CN107185517B - 一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途 - Google Patents

一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途 Download PDF

Info

Publication number
CN107185517B
CN107185517B CN201710292833.3A CN201710292833A CN107185517B CN 107185517 B CN107185517 B CN 107185517B CN 201710292833 A CN201710292833 A CN 201710292833A CN 107185517 B CN107185517 B CN 107185517B
Authority
CN
China
Prior art keywords
graphene
catalysis net
tio
graphene catalysis
municipal wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710292833.3A
Other languages
English (en)
Other versions
CN107185517A (zh
Inventor
杨品红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Arts and Science
Original Assignee
Hunan Emperor Biotechnology Ltd By Share Ltd
Hunan University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Emperor Biotechnology Ltd By Share Ltd, Hunan University of Arts and Science filed Critical Hunan Emperor Biotechnology Ltd By Share Ltd
Priority to CN201710292833.3A priority Critical patent/CN107185517B/zh
Publication of CN107185517A publication Critical patent/CN107185517A/zh
Application granted granted Critical
Publication of CN107185517B publication Critical patent/CN107185517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种石墨烯催化网的制备方法,以钨酸钠掺杂到TiO2凝胶溶液中,然后采取石墨烯对钨酸钠掺杂的TiO2凝胶溶液进行负载,经高温煅烧;最后与高温粘合剂混合后喷涂于聚四氟乙烯纤维过滤网经热处理得石墨烯催化网;本发明制备的石墨烯催化网可用于催化氧化处理海绵城市废水,尤其是弱酸性城市废水,可有效降低废水中的氨氮含量。

Description

一种石墨烯催化网的制备方法及其在海绵城市废水处理中的 用途
技术领域
本发明属于废水处理技术领域,具体涉及一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途。
背景技术
城市废水排入城镇废水系统的废水的统称。在合流制排水系统中,还包括生产废水和截留的雨水。城市废水主要包括生活废水和工业废水,由城市排水管网汇集并输送到废水处理厂进行处理。城市废水中90%以上是水,其余是固体物质,水中普遍存在悬浮物、病原体、耗氧有机物等有害物质,如果城市废水不经处理就排入地面水体,会使河流、湖泊受到污染。但城市废水水量非常大,如全部进行废水二级处理,投资极大。因此,结合具体情况研究经济有效的处理措施,是环境保护的重大课题之一。
目前处理城市废水主要根据废水中的理化性质采取不同的处理方法,主要有物理、化学、物理化学和生物法,但是这些方法通常联合使用。
石墨烯具有优异的性能,如导电性、导热性、化学稳定性等,是近年来材料科学领域的研究热点。在催化剂领域,石墨烯的应用是多方面的,包括氧化石墨烯和石墨烯的催化、石墨烯与其他物质复合的催化等。国家科技部属机构中国科技开发院江苏分院、香港上市公司允升国际的子公司中国碳谷科技集团与江苏康润净化科技有限公司联合开发了一种石墨烯催化网光催化处理废水的方法,主要原理是通过制备的可见光响应的光敏纳米及复合量子级光催化材来进行光催化降解,但是有些地区不具备长时间光照的环境,当城市废水出现积累时无法及时得到处理,所以限制了部分使用的范围。
所以开发一种新型的不受光限制的石墨烯催化网来处理城市废水具有重要的意义。
发明内容
本发明的目的是提供一种石墨烯催化网的制备方法,包括以下步骤:
a)钨酸钠掺杂的TiO2凝胶的制备,取8重量份的钛酸丁酯和钨酸钠组成的混合物分散于100重量份的95%V的乙醇溶液中,高速搅拌分散得A溶液;将A溶液滴加到80重量份的冰水中,滴加过程中控制冰水中温度为3-5℃,滴加完毕后升温至20-25℃然后滴加3重量份的醋酸,搅拌10-20min,然后静置3-5天得钨酸钠掺杂的TiO2凝胶溶液;
b)石墨烯负载钨酸钠掺杂的TiO2,向钨酸钠掺杂的TiO2凝胶溶液中加入25重量份少层石墨烯,然后升温至80-90℃进行热处理1-2h,溶剂蒸干后置于高温煅烧炉中在300-600℃、氮气的氛围下进行高温煅烧得石墨烯负载钨酸钠掺杂的TiO2
c) 制备石墨烯催化网,将煅烧所得的石墨烯负载钨酸钠掺杂的TiO2粉碎至粒径为3-5微米得催化剂微粉,将催化剂微粉与高温粘合剂混合后喷涂于聚四氟乙烯纤维过滤网,喷涂膜的厚度为1-2微米;然后进行高温处理得石墨烯催化网;
优选的,步骤a)中钛酸丁酯与钨酸钠的摩尔比用量为8:2-3;
优选的,步骤b)中溶剂蒸干后置于高温煅烧炉中在450-500℃、氮气的氛围下进行高温煅烧得石墨烯负载钨酸钠掺杂的TiO2;本发明在研究过程中发现,溶剂蒸干后必须经过煅烧才能获得适宜的比表面积和更高效的废水处理效果。
本发明所制备的石墨烯催化网可用于催化氧化处理城市废水,具体包括以下步骤:
1)城市废水依次通过孔径为80微米和5微米的格栅去除废水中的漂浮物;
2)去除漂浮物的废水进入沉淀池,沉淀去除颗粒物得初级处理废水;
3)向初级处理废水中加入双氧水混合均匀得混合液,混合液转至氧化池中;
4)氧化池每隔10-50米设置过滤板,废水流经过滤板得处理后的城市废水;所述过滤板是由多层不同孔径的石墨烯催化网重叠构成的,过滤板中多层石墨烯催化网按照孔径的大小依次排列,废水首先流经过滤板中孔径大的石墨烯催化网,最后流经孔径小的石墨烯催化网,每层石墨烯催化网的间隔为3-5cm;
优选的,步骤3)混合液中双氧水的含量为20-30mg/L;
优选的,步骤4)过滤板中石墨烯催化网的层数为8-10层,石墨烯催化网的孔径范围为0.2-10微米。
与现有技术相比,本发明具有如下优点:
1) 本发明制备的石墨烯催化网采用钨酸钠与二氧化钛进行混合,钨酸钠的引入增强了废水处理的效果;
2)本发明在石墨烯对钨酸钠掺杂的TiO2进行负载时,采用钨酸钠掺杂的TiO2凝胶溶液,使钨酸钠掺杂的TiO2均匀的负载在石墨烯上,成分更加均匀;
3)本发明采用不同孔径的石墨烯催化网组成的滤板来处理城市废水,可以通过简单的过滤过程实现废水的处理,利于实施。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。
实施例1
制备石墨烯催化网:
a)钨酸钠掺杂的TiO2凝胶的制备,取8重量份的钛酸丁酯和钨酸钠组成的混合物(钛酸丁酯与钨酸钠的摩尔比用量为8: 3)分散于100重量份的95%V的乙醇溶液中,高速搅拌分散得A溶液;将A溶液滴加到80重量份的冰水中,滴加过程中控制冰水中温度为3-5℃,滴加完毕后升温至20-25℃然后滴加3重量份的醋酸,搅拌10-20min,然后静置3-5天得钨酸钠掺杂的TiO2凝胶溶液;
b)石墨烯负载钨酸钠掺杂的TiO2,向钨酸钠掺杂的TiO2凝胶溶液中加入25重量份少层石墨烯,然后升温至80-90℃进行热处理1-2h,溶剂蒸干后置于高温煅烧炉中在450-500℃、氮气的氛围下进行高温煅烧得石墨烯负载钨酸钠掺杂的TiO2
c)制备石墨烯催化网,将煅烧所得的石墨烯负载钨酸钠掺杂的TiO2粉碎至粒径为3-5微米得催化剂微粉,将催化剂微粉与高温粘合剂混合后喷涂于聚四氟乙烯纤维过滤网,喷涂膜的厚度为1-2微米;然后进行200℃热处理得石墨烯催化网。
实施例2
实施例1制备的石墨烯催化网用于催化氧化处理城市废水,取废水处理厂未处理的水质为样本(城市废水的pH=6.2),进行氧化处理,包括以下步骤:
城市废水依次通过孔径为80微米和5微米的格栅去除废水中的漂浮物;去除漂浮物的废水进入沉淀池,沉淀去除颗粒物得初级处理废水;向初级处理废水中加入双氧水混合均匀得混合液,混合液中双氧水的浓度为25mg/L;混合液转至氧化池中,氧化池每隔10米设置过滤板(氧化池共计6个过滤板),废水流经过滤板得处理后的城市废水;
所述过滤板是由多层不同孔径的石墨烯催化网重叠构成的,过滤板中多层石墨烯催化网按照孔径的大小依次排列(石墨烯催化网的孔径范围为0.2-10微米,即石墨烯催化网的最大孔径为10微米,最小孔径为0.2微米),废水首先流经过滤板中孔径大的石墨烯催化网,最后流经孔径小的石墨烯催化网,每层石墨烯催化网的间隔为3-5cm;过滤板中石墨烯催化网的层数为10层。
对采用本发明石墨烯催化网氧化处理后的废水进行水质检测,结果如下表所示:
表1处理前后水质情况对比
项目 COD<sub>Cr</sub>(mg/L) BOD<sub>5</sub>(mg/L) 氨氮(mg/L) 总氮(mg/L)
废水处理前 6578 4320 4640 5260
废水处理后 1862 650 23 30
对比例1
石墨烯催化网的制备方法除了步骤b)中溶剂蒸干后置于高温煅烧炉中在280℃(或620℃)、氮气的氛围下进行高温煅烧得石墨烯负载钨酸钠掺杂的TiO2,然后按照实施例2中的处理方法进行处理废水,处理后的水质结果如下表:
表2 不同高温煅烧温度对催化氧化的影响
煅烧温度/℃ COD<sub>Cr</sub>(mg/L) BOD<sub>5</sub>(mg/L) 氨氮(mg/L) 总氮(mg/L)
280 5450 4030 3780 4150
620 5730 4210 3920 4310
注:废水水质同实施例2
以上结果表明在石墨烯催化网的制备过程中,高温煅烧的温度可以影响制备出的石墨烯催化网的催化性能,所以高温煅烧时450-500℃为宜。
对比例2
采用实施例1制备的石墨烯催化网,参照实施例2中的废水处理工艺进行处理,区别仅在于废水在去除漂浮物的废水进入沉淀池,沉淀去除颗粒物得初级处理废水后调节废水的pH由6.2调节至3.2或7.6,其余与实施例2处理方法一致,废水处理后水质结果如表3所示:
表3不同水质pH对石墨烯催化网催化性能的影响
水质pH COD<sub>Cr</sub>(mg/L) BOD<sub>5</sub>(mg/L) 氨氮(mg/L) 总氮(mg/L)
3.2 5610 3980 4210 4450
7.6 5200 3560 2860 3210
以上结果表明本发明制备的石墨烯催化网仅对pH成弱酸性的水质有好的处理效果,pH酸度过小或者过大均不利于催化氧化(pH值过高容易使双氧水结构遭到破坏,但是pH过低影响本发明催化氧化效果的原因未知)。
尽管已经详细描述了本发明的实施方式,但是应该理解的是,在不偏离本发明的精神和范围的情况下,可以对本发明的实施方式做出各种改变、替换和变更。

Claims (3)

1.一种石墨烯催化网在海绵城市废水处理中的用途,其特征在于:石墨烯催化网用于催化氧化处理海绵城市废水,所述城市废水的pH=5.6-6.5,具体包括以下步骤:
1)城市废水依次通过孔径为80微米和5微米的格栅去除废水中的漂浮物;
2)去除漂浮物的废水进入沉淀池,沉淀去除颗粒物得初级处理废水;
3)向初级处理废水中加入双氧水混合均匀得混合液,混合液转至氧化池中;
4)氧化池每隔10-50米设置过滤板,废水流经过滤板得处理后的城市废水;所述过滤板是由多层不同孔径的石墨烯催化网重叠构成的,过滤板中多层石墨烯催化网按照孔径的大小依次排列,废水首先流经过滤板中孔径大的石墨烯催化网,最后流经孔径小的石墨烯催化网,每层石墨烯催化网的间隔为3-5cm;
所述石墨烯催化网的制备方法,包括以下步骤:
a)钨酸钠掺杂的TiO2凝胶的制备,取8重量份的钛酸丁酯和钨酸钠组成的混合物分散于100重量份的95%V的乙醇溶液中,高速搅拌分散得A溶液;将A溶液滴加到80重量份的冰水中,滴加过程中控制冰水中温度为3-5℃,滴加完毕后升温至20-25℃然后滴加3重量份的醋酸,搅拌10-20min,然后静置3-5天得钨酸钠掺杂的TiO2凝胶溶液;
b)石墨烯负载钨酸钠掺杂的TiO2,向钨酸钠掺杂的TiO2凝胶溶液中加入25重量份少层石墨烯,然后升温至80-90℃进行热处理1-2h,溶剂蒸干后置于高温煅烧炉中在300-600℃、氮气的氛围下进行高温煅烧得石墨烯负载钨酸钠掺杂的TiO2
c)制备石墨烯催化网,将煅烧所得的石墨烯负载钨酸钠掺杂的TiO2粉碎至粒径为3-5微米得催化剂微粉,将催化剂微粉与高温粘合剂混合后喷涂于聚四氟乙烯纤维过滤网,喷涂膜的厚度为1-2微米;然后进行高温处理得石墨烯催化网;
所述步骤a)中钛酸丁酯与钨酸钠的摩尔比用量为8:2-3。
2.根据权利要求1所述的用途,其特征在于:步骤3)混合液中双氧水的含量为20-30mg/L。
3.根据权利要求1所述的用途,其特征在于:步骤4)过滤板中石墨烯催化网的层数为8-10层,石墨烯催化网的孔径范围为0.2-10微米。
CN201710292833.3A 2017-04-28 2017-04-28 一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途 Active CN107185517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710292833.3A CN107185517B (zh) 2017-04-28 2017-04-28 一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710292833.3A CN107185517B (zh) 2017-04-28 2017-04-28 一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途

Publications (2)

Publication Number Publication Date
CN107185517A CN107185517A (zh) 2017-09-22
CN107185517B true CN107185517B (zh) 2019-08-02

Family

ID=59872281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710292833.3A Active CN107185517B (zh) 2017-04-28 2017-04-28 一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途

Country Status (1)

Country Link
CN (1) CN107185517B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109704435B (zh) * 2019-01-07 2021-09-14 浙江财经大学 一种基于石墨烯光催化网的污水处理方法
CN109817937A (zh) * 2019-02-01 2019-05-28 哈尔滨工程大学 一种Ti2C衍生的TiO2复合石墨烯泡沫负极材料及其制备方法
CN110026172B (zh) * 2019-04-28 2022-01-04 江苏双良环境科技有限公司 一种在金属网上固化石墨烯基光催化剂的方法
CN109999777A (zh) * 2019-05-22 2019-07-12 湖南云亭烯新材料科技有限公司 一种石墨烯光催化膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515352A (zh) * 2003-08-28 2004-07-28 上海交通大学 负载型光催化净化网块的制备方法
CN103203253A (zh) * 2013-04-08 2013-07-17 黄河三角洲京博化工研究院有限公司 一种杂多酸盐/二氧化钛光催化剂的合成方法
CN104368324A (zh) * 2014-11-20 2015-02-25 重庆交通大学 介孔石墨烯/二氧化钛纳米复合材料的制备方法和应用
CN104383915A (zh) * 2014-11-19 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 负载型光催化剂Bi2WO6-TiO2/泡沫金属的制备方法
CN104874347A (zh) * 2015-04-02 2015-09-02 浙江工业大学 一种TiO2负载氮掺杂石墨烯海绵的制备方法及其应用
CN105536840A (zh) * 2015-12-08 2016-05-04 上海电力学院 石墨烯纳米带负载半导体的三维光催化材料的制备方法
CN106311206A (zh) * 2016-09-09 2017-01-11 北京优碳环能科技有限公司 二氧化钛/石墨烯复合纳米光催化剂及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515352A (zh) * 2003-08-28 2004-07-28 上海交通大学 负载型光催化净化网块的制备方法
CN103203253A (zh) * 2013-04-08 2013-07-17 黄河三角洲京博化工研究院有限公司 一种杂多酸盐/二氧化钛光催化剂的合成方法
CN104383915A (zh) * 2014-11-19 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 负载型光催化剂Bi2WO6-TiO2/泡沫金属的制备方法
CN104368324A (zh) * 2014-11-20 2015-02-25 重庆交通大学 介孔石墨烯/二氧化钛纳米复合材料的制备方法和应用
CN104874347A (zh) * 2015-04-02 2015-09-02 浙江工业大学 一种TiO2负载氮掺杂石墨烯海绵的制备方法及其应用
CN105536840A (zh) * 2015-12-08 2016-05-04 上海电力学院 石墨烯纳米带负载半导体的三维光催化材料的制备方法
CN106311206A (zh) * 2016-09-09 2017-01-11 北京优碳环能科技有限公司 二氧化钛/石墨烯复合纳米光催化剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WO3/TiO2-rGO复合光催化材料的制备及光催化性能研究;谭高玮;《中国优秀硕士学位论文全文数据库工程科技I辑》;20161215;第20-21页2.2.2-2.2.3节,第32页第3.3.3节

Also Published As

Publication number Publication date
CN107185517A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
CN107185517B (zh) 一种石墨烯催化网的制备方法及其在海绵城市废水处理中的用途
Wang et al. An integration of photo-Fenton and membrane process for water treatment by a PVDF@ CuFe2O4 catalytic membrane
CN102718295B (zh) 一种处理焦化废水的复配药剂及其制备方法
Stambolova et al. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye
Kim et al. Self-rotating photocatalytic system for aqueous Cr (VI) reduction on TiO2 nanotube/Ti mesh substrate
CN107983390B (zh) 一种表面印迹氮化碳/二氧化钛复合材料光催化膜及制备方法和用途
Ahmad et al. Structural characteristics of hazardous organic dyes and relationship between membrane fouling and organic removal efficiency in fluidized ceramic membrane reactor
Zhang et al. Ball-milled biochar incorporated polydopamine thin-film composite (PDA/TFC) membrane for high-flux separation of tetracyclic antibiotics from wastewater
Ye et al. Superhydrophilic photocatalytic g-C3N4/SiO2 composite membranes for effective separation of oil-in-water emulsion and bacteria removal
CN105457500A (zh) 一种碳纳米管/多孔陶瓷中空纤维复合超滤膜、制备方法及用途
CN113262645B (zh) 一种自清洁复合超滤膜及其制备方法
Binazadeh et al. An overview of photocatalytic membrane degradation development
Zangeneh et al. L-Histidine doped-TiO2-CdS nanocomposite blended UF membranes with photocatalytic and self-cleaning properties for remediation of effluent from a local waste stabilization pond (WSP) under visible light
Liu et al. Removal of antibiotics from black water by a membrane filtration-visible light photocatalytic system
CN105731711B (zh) 基于碳纳米管/氧化锌ptfe光催化膜的废水处理装置及其应用
Eloffy et al. Proposed approaches for coronaviruses elimination from wastewater: Membrane techniques and nanotechnology solutions
He et al. Multifunctional fly ash-based GO/geopolymer composite membrane for efficient oil-water separation and dye degradation
Li et al. Efficient bacterial inactivation with S-doped g-C3N4 nanosheets under visible light irradiation
CN106552615A (zh) 凹凸棒石粘土复合催化材料的制备方法
CN104826505B (zh) 一种纳米氧化石墨烯改性膜的制备方法及其应用
Shao et al. Disposal characteristics of sludge resulted from the treatment of municipal wastewater by heterogeneous photocatalytic technology.
Liu et al. Visible-light-driven nanoscale zero-valent iron loaded rGO/g-C3N4 for fluoroquinolone antibiotics degradation in water
CN113354059B (zh) 一种利用无定形红磷促进三价铁/过氧化氢体系降解环境污染物的方法
WO2016197397A1 (zh) 光催化降解 - 吸附材料的制备方法与应用
Liu et al. Fabrication of CFOx-PVDF catalytic membrane for removal of dyes in water and its mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200114

Address after: 415000 No. 3150 Dongting Road, Wuling District, Hunan, Changde

Patentee after: Hunan University of Arts and Science

Address before: 415000 No. 3150 Dongting Road, Wuling District, Hunan, Changde

Co-patentee before: Hunan emperor biotechnology Limited by Share Ltd

Patentee before: Hunan University of Arts and Science