呈现彼此分离的两个部分,这一要求大大限制了该技术的适用范围。电沉积是一种用于聚合物与金属纳米颗粒复合材料的功能表面制备的有效方法,通常需要三电极液态环境且在稳定的电流或稳定的电压下进行,但操作复杂且参数难于控制。逐层沉积技术基于带相反电荷的粒子之间的静电吸引作用,逐层沉积技术提供了一种简单通用且有效的方法用于制成多种纳米结构。
在逐层加工的方法中,电流体动力学打印是一种快速有效且精度可控的方法。电流体动力学打印是一种新型的3D打印方法,属于纳米材料溶液打印,被认为是3D打印中可以实现纳米尺度打印的一种,被用于聚合物金属银纳米粒子复合材料的打印制造太赫兹超材料展示了诱人的前景。电流体动力学打印不需要特定的液态环境,对环境温度要求较低且能够按需逐层打印,能有效控制沉积层的厚度及结构,相比于上述的其它聚合物纳米粒子复合材料制造方法有明显的优势。但这种溶液打印,金属纳米颗粒的浓度不能太高,达到实用的纳米颗粒浓度要求进一步增加工作电压。因为金属纳米颗粒的增加会使溶液粘度和表面张力增加,则必须增加外电场强度,但此举可导致打印液滴表面电荷密度增加,而产生电晕放电;同时,与只有聚合物溶液相比,增加金属纳米粒子后,复合材料的介电特性改变,绝缘性能下降导致高电压容易产生电击穿。这样,存在一方面要求电压增加而另一方面要求电压减小的矛盾。因此,迫切需要一种新的电压控制方法解决电流体动力学打印过程中出现的这一矛盾。
基于这一问题,本发明提出一种复频电流体动力学打印方法,解决电流体动力学打印聚合物金属纳米颗粒复合材料的电压控制技术壁垒。本发明在3D打印和微纳制造等领域具有普遍应用前景,将为柔性传感器、超材料的3D打印制备等提供一种新的方法。
发明内容
为了克服背景技术的不足,本发明提供一种复频电流体动力学打印装置及其打印方法,解决现有聚合物金属纳米颗粒复合材料在现有加工方法中存在操作复杂且参数难于控制、在电流体动力学加工方法中电压施加难以控制等问题。
本发明所采用的技术方案:一种复频电流体动力学打印装置,包括直流电源、高频变压器、中频变压器、喷头、导电阳极、环形辅助电极、平板电极;所述喷头接触连接导电阳极,所述环形辅助电极设置在喷头下方,所述平板电极设置在环形辅助电极下方,所述环形辅助电极、平板电极共同接地;所述直流电源连接导电阳极、平板电极形成直流电场,所述高频变压器连接导电阳极、环形辅助电极形成高频交流电场,所述中频变压器连接导电阳极、平板电极形成中频交流电场。
所述直流电场、高频交流电场、中频交流电场共同形成复频电压所述复频电压为v,v=v0+v1(sinω1t)+ v2 (sinω2t+φ);
v0为直流电源电压,其中,0.9KV≤v0≤20KV;
v1(sinω1t)为高频交流电场所施加的电压,v1为高频变压器输出的额定电压,ω1为角频率,t为持续时间,其中0.9KV≤v1≤20KV,6283rad/s(1000HZ)≤ω1≤12566rad/s(2000HZ);
v2 (sinω2t+φ) 为中频交流电场所施加的电压,v2为中频变压器输出的额定电压,ω2为角频率,t为持续时间,其中,0.9KV≤v2≤20KV,817rad/s(130HZ)≤ω2≤3142rad/s(500HZ),0≤φ≤π。
所述喷头的内径为0.5-5.5mm,长为3-5cm。
所述环形辅助电极距离喷头的距离为0.3-2cm。
所述平板电极距离喷头的距离为0.8-3cm。
一种上述复频电流体动力学打印装置的打印方法,包括如下步骤:
步骤1:采用高能球磨法制备金属纳米颗粒,并将其分散到聚合物溶剂中,超声分散制备聚合物金属纳米颗粒复合材料溶液;
步骤2:将制备完成的聚合物金属纳米颗粒复合材料溶液通过3D打印机供料系统输送至喷头;
步骤3:直流电场、高频交流电场、中频交流电场共同施加电压形成复频电压v;
步骤4:在高强电场作用下,聚合物金属纳米颗粒复合材料溶液在喷嘴下方形成电流体动力学打印液滴,并可通过高速摄像机观察到液滴运动轨迹和形态变化。
本发明的有益效果是:采用以上方案,施加复频电压可使绝缘性能下降的聚合物纳米颗粒复合材料在电流体动力学打印过程中不会因超高电压的施加而产生电击穿,又可保证超高电压条件下打印液滴表面电荷密度增加不致产生电晕放电现象,可为超材料、柔性传感器及各种纳米功能器件3D打印领域前沿科学研究提供强有力的技术支持。
附图说明
图1为本发明实施例复频电流体动力学打印装置的结构示意图。
图2为本发明实施例复频电压施加示意图。
图中1-直流电源,2-高频变压器,3-中频变压器,4-喷头,5-导电阳极,6-环形辅助电极,7-平板电极,8-喷出的滴液。
具体实施方式
下面结合附图进一步说明本发明的详细内容及其具体实施方式,并以湿度传感器所需聚合物金属复合材料为例。
如图1所示,一种复频电流体动力学打印装置,包括直流电源1、高频变压器2、中频变压器3、喷头4、导电阳极5、环形辅助电极6、平板电极7;所述喷头4接触连接导电阳极5,所述环形辅助电极6设置在喷头4下方,所述平板电极7设置在环形辅助电极6下方,所述环形辅助电极6、平板电极7共同接地;所述直流电源1连接导电阳极5、平板电极7形成直流电场,所述高频变压器2连接导电阳极5、环形辅助电极6形成高频交流电场,所述中频变压器3连接导电阳极5、平板电极7形成中频交流电场;所述直流电场、高频交流电场、中频交流电场共同形成复频电压。
复频电压可使绝缘性能下降的聚合物纳米颗粒复合材料在电流体动力学打印过程中不会因超高电压的施加而产生电击穿,又可保证超高电压条件下打印液滴表面电荷密度增加不致产生电晕放电现象,可为超材料、柔性传感器及各种纳米功能器件3D打印领域前沿科学研究提供强有力的技术支持。
其打印方法包括如下步骤:
步骤1:采用高能球磨法制备粒径为21nm的银纳米颗粒,并将其分散到快速固化聚合物聚乙烯醇PVA(分子量98000g mol-1)溶液中,形成聚合物金属纳米颗粒复合材料溶液;
步骤2:将制备完成的聚乙烯醇银纳米颗粒复合材料溶液通过复频电流体动力学打印装置的供料系统输送至喷头,所述喷头长为2.5cm,直径为0.75mm,所述环形辅助电极距离喷头的距离为1cm,所述平板电极距离喷头的距离为3cm;
步骤3:直流电场、高频交流电场、中频交流电场共同施加电压形成复频电压v,v=v0+v1(sinω1t)+v2(sinω2t+φ),v0为直流电源电压,v1(sinω1t)为高频交流电场所施加的电压,v2(sinω2t+φ) 为中频交流电场所施加的电压,v1为高频变压器输出的额定电压,ω1为高频变压器的角频率,v2为中频变压器输出的额定电压,ω2为中频变压器的角频率,t为持续时间,其复频电压施加方式如图2所示,其中v0=4.5KV,v1=9.5KV,v2=11.5KV,ω1=7538rad/s(1200HZ),ω2=1884rad/s(300HZ),φ=0;
步骤4:在高强电场作用下,聚乙烯醇银纳米颗粒复合材料溶液在喷嘴下方形成电流体动力学打印液滴,并可通过高速摄像机观察,在275μs时,可形成电流体动力学射流。
当然,根据不同的聚合物金属复合材料,v0 、v1 、v2、ω1、ω2、φ的值对应不同的值。
其中0.9KV≤v0≤20KV ,0.9KV≤v1≤20KV,6283rad/s(1000HZ)≤ω1≤12566rad/s(2000HZ);0.9KV≤v2≤20KV,817rad/s(130HZ)≤ω2≤3142rad/s(500HZ),0≤φ≤π。
实施例不应视为对发明的限制,但任何基于本发明的精神所作的改进,都应在本发明的保护范围之内。

Claims (5)

1.一种复频电流体动力学打印装置,其特征在于:包括直流电源(1)、高频变压器(2)、中频变压器(3)、喷头(4)、导电阳极(5)、环形辅助电极(6)、平板电极(7);
所述喷头(4)接触连接导电阳极(5),所述环形辅助电极(6)设置在喷头(4)下方,所述平板电极(7)设置在环形辅助电极(6)下方,所述环形辅助电极(6)、平板电极(7)共同接地;
所述直流电源(1)连接导电阳极(5)、平板电极(7)形成直流电场,所述高频变压器(2)连接导电阳极(5)、环形辅助电极(6)形成高频交流电场,所述中频变压器(3)连接导电阳极(5)、平板电极(7)形成中频交流电场;所述直流电场、高频交流电场、中频交流电场共同形成复频电压;
所述复频电压为v,v=v0+v1(sinω1t)+ v2 (sinω2t+φ);
v0为直流电源电压,其中,0.9KV≤v0≤20KV;
v1(sinω1t)为高频交流电场所施加的电压,v1为高频变压器输出的额定电压,ω1为角频率,t为持续时间,其中0.9KV≤v1≤20KV,6283rad/s(1000HZ)≤ω1≤12566rad/s(2000HZ);
v2 (sinω2t+φ) 为中频交流电场所施加的电压,v2为中频变压器输出的额定电压,ω2为角频率,t为持续时间,其中,0.9KV≤v2≤20KV,817rad/s(130HZ)≤ω2≤3142rad/s(500HZ),0≤φ≤π。
2.根据权利要求1所述的复频电流体动力学打印装置,其特征在于:所述喷头(4)的内径为0.5-5.5mm,长为3-5cm。
3.根据权利要求1所述的复频电流体动力学打印装置,其特征在于:所述环形辅助电极(6)距离喷头(4)的距离为0.3-2cm。
4.根据权利要求1所述的复频电流体动力学打印装置,其特征在于:所述平板电极(7)距离喷头(4)的距离为0.8-3cm。
5.一种基于权利要求1所述复频电流体动力学打印装置的打印方法,其特征在于,包括如下步骤:
步骤1:采用高能球磨法制备金属纳米颗粒,并将其分散到聚合物溶剂中,超声分散制备聚合物金属纳米颗粒复合材料溶液;
步骤2:将制备完成的聚合物金属纳米颗粒复合材料溶液通过3D打印机供料系统输送至喷头;
步骤3:直流电场、高频交流电场、中频交流电场共同施加电压形成复频电压;
步骤4:在高强电场作用下,聚合物金属纳米颗粒复合材料溶液在喷嘴下方形成电流体动力学打印液滴,并可通过高速摄像机观察到液滴运动轨迹和形态变化。
CN201710559208.0A 2017-07-11 2017-07-11 一种复频电流体动力学打印装置及其打印方法 Active CN107214946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710559208.0A CN107214946B (zh) 2017-07-11 2017-07-11 一种复频电流体动力学打印装置及其打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710559208.0A CN107214946B (zh) 2017-07-11 2017-07-11 一种复频电流体动力学打印装置及其打印方法

Publications (2)

Publication Number Publication Date
CN107214946A true CN107214946A (zh) 2017-09-29
CN107214946B CN107214946B (zh) 2019-04-05

Family

ID=59953393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710559208.0A Active CN107214946B (zh) 2017-07-11 2017-07-11 一种复频电流体动力学打印装置及其打印方法

Country Status (1)

Country Link
CN (1) CN107214946B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108790405A (zh) * 2018-04-19 2018-11-13 华中科技大学 一种能够消除墨滴电荷的电流体动力打印喷头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024336A (zh) * 2005-08-12 2007-08-29 三星电子株式会社 利用电荷浓度效应在基底上印刷生物分子滴的方法和装置
US20140158399A1 (en) * 2012-12-11 2014-06-12 Kurt Ulmer Electrohydrodynamic (EHD) Printing for the Defect Repair of Contact Printed Circuits
CN104723677A (zh) * 2015-02-14 2015-06-24 广东工业大学 基于电液耦合动力的柔性电路印刷方法及其装置
KR20150142868A (ko) * 2014-06-12 2015-12-23 인하대학교 산학협력단 정전기력 펌프를 이용한 3차원 인쇄장치 및 방법
CN105772722A (zh) * 2016-03-11 2016-07-20 嘉兴学院 一种控制电流体动力学打印分辨率的控制装置及设备与方法
CN106183446A (zh) * 2016-08-23 2016-12-07 嘉兴学院 一种曲面基板的电流体动力学打印设备及其控制方法
CN106739506A (zh) * 2016-12-12 2017-05-31 华中科技大学 一种用于电流体喷印的压电式集成喷头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024336A (zh) * 2005-08-12 2007-08-29 三星电子株式会社 利用电荷浓度效应在基底上印刷生物分子滴的方法和装置
US20140158399A1 (en) * 2012-12-11 2014-06-12 Kurt Ulmer Electrohydrodynamic (EHD) Printing for the Defect Repair of Contact Printed Circuits
KR20150142868A (ko) * 2014-06-12 2015-12-23 인하대학교 산학협력단 정전기력 펌프를 이용한 3차원 인쇄장치 및 방법
CN104723677A (zh) * 2015-02-14 2015-06-24 广东工业大学 基于电液耦合动力的柔性电路印刷方法及其装置
CN105772722A (zh) * 2016-03-11 2016-07-20 嘉兴学院 一种控制电流体动力学打印分辨率的控制装置及设备与方法
CN106183446A (zh) * 2016-08-23 2016-12-07 嘉兴学院 一种曲面基板的电流体动力学打印设备及其控制方法
CN106739506A (zh) * 2016-12-12 2017-05-31 华中科技大学 一种用于电流体喷印的压电式集成喷头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108790405A (zh) * 2018-04-19 2018-11-13 华中科技大学 一种能够消除墨滴电荷的电流体动力打印喷头
CN108790405B (zh) * 2018-04-19 2019-07-09 华中科技大学 一种能够消除墨滴电荷的电流体动力打印喷头

Also Published As

Publication number Publication date
CN107214946B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US8616931B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
US8401430B2 (en) Electron emitting element for accelerating and emitting electrons, and use of electron emitting element
US10355314B2 (en) Electrostatic energy storage device and preparation method thereof
US10299374B2 (en) Flexible electronic substrate
TW200305187A (en) Fed cathode structure using electrophoretic deposition and method of fabrication
JP4880740B2 (ja) 電子放出素子及びその製造方法、並びに、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置
CN107214946B (zh) 一种复频电流体动力学打印装置及其打印方法
CN112143289B (zh) 多孔碳化铌MXene/还原氧化石墨烯基导电油墨及其制备方法
JP2009024294A (ja) エレクトロデポジション装置、材料適用基材の製造方法及びそれから製造される材料適用基材
CN108891108B (zh) 一种高驱动应变的电致驱动弹性体及其制备方法
JP6485628B2 (ja) 成膜方法及び成膜装置
WO2020057168A1 (zh) 一种介电弹性体驱动器及其制备方法、换能器
US20230087700A1 (en) Printable ionogel inks and forming methods and applications of same
CN104616727A (zh) 一种以银为内芯的纳米电缆透明导电薄膜及其制备方法
CN106793436A (zh) 一种增强大气压放电等离子体强度的镍‑氧化镍‑氧化镁复合阴极、制备方法及其应用
JP2012174375A (ja) 導電性塗膜の製造方法及び導電性塗膜
KR101837996B1 (ko) 그래핀 강화 복합재료의 제조 방법 및 장치
KR101855347B1 (ko) 비전도성 기판상의 전기장을 이용한 분산입자 패턴 제조방법
Ohsawa et al. Electromechanical Reliability of Flexible Transparent Electrode of Gravure Offset Printed Invisible Silver-Grid Laminated with Conductive Polymer
US8421331B2 (en) Electron emitting element and method for producing the same
WO2023038105A1 (ja) 発電素子の製造方法、発電素子、発電装置、及び電子機器
KR101571844B1 (ko) 밀착력이 우수한 cnt-모재 복합구조를 가지는 전기도금 또는 전해용 양극의 제조방법
CN117089840A (zh) 一种低衰减电极的制备工艺及发热膜和应用
US20180356471A1 (en) Magnetoresistive sensors and switches from pre-bundled nanowires
JP2010244735A (ja) 電子放出素子及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant