CN107236981A - 介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法 - Google Patents

介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法 Download PDF

Info

Publication number
CN107236981A
CN107236981A CN201710421703.5A CN201710421703A CN107236981A CN 107236981 A CN107236981 A CN 107236981A CN 201710421703 A CN201710421703 A CN 201710421703A CN 107236981 A CN107236981 A CN 107236981A
Authority
CN
China
Prior art keywords
mesoporous silicon
tube array
titanium
silicon dioxide
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710421703.5A
Other languages
English (en)
Other versions
CN107236981B (zh
Inventor
谢春玲
陈顺玉
肖秀峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201710421703.5A priority Critical patent/CN107236981B/zh
Publication of CN107236981A publication Critical patent/CN107236981A/zh
Application granted granted Critical
Publication of CN107236981B publication Critical patent/CN107236981B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种介孔二氧化硅纳米粒子/二氧化钛纳米管阵列新型复合材料的制备方法,其特征在于包括如下步骤:1)以钛片为阳极,阳极氧化制备二氧化钛纳米管阵列;2)用溶胶‑凝胶法制备介孔二氧化硅纳米粒子;3)然后将步骤1)的阳极氧化后的二氧化钛纳米管阵列置于步骤2)制得的介孔二氧化硅纳米粒子的分散液中水热反应,在二氧化钛纳米管阵列的表面修饰上介孔二氧化硅纳米粒子。本发明的特点在于:介孔二氧化硅纳米颗粒深入二氧化钛纳米管阵列内部,结合强度高,复合载体具有较好的稳定性;复合材料具有良好的生物活性,可负载一些药物分子,作为药物缓释的载体。

Description

介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法
技术领域
本发明属于药物缓释载体和骨修复生物材料领域,具体涉及一种制备介孔二氧化硅纳米粒子/二氧化钛纳米管阵列新型复合材料的方法。
背景技术
具备良好生物学特性的内置物材料已经在骨科手术中得到了广泛应用。对于内置材料来说,良好的生物相容性是首要条件。钛和钛合金具有优秀的机械力学性能、耐腐蚀性和良好的生物相容性,被广泛应用于骨科和口腔科等。但由于其植入人体后与骨组织难以形成较为牢固的骨键合,因此仍无法完全满足临床的需要。
在钛金属内置物表面构建二氧化钛纳米管阵列,不仅可以有效提高钛金属内置物的生物相容性,促进内置物与骨界面整合,而且,由于具有独特的中空结构、纳米管径以及表面易功能化等特点,二氧化钛纳米管已成为极具吸引力的新型药物载体,广泛应用于局部药物传输体系。
介孔二氧化硅纳米粒子的大小和形状便于调控,高孔容和比表面积允许高药物负载量,灵活的平台和广阔的进一步功能化的可能性使其可以应用于靶向药物释放和控制药物释放。此外,其表面还可以进行细节处理规避不必要的生物相互作用,促进生物利用度和细胞吸收从而免于免疫系统的监督。这将实现根据需要量身定做载体的药代动力学释放曲线,提高生物利用度,实现靶向给药,从而增强治疗效果。因此,这种介孔材料被认为是制备药物载体的良好材料。
发明内容
本发明的目的在于利用水热法的原理,提供一种新的制备介孔二氧化硅/二氧化钛纳米管阵列的新型复合材料的方法,制备一种药物缓释载体和骨修复生物材料。其特征在于:以经过预处理的钛片为阳极,以铂片为阴极,通过阳极氧化法在甘油/水体系的电解质溶液中于钛片表面形成二氧化钛纳米管阵列。将二氧化钛纳米管阵列置于介孔二氧化硅纳米粒子分散液中,并通过水热法在二氧化钛纳米管阵列表面上修饰介孔二氧化硅纳米粒子,形成一种新型的介孔二氧化硅纳米粒子/二氧化钛纳米管阵列复合材料。
本发明的目的是这样实现的,所述的介孔二氧化硅纳米粒子/二氧化钛纳米管阵列新型复合材料的制备方法,其特征在于包括如下步骤:1)以钛片为阳极,阳极氧化制备二氧化钛纳米管阵列;2)用溶胶-凝胶法制备介孔二氧化硅纳米粒子;3)然后将步骤1)的阳极氧化后的二氧化钛纳米管阵列置于步骤2)制得的介孔二氧化硅纳米粒子的分散液中水热反应,在二氧化钛纳米管阵列的表面修饰上介孔二氧化硅纳米粒子。
上述步骤1)的阳极氧化制备二氧化钛纳米管阵列的方法为:以钛片为阳极,铂片为阴极,在含氟的甘油/水体系的电解质溶液中,以30~70V电解电压,电解液温度为20~50℃条件下阳极氧化2~24h。
上述步骤2)的介孔二氧化硅纳米粒子的溶胶-凝胶法制备方法为:以烷基三甲基溴化铵为模板剂,正硅酸乙酯为硅源,氨水调节pH值,搅拌2~4h,过滤、干燥获得白色固体,白色固体为煅烧前的介孔二氧化硅纳米粒子,取白色固体置于马弗炉中,以1~3℃/min的升温速率升至500~600℃保温4~6h,即得煅烧后的介孔二氧化硅纳米粒子。
所述的水热反应制备二氧化钛纳米管阵列表面修饰介孔二氧化硅纳米粒子的步骤是:将阳极氧化处理后的二氧化钛纳米管阵列置于用煅烧后的介孔二氧化硅纳米粒子与水制成的分散液中,于70~100℃时下水热反应4~6h,制得二氧化钛纳米管阵列表面修饰介孔二氧化硅纳米粒子;或将阳极氧化的二氧化钛纳米管阵列置于用煅烧前的介孔二氧化硅纳米粒子与水制成的分散液中,于70~100℃时下水热反应4~6h,然后用蒸馏水淋洗获得钛基体,然后将钛基体,以1~3℃/min的升温速率升至500~600℃保温4~6h,随炉降温,即得在二氧化钛纳米管阵列表面修饰了介孔二氧化硅纳米粒子的复合材料。
上述含氟的甘油/水体系的电解质溶液采用含氟化铵0.20~0.60 wt% 的甘油/水体系的电解质溶液,所述的甘油/水体系中的甘油与水的质量比是9:1。
上述氨水调节的pH值范围为9~10。
本发明上述的复合材料的制备方法制得介孔二氧化硅纳米粒子/二氧化钛纳米管阵列新型复合材料。
具体地说,本发明采用的技术方案具体步骤如下:
1)钛片预处理:将钛片打磨至光滑,并在HF和 HNO3的混合酸溶液中刻蚀10~30s,用蒸馏水淋洗,50℃烘干。
2)二氧化钛纳米管阵列的制备:以预处理好的钛片为阳极,铂片为阴极,在含氟化铵0.20~0.60 wt% 的甘油/水体系的电解质溶液中进行阳极氧化2~24h,氧化电压为30~70V,电解液温度为20~50℃即得二氧化钛纳米管阵列。
3)介孔二氧化硅纳米粒子的制备:以烷基三甲基溴化铵为模板剂,正硅酸乙酯为硅源,氨水调节pH值,过滤,干燥后的白色固体为煅烧前的介孔二氧化硅纳米粒子,取部分置于马弗炉中,以1~3℃/min的升温速率升至500~600℃保温4~6h,然后随炉冷却,即得煅烧后的介孔二氧化硅纳米粒子。
4)水热制备:将阳极氧化的钛基体置于含煅烧后的介孔二氧化硅纳米粒子的分散液中进行水热反应,然后取出钛基体,用蒸馏水淋洗,烘干即得复合材料;或将阳极氧化的钛基体置于含煅烧前的介孔二氧化硅纳米粒子的分散液中进行水热反应,然后取出钛基体,用蒸馏水淋洗,烘干,以1~3℃/min的升温速率升至500~600℃保温4~6h,然后随炉冷却,即得复合材料。
本发明所述的水热制备反应步骤中,是将阳极氧化处理后的钛基体置于分散液中,在70~100℃温度下水热4~6h。其中分散液是指分别将煅烧前后的介孔二氧化硅纳米粒子分散在蒸馏水中。
本发明采用上述方案得到的复合材料具有以下特点:介孔二氧化硅纳米颗粒深入二氧化钛纳米管阵列内部,结合强度高,复合载体具有较好的稳定性;介孔二氧化硅/二氧化硅纳米管阵列复合材料,具有良好的生物活性,有利于骨细胞的生长和黏附,从而获得生理骨整合;介孔二氧化硅修饰在二氧化钛纳米管阵列上,可负载生物活性分子如蛋白质、酶、肽等,进一步改善骨整合,也可以负载一些药物分子,作为药物缓释的载体;介孔二氧化硅表面还可以进行细节处理规避不必要的生物相互作用,促进生物利用度和细胞吸收从而免于免疫系统的监督;介孔二氧化硅可以进一步功能化使复合材料可以应用于刺激-响应控制药物释放。
附图说明
图1为本发明具体实施例1中阳极氧化得到的二氧化钛纳米管阵列的扫描电镜图。
图2为本发明具体实施例1中二氧化钛纳米管阵列经水热在水热条件下沉积介孔二氧化硅纳米粒子的扫描电镜图。
图3a为本发明具体实施例2中二氧化钛纳米管阵列经水热在水热条件下沉积介孔二氧化硅纳米粒子的表面微观形貌图。
图3b为本发明具体实施例2中二氧化钛纳米管阵列经水热在水热条件下沉积介孔二氧化硅纳米粒子的截面的微观形貌图。
具体实施方式
实施例1
以钛金属为基底,用金相砂纸打磨至光滑,于丙酮中超声清洗并在4wt%HF-5mol/LHNO3的混合酸溶液中刻蚀,用蒸馏水淋洗并超声,50℃烘干获得处理好的钛片。以预处理好的钛片为阳极,铂片为阴极,以0.50wt%NH4+10wt%H2O+丙三醇为电解质溶液,其中甘油(丙三醇)与水的质量比是9:1,在60V电压下阳极氧化24h后,取出,用蒸馏水淋洗,空气中晾干,即得二氧化钛纳米管阵列,微观形貌图如图1所示,纳米管排列紧密,规整,管径约为210nm。
将5.60mmol十二烷基三甲基溴化铵溶解于122ml蒸馏水中,再加入8g25wt% NH3·H2O,搅拌10min。边搅拌边加入10.0g 正硅酸乙酯(TEOS),再搅拌4h,过滤,蒸馏水洗,110℃下干燥12h,得到白色固体,于540℃下焙烧6h即得介孔二氧化硅纳米粒子。
称取一定量的介孔二氧化硅纳米粒子,加入一定量的蒸馏水配置成浓度为0.6×10-3(wt%)的分散液,将二氧化钛纳米管阵列——钛基体置于上述分散液中于85℃条件下水热反应5h,取出二氧化钛纳米管阵列——钛基体,用蒸馏水淋洗,50℃烘干,其表面形貌如图2所示,表面覆盖了一层介孔二氧化硅纳米粒子。
实施例2
以钛金属为基底,用金相砂纸打磨至光滑,于丙酮中超声清洗并在4wt%HF-5mol/LHNO3的混合酸溶液中刻蚀,用蒸馏水淋洗并超声,50℃烘干。以预处理好的钛片为阳极,铂片为阴极,以0.50wt%NH4F+10wt%H2O+丙三醇为电解质溶液,其中甘油(丙三醇)与水的质量比是9:1,在60V电压下阳极氧化24h后,取出,用蒸馏水淋洗,空气中晾干,即得二氧化钛纳米管阵列,微观形貌图如图1所示,纳米管排列紧密,规整,管径约为210nm。
将5.60mmol十六烷基三甲基溴化铵溶解于122ml蒸馏水中,再加入8g 25wt%NH3·H2O,搅拌10min。边搅拌边加入10.0g 正硅酸乙酯(TEOS),再搅拌4h,过滤,蒸馏水洗,110℃下干燥12h,得到白色固体,即得为煅烧前的介孔二氧化硅纳米粒子。
称取一定量的煅烧前的介孔二氧化硅纳米粒子,加入一定量的蒸馏水配置成浓度为2.0×10-3(wt%)的分散液,将二氧化钛纳米管阵列——钛基体置于上述分散液中于85℃条件下水热反应5h,取出二氧化钛纳米管阵列——钛基体,用蒸馏水淋洗,50℃烘干,以1℃/min的升温速率升至540℃保温6h,然后随炉冷却,即得复合材料。其表面形貌如图3a所示,表面覆盖了一层介孔二氧化硅纳米粒子,从其截面的图3b可以看出,介孔二氧化硅纳米粒子已深入纳米管内部。
上述的具体实施方式是对本发明申请的进一步详细说明,但本发明权利要求保护的范围并不局限于实施方式中所描述的范围,凡采用同效变形等的技术方案,均落在本发明权利要求的保护范围。

Claims (7)

1.一种介孔二氧化硅纳米粒子/二氧化钛纳米管阵列新型复合材料的制备方法,其特征在于包括如下步骤:1)以钛片为阳极,阳极氧化制备二氧化钛纳米管阵列;2)用溶胶-凝胶法制备介孔二氧化硅纳米粒子;3)然后将步骤1)的阳极氧化后的二氧化钛纳米管阵列置于步骤2)制得的介孔二氧化硅纳米粒子的分散液中水热反应,在二氧化钛纳米管阵列的表面修饰上介孔二氧化硅纳米粒子。
2.如权利要求1所述的复合材料的制备方法,其特征在于步骤1)的阳极氧化制备二氧化钛纳米管阵列的方法为:以钛片为阳极,铂片为阴极,在含氟的甘油/水体系的电解质溶液中,以30~70V电解电压,电解液温度为20~50℃条件下阳极氧化2~24h。
3.如权利要求1所述的复合材料的制备方法,其特征在于步骤2)的介孔二氧化硅纳米粒子的溶胶-凝胶法制备方法为:以烷基三甲基溴化铵为模板剂,正硅酸乙酯为硅源,氨水调节pH值,搅拌2~4h,过滤、干燥获得白色固体,白色固体为煅烧前的介孔二氧化硅纳米粒子,取白色固体置于马弗炉中,以1~3℃/min的升温速率升至500~600℃保温4~6h,即得煅烧后的介孔二氧化硅纳米粒子。
4.如权利要求3所述的复合材料的制备方法,其特征在于所述的水热反应制备二氧化钛纳米管阵列表面修饰介孔二氧化硅纳米粒子的步骤是:将阳极氧化处理后的二氧化钛纳米管阵列置于用煅烧后的介孔二氧化硅纳米粒子与水制成的分散液中,于70~100℃时下水热反应4~6h,制得二氧化钛纳米管阵列表面修饰介孔二氧化硅纳米粒子;或将阳极氧化的二氧化钛纳米管阵列置于用煅烧前的介孔二氧化硅纳米粒子与水制成的分散液中,于70~100℃时下水热反应4~6h,然后用蒸馏水淋洗获得钛基体,然后将钛基体,以1~3℃/min的升温速率升至500~600℃保温4~6h,随炉降温,即得在二氧化钛纳米管阵列表面修饰了介孔二氧化硅纳米粒子的复合材料。
5.如权利要求2所述的复合材料的制备方法,其特征在于含氟的甘油/水体系的电解质溶液采用含氟化铵0.20~0.60 wt% 的甘油/水体系的电解质溶液,所述的甘油/水体系中的甘油与水的质量比是9:1。
6.如权利要求3所述的复合材料的制备方法,其特征在于氨水调节的pH值范围为9~10。
7.权利要求1-6任一所述的复合材料的制备方法制得介孔二氧化硅纳米粒子/二氧化钛纳米管阵列新型复合材料。
CN201710421703.5A 2017-06-07 2017-06-07 介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法 Expired - Fee Related CN107236981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710421703.5A CN107236981B (zh) 2017-06-07 2017-06-07 介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710421703.5A CN107236981B (zh) 2017-06-07 2017-06-07 介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107236981A true CN107236981A (zh) 2017-10-10
CN107236981B CN107236981B (zh) 2019-03-01

Family

ID=59986056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710421703.5A Expired - Fee Related CN107236981B (zh) 2017-06-07 2017-06-07 介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107236981B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422901A (zh) * 2020-03-09 2020-07-17 中国人民解放军第四军医大学 表面沉积有SiO2多孔的TiO2纳米管阵列的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311328A (zh) * 2008-02-20 2008-11-26 福建师范大学 一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法
KR20090056658A (ko) * 2007-11-30 2009-06-03 (주)아모레퍼시픽 기공 내 유기계자외선 차단제와 금속산화물을 함께 담지한유무기 복합분체 및 그 제조방법
CN105935317A (zh) * 2016-04-05 2016-09-14 中国人民解放军第四军医大学 一种表面载药缓释颌面种植经皮基台及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090056658A (ko) * 2007-11-30 2009-06-03 (주)아모레퍼시픽 기공 내 유기계자외선 차단제와 금속산화물을 함께 담지한유무기 복합분체 및 그 제조방법
CN101311328A (zh) * 2008-02-20 2008-11-26 福建师范大学 一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法
CN105935317A (zh) * 2016-04-05 2016-09-14 中国人民解放军第四军医大学 一种表面载药缓释颌面种植经皮基台及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNLING XIE ET AL.,: "Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release", 《MATERIALS SCIENCE AND ENGINEERING C》 *
肖文 等: "TiO2纳米管/介孔SiO2复合膜的制备及生物活性研究", 《材料导报B:研究篇》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422901A (zh) * 2020-03-09 2020-07-17 中国人民解放军第四军医大学 表面沉积有SiO2多孔的TiO2纳米管阵列的制备方法及应用

Also Published As

Publication number Publication date
CN107236981B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Iravani et al. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances
Liu et al. Nano-modified titanium implant materials: a way toward improved antibacterial properties
Indira et al. A review on TiO 2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications
Boccaccini et al. Electrophoretic deposition of biomaterials
Okesola et al. De novo design of functional coassembling organic–inorganic hydrogels for hierarchical mineralization and neovascularization
Jiang et al. Construction of micro–nano network structure on titanium surface for improving bioactivity
Jiang et al. Polymer microneedles integrated with glucose-responsive mesoporous bioactive glass nanoparticles for transdermal delivery of insulin
Song et al. Room-temperature fabrication of a three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering
CN103388173B (zh) 一种在钛及其合金表面构筑微纳米有序结构的方法
CN107190300B (zh) 介孔羟基磷灰石/二氧化钛纳米管阵列复合材料的制备方法
CN107161969A (zh) 一种纳米羟基磷灰石/氧化石墨烯复合材料的制备方法
CN106267342A (zh) 一种牙科种植体及其制备方法
Ansari et al. Graphene and graphene-based materials in biomedical applications
CN109810553A (zh) 一种氧化石墨烯复合羟基磷灰石负载硫量子点抗菌涂层及其制备方法
CN109289049A (zh) 基于二氧化钛纳米管阵列的近红外光控智能释药系统的制备方法
Xia Importance of nanostructured surfaces
Akiyama et al. Tubular nanomaterials for bone tissue engineering
Lv et al. Facile preparation of controllable-aspect-ratio hydroxyapatite nanorods with high-gravity technology for bone tissue engineering
CN100427150C (zh) 珍珠粉/peek准自然骨复合材料及其制备和应用
CN107236981A (zh) 介孔二氧化硅/二氧化钛纳米管阵列复合材料的制备方法
CN105543934B (zh) 一种医用钛种植体微弧氧化膜层及制备方法
Azzaroni et al. Concepts and Design of Materials Nanoarchitectonics
CN105833265B (zh) 新型片层二硫化钼基纳米免疫佐剂及其制备方法与应用
Simon et al. TiO2NTs bio-inspired coatings: revisiting electrochemical, morphological, structural, and mechanical properties
Cole et al. Hydrothermal synthesis of valve metal Ta-doped titanate nanofibers for potentially engineering bone tissue

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190301