CN107190300A - 介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法 - Google Patents

介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法 Download PDF

Info

Publication number
CN107190300A
CN107190300A CN201710421705.4A CN201710421705A CN107190300A CN 107190300 A CN107190300 A CN 107190300A CN 201710421705 A CN201710421705 A CN 201710421705A CN 107190300 A CN107190300 A CN 107190300A
Authority
CN
China
Prior art keywords
tube array
titanium dioxide
nano tube
mesoporous
mesoporous hydroxyapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710421705.4A
Other languages
English (en)
Other versions
CN107190300B (zh
Inventor
谢春玲
陈顺玉
肖秀峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201710421705.4A priority Critical patent/CN107190300B/zh
Publication of CN107190300A publication Critical patent/CN107190300A/zh
Application granted granted Critical
Publication of CN107190300B publication Critical patent/CN107190300B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0092Hollow drug-filled fibres, tubes of the core-shell type, coated fibres, coated rods, microtubules or nanotubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Ceramic Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列新型复合材料的制备方法,其特征在于:包括如下步骤:1)以钛片为阳极,阳极氧化制备二氧化钛纳米管阵列;2)用溶胶‑凝胶法制备介孔羟基磷灰石纳米颗粒;3)然后将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中水热/溶剂热反应,在二氧化钛纳米管阵列表面修饰介孔羟基磷灰石纳米颗粒。本发明的特点在于:介孔羟基磷灰石纳米颗粒深入二氧化钛纳米管阵列内部,结合强度高,同时,复合材料具有良好的生物活性,可负载一些药物分子,作为药物缓释的载体。

Description

介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法
技术领域
本发明属于骨修复生物材料和药物缓释载体制备技术领域,具体是一种制备介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列新型复合材料的方法。
背景技术
在最近的几十年里,纳米材料在生物医学研究、疾病诊断和治疗方面的应用吸引了越来越多人的兴趣。然而,传统的诊断和治疗药物(如药物或基因)在临床的应用受限于其稳定性差,副作用的几率高,缺乏药物动力学研究,快速清除、高剂量和无特异性靶向。纳米粒子被认为是有用的加载诊断和治疗药物的纳米载体。在过去几十年里,纳米材料已被用于治疗癌症、伤口和细菌感染。它们提高了药物的疗效,减少了副作用,许多纳米材料如石墨烯,氧化物、碳纳米管、金属氧化物、水凝胶、树枝状大分子、脂质体等常常用于药物传递。尽管纳米载体可以保护显像剂免于酶的催化降解,但纳米载体的毒性成了其生物医学应用的一个问题。在过去的几年里,无机纳米材料因其优异的稳定性、高的生物分子负载量和表面易于接合生物分子,被广泛的应用于纳米载体。
不同纳米结构的TiO2材料的制备和应用的研究得到了长足的发展。人们采用不同方法制备不同的纳米结构,包括纳米粒子、纳米棒、纳米纤维、纳米层和纳米管。其中,TiO2纳米管阵列具有许多优点,是吸附药物的良好载体。通过阳极氧化法在钛金属表面构建的高度有序的TiO2纳米管阵列,具有制备工艺相对简单、阵列高度有序、管径可控、纳米管与基底结合更加牢固等优点。其本身纳米级多孔形貌,适于多种细胞黏附和生长。因此TiO2纳米管有序阵列作为内置物表面修饰方法具有良好的应用前景。
羟基磷灰石(Ca10(PO4)6(OH)2或HA)具有良好的生物相容性,独特的机械性能,生物活性,以及和活骨组织形成化学键的优秀能力,并且无毒性、非炎症性质。人们研究它的各种形态和表面性质,将其作为药物载体负载药物甚至作为眼科内置物使用。但较低的比表面积限制了它在许多条件下的进一步应用。介孔羟基磷灰石能够在一定程度上克服这些缺点,并对骨头细胞和组织有好的生物相容性和生物活性。Negar等(Int. J. Pharm.,2016(509): 159-167)以介孔羟基磷灰石为涂层,修饰在超顺磁Fe3O4纳米粒子表面作为药物传输载体。
发明内容
本发明的目的在于利用水热法的原理,提供一种新的制备介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列新型复合材料的方法,其特征在于:以经过预处理的钛片为阳极,以铂片为阴极,通过阳极氧化法在甘油/水体系的电解质溶液中于钛片表面形成二氧化钛纳米管阵列。将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中,并通过水热法在二氧化钛纳米管阵列表面上修饰介孔羟基磷灰石纳米颗粒,形成一种新型的介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列复合材料。
本发明的目的是这样实现的,所述的介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列新型复合材料的制备方法,其特征在于:包括如下步骤:1)以钛片为阳极,阳极氧化制备二氧化钛纳米管阵列;2)用溶胶-凝胶法制备介孔羟基磷灰石纳米颗粒;3)然后将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中水热/溶剂热反应,在二氧化钛纳米管阵列表面修饰介孔羟基磷灰石纳米颗粒。
上述步骤1)的阳极氧化制备二氧化钛纳米管阵列的方法为:以钛片为阳极,铂片为阴极,在含氟的甘油/水体系的电解质溶液中,以阳极氧化30~70V,电解液温度为20~50℃条件下阳极氧化2~24h。
上述步骤2)的介孔羟基磷灰石纳米颗粒溶胶-凝胶法制备方法为:以十六烷基三甲基溴化铵为模板剂,以(NH42HPO4为磷源,以Ca(NO3)2•4H2O为钙源,用氨水调pH值为10,搅拌2~4h,陈化24~48h,交替用乙醇和蒸馏水离心洗涤,在-50℃下冷冻干燥48h,于500~600℃温度下煅烧4~6h,即得介孔羟基磷灰石纳米颗粒。
所述的二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中水热反应步骤为:将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒的分散液中,并在100~150℃温度下水热1~9h处理。
所述的二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中溶剂热反应步骤为:将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒的乙醇分散液中,并在100~150℃温度下水热1~9h处理。
上述含氟的甘油/水体系的电解质溶液采用含氟化铵0.20~0.60 wt% 的甘油/水体系的电解质溶液,所述的甘油/水体系中的甘油与水的质量比是9:1。
本发明的上述复合材料的制备方法制得介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列新型复合材料。
具体地说,本发明采用如下技术方案,步骤为:
1)钛片预处理:将钛片打磨至光滑,并在HF和 HNO3的混合酸溶液中刻蚀10~30s,用蒸馏水淋洗,50℃烘干。
2)二氧化钛纳米管阵列的制备:以预处理好的钛片为阳极,铂片为阴极,在含氟化铵0.20~0.60 wt% 的甘油/水体系的电解质溶液中进行阳极氧化2~24h,氧化电压为30~70V,电解液温度为20~50℃即得二氧化钛纳米管阵列。
3)介孔羟基磷灰石纳米颗粒的制备:以十六烷基三甲基溴化铵为模板剂,以(NH42HPO4为磷源,以Ca(NO3)2•4H2O为钙源,用氨水调pH值为10,搅拌2~4h,陈化24~48h,交替用乙醇和蒸馏水离心洗涤,在-50℃下冷冻干燥48h,于500~600℃温度下煅烧4~6h,即得介孔羟基磷灰石纳米颗粒。
4)水热/溶剂热制备:将阳极氧化的钛基体置于介孔羟基磷灰石纳米颗粒的分散液中进行水热反应,然后取出钛基体,用蒸馏水淋洗,烘干即得复合材料;或将阳极氧化的钛基体置于介孔羟基磷灰石纳米颗粒的乙醇分散液中进行溶剂热反应,然后取出钛基体,用蒸馏水淋洗,烘干即得复合材料。
本发明所述的水热/溶剂热制备反应步骤中,是将阳极氧化处理后的钛基体置于分散液中,在100~150℃温度下水热1~9h。其中分散液是指将介孔羟基磷灰石纳米颗粒分别分散在蒸馏水和乙醇中。
本发明采用上述方案得到的复合材料具有以下特点:介孔羟基磷灰石纳米颗粒深入二氧化钛纳米管阵列内部,结合强度高;TiO2纳米管阵列表面修饰介孔羟基磷灰石纳米颗粒后,能够较快的诱导沉积磷灰石,具有良好的生物活性,同时,复合材料表面的多孔性,有利于骨细胞的生长和黏附;介孔羟基磷灰石纳米颗粒修饰在二氧化钛纳米管阵列上,可以负载一些药物分子,作为药物缓释的载体。
附图说明
图1为本发明具体实施例1中阳极氧化得到的二氧化钛纳米管阵列的表面微观形貌图。
图2为本发明具体实施例1中二氧化钛纳米管阵列经水热在水热条件下沉积介孔羟基磷灰石纳米颗粒的表面微观形貌图。
图3a为本发明具体实施例2中二氧化钛纳米管阵列经溶剂热反应沉积介孔羟基磷灰石纳米颗粒的表面的微观形貌图。
图3b为本发明具体实施例2中二氧化钛纳米管阵列经溶剂热反应沉积介孔羟基磷灰石纳米颗粒的截面的微观形貌图。
具体实施方式
实施例1
以钛金属为基底,用金相砂纸打磨至光滑,于丙酮中超声清洗并在4wt%HF-5mol/LHNO3的混合酸溶液中刻蚀,用蒸馏水淋洗并超声,50℃烘干。以预处理好的钛片为阳极,铂片为阴极,以0.50wt%NH4F+10wt%H2O+丙三醇为电解质溶液,所述的甘油(丙三醇)与水的质量比是9:1,在60V电压下阳极氧化24h后,取出,用蒸馏水淋洗,空气中晾干,即得二氧化钛纳米管阵列,微观形貌图如图1所示,纳米管排列紧密,规整,管径约为210nm。
将0.05%的十六烷基三甲基溴化铵溶于50ml蒸馏水,加入3.96g(NH42HPO4,搅拌2h,用25wt%氨水调pH值为10。将11.83gCa(NO3)2•4H2O溶于50ml蒸馏水,用25wt%氨水调 pH值为10,在剧烈搅拌的条件下,逐滴缓慢滴入上述溶液中,搅拌4h,陈化24h,用乙醇和蒸馏水洗涤,在-50℃下冷冻干燥48h,于550℃煅烧6h,得到介孔羟基磷灰石纳米颗粒样品。
精确称取一定量的介孔羟基磷灰石纳米颗粒,加入一定量的蒸馏水配置成浓度为1.0×10-2(wt%)的分散液,将二氧化钛纳米管阵列——钛基体置于上述分散液中于150℃条件下水热反应1h,取出二氧化钛纳米管阵列——钛基体,用蒸馏水淋洗,50℃烘干,即得复合材料,其表面形貌如图2所示,纳米管表面覆盖了一层介孔羟基磷灰石颗粒,管径变小。
实施例2
以钛金属为基底,用金相砂纸打磨至光滑,于丙酮中超声清洗并在4wt%HF-5mol/LHNO3的混合酸溶液中刻蚀,用蒸馏水淋洗并超声,50℃烘干。以预处理好的钛片为阳极,铂片为阴极,以0.50wt%NH4F+10wt%H2O+丙三醇为电解质溶液,所述的甘油(丙三醇)与水的质量比是9:1,在60V电压下阳极氧化24h后,取出,用蒸馏水淋洗,空气中晾干,即得二氧化钛纳米管阵列,微观形貌图如图1所示,纳米管排列紧密,规整,管径约为210nm。
将0.05%的十六烷基三甲基溴化铵溶于50ml蒸馏水,加入3.96g(NH42HPO4,搅拌2h,用25wt%氨水调pH值为10。将11.83gCa(NO3)2•4H2O溶于50ml蒸馏水,用25wt%氨水调 pH值为10,在剧烈搅拌的条件下,逐滴缓慢滴入上述溶液中,搅拌4h,陈化24h,用乙醇和蒸馏水洗涤,在-50℃下冷冻干燥48h,于550℃煅烧6h,得到介孔羟基磷灰石纳米颗粒样品。
精确称取一定量的介孔羟基磷灰石纳米颗粒,加入一定量的乙醇配置成浓度为6.0×10-2(wt%)的分散液,将二氧化钛纳米管阵列——钛基体置于上述分散液中于120℃条件下溶剂热反应9h,取出钛基体,用蒸馏水淋洗,50℃烘干,即得复合材料,其表面形貌如图3a所示,表面覆盖了一层介孔羟基磷灰石纳米颗粒,孔径变小,从其截面图3b可以看出,介孔二氧化硅纳米颗粒已深入纳米管内部。
上述的具体实施方式是对本发明申请的进一步详细说明,但本发明权利要求保护的范围并不局限于实施方式中所描述的范围,凡采用同效变形等的技术方案,均落在本发明权利要求的保护范围。

Claims (7)

1.一种介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列新型复合材料的制备方法,其特征在于:包括如下步骤:1)以钛片为阳极,阳极氧化制备二氧化钛纳米管阵列;2)用溶胶-凝胶法制备介孔羟基磷灰石纳米颗粒;3)然后将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中水热/溶剂热反应,在二氧化钛纳米管阵列表面修饰介孔羟基磷灰石纳米颗粒。
2.如权利要求1所述的复合材料的制备方法,其特征在于:步骤1)的阳极氧化制备二氧化钛纳米管阵列的方法为:以钛片为阳极,铂片为阴极,在含氟的甘油/水体系的电解质溶液中,以阳极氧化30~70V,电解液温度为20~50℃条件下阳极氧化2~24h。
3.如权利要求1所述的复合材料的制备方法,其特征在于:步骤2)的介孔羟基磷灰石纳米颗粒溶胶-凝胶法制备方法为:以十六烷基三甲基溴化铵为模板剂,以(NH42HPO4为磷源,以Ca(NO3)2•4H2O为钙源,用氨水调pH值为10,搅拌2~4h,陈化24~48h,交替用乙醇和蒸馏水离心洗涤,在-50℃下冷冻干燥48h,于500~600℃温度下煅烧4~6h,即得介孔羟基磷灰石纳米颗粒。
4.如权利要求1所述的复合材料的制备方法,其特征是所述的二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中水热反应步骤为:将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒的分散液中,并在100~150℃温度下水热1~9h处理。
5.如权利要求1所述的复合材料的制备方法,其特征是所述的二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒分散液中溶剂热反应步骤为:将二氧化钛纳米管阵列置于介孔羟基磷灰石纳米颗粒的乙醇分散液中,并在100~150℃温度下水热1~9h处理。
6.如权利要求2所述的复合材料的制备方法,其特征在于含氟的甘油/水体系的电解质溶液采用含氟化铵0.20~0.60 wt% 的甘油/水体系的电解质溶液,所述的甘油/水体系中的甘油与水的质量比是9:1。
7.权利要求1-6任一所述的复合材料的制备方法制得介孔羟基磷灰石纳米颗粒/二氧化钛纳米管阵列新型复合材料。
CN201710421705.4A 2017-06-07 2017-06-07 介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法 Expired - Fee Related CN107190300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710421705.4A CN107190300B (zh) 2017-06-07 2017-06-07 介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710421705.4A CN107190300B (zh) 2017-06-07 2017-06-07 介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107190300A true CN107190300A (zh) 2017-09-22
CN107190300B CN107190300B (zh) 2019-03-01

Family

ID=59877046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710421705.4A Expired - Fee Related CN107190300B (zh) 2017-06-07 2017-06-07 介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107190300B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060453A (zh) * 2017-12-15 2018-05-22 太原理工大学 一种纯钛基纳米管表面纳米磷灰石棒晶的制备方法
CN109289049A (zh) * 2018-10-15 2019-02-01 福建师范大学 基于二氧化钛纳米管阵列的近红外光控智能释药系统的制备方法
CN109289089A (zh) * 2018-10-15 2019-02-01 福建师范大学 基于二氧化钛纳米管阵列的温控智能释药系统的制备方法
CN115090076A (zh) * 2022-07-05 2022-09-23 王西峰 一种石英玻璃纤维负载二氧化钛光触媒填料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311328A (zh) * 2008-02-20 2008-11-26 福建师范大学 一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法
US20100305684A1 (en) * 2009-05-28 2010-12-02 Snu R&Db Foundation Biodegradable stent and method for manufacturing the same
CN102492973A (zh) * 2011-12-16 2012-06-13 大连海事大学 微弧氧化-恒电位电合成羟基磷灰石-氧化钛复合涂层的方法
KR20120105280A (ko) * 2011-03-15 2012-09-25 순천대학교 산학협력단 HA 블라스팅, TiO₂ 양극산화 및 RF마그네트론 스퍼터링에 의한 티타늄 표면 코팅 방법
CN102897733A (zh) * 2012-10-09 2013-01-30 天津大学 介孔纳米羟基磷灰石薄膜及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311328A (zh) * 2008-02-20 2008-11-26 福建师范大学 一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法
US20100305684A1 (en) * 2009-05-28 2010-12-02 Snu R&Db Foundation Biodegradable stent and method for manufacturing the same
KR20120105280A (ko) * 2011-03-15 2012-09-25 순천대학교 산학협력단 HA 블라스팅, TiO₂ 양극산화 및 RF마그네트론 스퍼터링에 의한 티타늄 표면 코팅 방법
CN102492973A (zh) * 2011-12-16 2012-06-13 大连海事大学 微弧氧化-恒电位电合成羟基磷灰石-氧化钛复合涂层的方法
CN102897733A (zh) * 2012-10-09 2013-01-30 天津大学 介孔纳米羟基磷灰石薄膜及制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHUNLING XIE ET AL.,: "Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release", 《MATERIALS SCIENCE AND ENGINEERING C》 *
JIA YAO ET AL.,: "Hydroxyapatite nanostructure material derived using cationic surfactant as a template", 《J. MATER. CHEM.》 *
JUNHUA LI ET AL.,: "Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite,titanium dioxide, and modified with multi-walled carbon nanotubes", 《MICROCHIM ACTA》 *
MICHIKO SATO ET AL.,: "Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol–gel titanium coatings", 《BIOMATERIALS》 *
XIAODONG WU ET AL.,: "Preparation of Mesoporous Nano-Hydroxyapatite Using a Surfactant Template Method for Protein Delivery", 《JOURNAL OF BIONIC ENGINEERING》 *
肖秀峰 等: "水热电沉积法制备羟基磷灰石/氧化钛复合涂层的研究", 《硅酸盐学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060453A (zh) * 2017-12-15 2018-05-22 太原理工大学 一种纯钛基纳米管表面纳米磷灰石棒晶的制备方法
CN108060453B (zh) * 2017-12-15 2020-01-10 太原理工大学 一种纯钛基纳米管表面纳米磷灰石棒晶的制备方法
CN109289049A (zh) * 2018-10-15 2019-02-01 福建师范大学 基于二氧化钛纳米管阵列的近红外光控智能释药系统的制备方法
CN109289089A (zh) * 2018-10-15 2019-02-01 福建师范大学 基于二氧化钛纳米管阵列的温控智能释药系统的制备方法
CN109289089B (zh) * 2018-10-15 2021-12-28 福建师范大学 基于二氧化钛纳米管阵列的温控智能释药系统的制备方法
CN115090076A (zh) * 2022-07-05 2022-09-23 王西峰 一种石英玻璃纤维负载二氧化钛光触媒填料及其制备方法和应用
CN115090076B (zh) * 2022-07-05 2023-07-21 王西峰 一种石英玻璃纤维负载二氧化钛光触媒填料及其制备方法和应用

Also Published As

Publication number Publication date
CN107190300B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Huang et al. MXene composite nanofibers for cell culture and tissue engineering
Liu et al. Nano-modified titanium implant materials: a way toward improved antibacterial properties
Iravani et al. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances
CN107190300A (zh) 介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法
Lin et al. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field
Kumar et al. TiO 2 and its composites as promising biomaterials: a review
Tiwari et al. Accelerated bone regeneration by two-photon photoactivated carbon nitride nanosheets
Krishnan et al. Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth
Chen et al. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers
Jiang et al. Polymer microneedles integrated with glucose-responsive mesoporous bioactive glass nanoparticles for transdermal delivery of insulin
Dolai et al. Enhanced piezocatalysis by calcium phosphate nanowires via gold nanoparticle conjugation
CN109810553A (zh) 一种氧化石墨烯复合羟基磷灰石负载硫量子点抗菌涂层及其制备方法
Das et al. 2D nanomaterials in 3D/4D-printed biomedical devices
Ranjous et al. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems
Chen et al. Bioactive titanium oxide-based nanostructures prepared by one-step hydrothermal anodization
Bacakova et al. Carbon nanoparticles as substrates for cell adhesion and growth
Stocco et al. Carbon nanomaterial-based hydrogels as scaffolds in tissue engineering: a comprehensive review
Bechelany Review on Natural
Chauhan et al. Nanomaterials in biomedicine: Synthesis and applications
Ejidike et al. Role of Nanotechnology in Medicine: Opportunities and Challenges
Lopez et al. Biocompatible titania microtubes formed by nanoparticles and its application in the drug delivery of valproic acid
Chin et al. Nanotechnology and Nanomaterials for Medical Applications
Sharma et al. Nanomaterials in biomedical diagnosis
CN107236981A (zh) 介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法
Makwikwi et al. Carbon-based nanomaterials for targeted drug and gene delivery systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190301