CN107178928B - 一种冲渣水余热提取型溴化锂吸收式冷热水机组 - Google Patents
一种冲渣水余热提取型溴化锂吸收式冷热水机组 Download PDFInfo
- Publication number
- CN107178928B CN107178928B CN201710487243.6A CN201710487243A CN107178928B CN 107178928 B CN107178928 B CN 107178928B CN 201710487243 A CN201710487243 A CN 201710487243A CN 107178928 B CN107178928 B CN 107178928B
- Authority
- CN
- China
- Prior art keywords
- pipeline
- slag flushing
- refrigerant
- negative pressure
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 142
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 title claims abstract description 72
- 239000002893 slag Substances 0.000 title claims abstract description 57
- 238000011010 flushing procedure Methods 0.000 title claims abstract description 55
- 239000002918 waste heat Substances 0.000 title claims abstract description 29
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 28
- 238000000605 extraction Methods 0.000 title claims abstract description 21
- 238000011084 recovery Methods 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000003507 refrigerant Substances 0.000 claims description 64
- 239000007788 liquid Substances 0.000 claims description 36
- 239000000243 solution Substances 0.000 claims description 32
- 239000006096 absorbing agent Substances 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 239000000498 cooling water Substances 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims 10
- 238000010793 Steam injection (oil industry) Methods 0.000 claims 1
- 239000008236 heating water Substances 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 8
- 230000008020 evaporation Effects 0.000 abstract description 8
- 238000005057 refrigeration Methods 0.000 abstract description 8
- 238000009835 boiling Methods 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 239000003344 environmental pollutant Substances 0.000 abstract description 3
- 231100000719 pollutant Toxicity 0.000 abstract description 3
- 238000004378 air conditioning Methods 0.000 abstract description 2
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
- F25B15/02—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
- F25B15/06—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/004—Systems for reclaiming waste heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
本发明属于空调设备技术领域,具体涉及一种冲渣水余热提取型溴化锂吸收式冷热水机组,主要应用于冶金行业的高炉冲渣水的余热回收领域。该冷热水机组利用水的沸点会随着环境压力的降低而降低的特性,通过制造一个负压环境,使高炉冲渣水在该负压环境内发生闪蒸,产生的负压蒸汽作为溴化锂吸收式冷热水机组的驱动热源进行制冷和供暖,从而实现冶金行业高炉冲渣水的余热的回收。当环境压力降低到19KPa左右时,60℃以上的高炉冲渣水会达到沸点发生闪蒸,而在该工况下,溶解于水中的各类污染物并不会蒸发汽化,因此闪蒸出的负压蒸汽是清洁的水蒸气,不会对溴化锂吸收式冷热水机组造成污染和腐蚀。
Description
技术领域
本发明属于空调设备技术领域,具体涉及一种冲渣水余热提取型溴化锂吸收式冷热水机组,主要应用于冶金行业的高炉冲渣水的余热回收领域。
背景技术
随着能源的日益紧张,节能问题成为当今全球关注的焦点。在积极开发新能源的同时,也越来越重视回收和利用余热资源,高效的利用余热资源也是解决能源紧张的一种有效途径。在许多工业领域存在着大量的余热资源,冶金行业的高炉冲渣水中所含有的余热资源具有代表性,其温度范围为60-90℃,并且热水量巨大,属于工业低温废热源,如果不加以利用,会造成资源的浪费。
目前,冲渣水余热回收成功的案例,仅有一些地区用来冬季采暖,但从全年来看,冲渣水有效利用率还是非常低,既浪费能源,又污染周边环境。夏季制冷还未见到回收利用冲渣水余热的工程实践,主要是因为冲渣水的水质指标不合格,高炉炉渣主要成分为CAO、SIO、MGO、A803及少量的FEO,pH值大于7,略显碱性。因冲渣水含有大量的杂质,进行余热回收利用时极易造成各种换热设备的堵塞结垢和腐蚀。如何实现高炉冲渣水的余热回收利用,成为钢铁等冶金行业实施节能减排的重要课题。
发明内容
为解决以上问题,本发明提供一种冲渣水余热提取型溴化锂吸收式冷热水机组,利用水的沸点会随着环境压力的降低而降低的特性,通过制造一个负压环境,使高炉冲渣水在该负压环境内发生闪蒸,产生的负压蒸汽作为溴化锂吸收式冷热水机组的驱动热源进行制冷和供暖,从而实现冶金行业的高炉冲渣水的余热的回收。当环境压力降低到19KPa左右时,60℃以上的高炉冲渣水会达到沸点发生闪蒸,而在该工况下,溶解于水中的各类污染物并不会蒸发汽化,因此闪蒸出的负压蒸汽是清洁的水蒸气,不会对溴化锂吸收式冷热水机组造成污染和腐蚀。
本发明为实现上述目的所采用的技术方案是:提出一种冲渣水余热提取型溴化锂吸收式冷热水机组,包括吸收器1、蒸发器2、冷凝器3及再生器4,吸收器1与冷凝器3连接,吸收器1与蒸发器2连接,吸收器1依次经稀溶液泵5和热交换器6连接再生器4,还包括气液分离装置13及负压闪发器9,负压闪发器9底部设置有高炉冲渣水出口H,冲渣水由高炉冲渣水入口E进入气液分离装置13,冲渣水经过气液分离装置13分离不凝性气体后,进入负压闪发器9发生闪蒸,产生的负压蒸汽经过负压蒸汽管路K进入喷射装置11进行喷射,喷射装置11的输出蒸汽经驱动热源入口管路J进入再生器4作为溴化锂吸收式冷热水机组的驱动热源;
再生器4与吸收器1之间设置有冷暖转换蒸汽管路L,冷暖转换蒸汽管路L上设置第一冷暖转换阀16,再生器4与吸收器1之间设置有冷暖转换溶液管路M,冷暖转换溶液管路M上设置第二冷暖转换阀17,通过第一冷暖转换阀16和第二冷暖转换阀17的开闭实现溴化锂吸收式冷热水机组的冷暖切换。
所述稀溶液泵5和热交换器6的连接管路上设置有凝结水热回收器10,再生器4的驱动热源出口管路F连接凝结水热回收器10,凝结水经过凝结水热回收器10降温后,经过凝结水排水管路G与高炉冲渣水出口H汇流,返回到高炉中循环。
所述气液分离装置13与高炉冲渣水入口E连接,气液分离装置13的液体出口连接负压闪发器9,其气体出口经由第一抽气截止阀14连接真空泵12;负压闪发器9经由第二抽气截止阀15连接真空泵12,负压闪发器9蒸汽出口依次连接喷射装置11及再生器4的驱动热源入口管路J。
所述溴化锂吸收式冷热水机组上设置有冷剂调节系统,冷剂调节系统用于调节从蒸发器2到吸收器1的冷剂溢流量,从而调节机组的负荷,冷剂调节系统包括第一溢流阀18、第二溢流阀19、冷剂箱20、液位检测装置21、控制器22及连接管路和配线,蒸发器2的冷剂喷淋管路O上设置有一支第一冷剂旁通管路N,第一冷剂旁通管路N上安装有第一溢流阀18,第一冷剂旁通管路N出口连通吸收器1,连接冷凝器3和蒸发器2的冷凝水管路P与第一冷剂旁通管路N之间设置有第二冷剂旁通管路Q,第二冷剂旁通管路Q上安装有第二溢流阀19,蒸发器2上安装并连通冷剂箱20,冷剂箱20上设置有液位检测装置21,液位检测装置21与控制器22连接,控制器22与第一溢流阀18及第二溢流阀19及冷剂泵8连接。
本发明的有益效果体现在:利用水的沸点会随着环境压力的降低而降低的特性,使高炉冲渣水在负压环境内发生闪蒸,产生的负压蒸汽作为溴化锂吸收式冷热水机组的驱动热源进行制冷和供暖,实现了冶金行业的高炉冲渣水的余热的回收,同时闪蒸出的负压蒸汽是清洁的水蒸气,不会造成溴化锂吸收式冷热水机组造成污染和腐蚀。
附图说明
图1为本发明一种冲渣水余热提取型溴化锂吸收式冷热水机组的结构示意图;
图中:1-吸收器,2-蒸发器,3-冷凝器,4-再生器,5-稀溶液泵,6-热交换器,7-浓溶液泵,8-冷剂泵,9-负压闪发器,10-凝结水热回收器,11-喷射装置,12-真空泵,13-气液分离装置,14-第一抽气截止阀,15-第二抽气截止阀,16-第一冷暖转换阀,17-第二冷暖转换阀,18-第一溢流阀,19-第二溢流阀,20-冷剂箱,21-液位检测装置,22-控制器,A-冷却水入口,B-冷却水出口,C-冷温水入口,D-冷温水出口,E-高炉冲渣水入口,F-驱动热源出口管路,G-凝结水排水管路,H-高炉冲渣水出口,I-不凝性气体出口管路,J-驱动热源入口管路,K-负压蒸汽管路,L-冷暖转换蒸汽管路,M-冷暖转换溶液管路,N-第一冷剂旁通管路,O-冷剂喷淋管路,P-冷凝水管路,Q-第二冷剂旁通管路。
具体实施方式
下面结合附图对本发明进一步说明:
如图1所示的一种冲渣水余热提取型溴化锂吸收式冷热水机组,由吸收器1、蒸发器2、冷凝器3、再生器4、稀溶液泵5、热交换器6、浓溶液泵7、冷剂泵8、负压闪发器9、凝结水热回收器10、喷射装置11、真空泵12、气液分离装置13、第一抽气截止阀14、第二抽气截止阀15、第一冷暖转换阀16、第二冷暖转换阀17、第一溢流阀18、第二溢流阀19、冷剂箱20、液位检测装置21、控制器22、冷却水入口A、冷却水出口B、冷温水入口C、冷温水出口D、高炉冲渣水入口E、驱动热源出口管路F、凝结水排水管路G、高炉冲渣水出口H、不凝性气体出口管路I、驱动热源入口管路J、负压蒸汽管路K、冷暖转换蒸汽管路L、冷暖转换溶液管路M、第一冷剂旁通管路N、冷剂喷淋管路O、冷凝水管路P、第二冷剂旁通管路Q组成。
冷热水机组的驱动热源依次连接喷射装置11和负压闪发器9,负压闪发器9连接气液分离装置13, 高炉冲渣水由高炉冲渣水入口E进入气液分离装置13,冲渣水经过气液分离装置13分离不凝性气体后,进入负压闪发器9发生闪蒸,产生的负压蒸汽经过负压蒸汽管路K进入喷射装置11进行喷射,作为溴化锂吸收式冷热水机组的驱动热源进行制冷和供暖,从而实现冶金行业的高炉冲渣水的余热的回收。
负压闪发器9和气液分离装置13连接真空泵12、第一抽气截止阀14、第二抽气截止阀15、不凝性气体出口I,关闭第二抽气截止阀15,打开第一抽气截止阀14,通过真空泵12的运转,实现气液分离装置13中的不凝性气体由不凝性气体出口I排出;打开第二抽气截止阀15,关闭第一抽气截止阀14,通过真空泵12的运转,使负压闪发器9内压力降低到19KPa左右,利用水的沸点会随着环境压力的降低而降低的特性,使高炉冲渣水进入负压闪发器9后发生闪蒸,而在该工况下,溶解于水中的各类污染物并不会蒸发汽化,因此闪蒸出的负压蒸汽是清洁的水蒸气,不会对溴化锂吸收式冷热水机组造成污染和腐蚀。
负压闪发器9连接高炉冲渣水出口H,冲渣水在负压闪发器9内闪蒸,产生负压蒸汽的同时,冲渣水自身被冷却后通过高炉冲渣水出口H排出。
冷热水机组的冷暖转换蒸汽管路L上设置第一冷暖转换阀16、冷暖转换溶液管路M上设置第二冷暖转换阀17,通过第一冷暖转换阀16和第二冷暖转换阀17的开闭实现溴化锂吸收式冷热水机组的冷暖切换。关闭第一冷暖转换阀16和第二冷暖转换阀17,产生的负压蒸汽作为溴化锂吸收式冷热水机组的驱动热源进行制冷,驱动热源入口管路J连接再生器4,驱动热源出口管路F上设置凝结水热回收器10,吸收器1与冷凝器3连接,吸收器1与蒸发器2连接,吸收器1、再生器4、稀溶液泵5、热交换器6、浓溶液泵7、凝结水热回收器10组成溴化锂溶液循环,即吸收器1出来的溴化锂稀溶液通过稀溶液泵5进入凝结水热回收器10,被凝结水加热,再经过热交换器6,送往再生器4,溴化锂稀溶液在再生器4内被负压蒸汽加热浓缩形成溴化锂浓溶液,溴化锂浓溶液通过浓溶液泵7经过热交换器6换热后温度降低,最后回到吸收器1,滴淋在冷却水管上,吸收来自蒸发器2的冷剂蒸汽,成为稀溶液,同时冷剂水在蒸发器2的冷水管上滴淋,冷却进入蒸发器2的冷水,实现制冷。打开第一冷暖转换阀16和第二冷暖转换阀17,产生的负压蒸汽作为溴化锂吸收式冷热水机组的驱动热源进行供暖,吸收器1出来的溴化锂稀溶液通过稀溶液泵5进入凝结水热回收器10,被凝结水加热,再经过热交换器6,送往再生器4,溴化锂稀溶液在再生器4内被负压蒸汽加热浓缩,溴化锂浓溶液通过冷暖转换溶液管路M返回到吸收器1,与冷剂水混合变稀,同时再生器4产生的冷剂蒸汽通过冷暖转换蒸汽管路L进入吸收器1,吸收器1与蒸发器2连通,冷剂蒸汽在蒸发器2中加热温水,实现供暖。负压蒸汽作为该冷热水机组的驱动热源进行制冷或采暖,负压蒸汽被冷却成凝结水,凝结水经过凝结水热回收器10降温后,经过凝结水排水管路G与高炉冲渣水出口H汇流,返回到高炉再循环。
冷热水机组上设置冷剂调节系统,冷剂调节系统调节从蒸发器2到吸收器1的冷剂溢流量,从而调节机组的负荷,冷剂调节系统包括第一溢流阀18、第二溢流阀19、冷剂箱20、液位检测装置21、控制器22及连接管路和配线,在蒸发器2的冷剂喷淋管O引出一支第一冷剂旁通管路N,第一冷剂旁通管路N上安装有第一溢流阀18,第一冷剂旁通管路N出口连通吸收器1,冷凝水管路P与第一冷剂旁通管路N之间连接第二冷剂旁通管路Q,第二冷剂旁通管路Q上安装有第二溢流阀19,蒸发器2上安装并连通冷剂箱20,冷剂箱20上设置液位检测装置21,液位检测装置信号连接控制器22,输出的控制器信号连接第一溢流阀18和第二溢流阀19并根据检测信号实时控制第一溢流阀18和第二溢流阀19,而不需要驱动热源输入处的控制阀进行控制,通过液位电极时时监测蒸发器 2 内的冷剂水液位情况,并通过控制器22 对冷剂泵 8 进行运转保护,防止其发生气蚀问题。当机组运转时,控制器22接收冷水入口和出口温度信号,以及蒸发器2液位状态检测信号;根据冷水入口和出口温度和设定温度比较,并计算第一溢流阀18和第二溢流阀19的开度,即通过调节冷剂喷淋到蒸发器 2换热管的冷剂量来调节负荷,产生的少量冷剂蒸汽进入吸收器 1 被浓溶液吸收,并与部分溢流到吸收器1的冷剂水混合成稀溶液。如果蒸发器2液位低,冷剂泵8强制停止运转,否则正常运行。通过控制回路实时控制,根据负荷大小进行冷剂溢液量调节,通过调节冷剂的溢流量来调节负荷,不通过控制阀调节输入热量,使机组在部分负荷时既能稳定运转,保证用户的制冷需求,又能将冲渣水的废热通过该机组全部消耗掉,不影响用户的工艺运行。同时通过液位检测及控制器22形成的控制回路保护冷剂泵8,防止冷剂泵发生气蚀现象。
Claims (3)
1.一种冲渣水余热提取型溴化锂吸收式冷热水机组,包括吸收器(1)、蒸发器(2)、冷凝器(3)及再生器(4),吸收器(1)与冷凝器(3)连接,吸收器(1)与蒸发器(2)连接,吸收器(1)依次经稀溶液泵(5)和热交换器(6)连接再生器(4),其特征在于:还包括气液分离装置(13)及负压闪发器(9),负压闪发器(9)底部设置有高炉冲渣水出口(H),气液分离装置(13)与高炉冲渣水入口(E)连接,冲渣水由高炉冲渣水入口(E)进入气液分离装置(13),气液分离装置(13)的液体出口连接负压闪发器(9),其气体出口经由第一抽气截止阀(14)连接真空泵(12),负压闪发器(9)经由第二抽气截止阀(15)连接真空泵(12),负压闪发器(9)蒸汽出口依次连接喷射装置(11)及再生器(4)的驱动热源入口管路(J),冲渣水经过气液分离装置(13)分离不凝性气体后,进入负压闪发器(9)发生闪蒸,产生的负压蒸汽经过负压蒸汽管路(K)进入喷射装置(11)进行喷射,喷射装置(11)的输出蒸汽经驱动热源入口管路(J)进入再生器(4)作为溴化锂吸收式冷热水机组的驱动热源;再生器(4)与吸收器(1)之间设置有冷暖转换蒸汽管路(L),冷暖转换蒸汽管路(L)上设置第一冷暖转换阀(16),再生器(4)与吸收器(1)之间设置有冷暖转换溶液管路(M),冷暖转换溶液管路(M)上设置第二冷暖转换阀(17),通过第一冷暖转换阀(16)和第二冷暖转换阀(17)的开闭实现溴化锂吸收式冷热水机组的冷暖切换。
2.根据权利要求1所述的一种冲渣水余热提取型溴化锂吸收式冷热水机组,其特征在于:所述稀溶液泵(5)和热交换器(6)的连接管路上设置有凝结水热回收器(10),再生器(4)的驱动热源出口管路(F)连接凝结水热回收器(10),凝结水经过凝结水热回收器(10)降温后,经过凝结水排水管路(G)与高炉冲渣水出口(H)汇流,返回到高炉中循环。
3.根据权利要求1或2所述的一种冲渣水余热提取型溴化锂吸收式冷热水机组,其特征在于:所述溴化锂吸收式冷热水机组上设置有冷剂调节系统,冷剂调节系统用于调节从蒸发器(2)到吸收器(1)的冷剂溢流量,从而调节机组的负荷,冷剂调节系统包括第一溢流阀(18)、第二溢流阀(19)、冷剂箱(20)、液位检测装置(21)、控制器(22)及连接管路和配线,蒸发器(2)的冷剂喷淋管路(O)上设置有一支第一冷剂旁通管路(N),第一冷剂旁通管路(N)上安装有第一溢流阀(18),冷剂旁通管路(N)出口连通吸收器(1),连接冷凝器(3)和蒸发器(2)的冷凝水管路(P)与第一冷剂旁通管路(N)之间设置有第二冷剂旁通管路(Q),第二冷剂旁通管路(Q)上安装有第二溢流阀(19),蒸发器(2)上安装并连通冷剂箱(20),冷剂箱(20)上设置有液位检测装置(21),液位检测装置(21)与控制器(22)连接,控制器(22)与第一溢流阀(18)及第二溢流阀(19)及冷剂泵(8)连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710487243.6A CN107178928B (zh) | 2017-06-23 | 2017-06-23 | 一种冲渣水余热提取型溴化锂吸收式冷热水机组 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710487243.6A CN107178928B (zh) | 2017-06-23 | 2017-06-23 | 一种冲渣水余热提取型溴化锂吸收式冷热水机组 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107178928A CN107178928A (zh) | 2017-09-19 |
CN107178928B true CN107178928B (zh) | 2022-12-13 |
Family
ID=59844311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710487243.6A Active CN107178928B (zh) | 2017-06-23 | 2017-06-23 | 一种冲渣水余热提取型溴化锂吸收式冷热水机组 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107178928B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108387024B (zh) * | 2018-03-29 | 2024-04-12 | 冰山松洋制冷(大连)有限公司 | 一种低温余热回收型溴化锂吸收式冷热水系统 |
CN111486614A (zh) * | 2019-04-01 | 2020-08-04 | 哈尔滨工大金涛科技股份有限公司 | 一种高温废水二类溴化锂吸收式一体机 |
CN110657601A (zh) * | 2019-04-01 | 2020-01-07 | 哈尔滨工大金涛科技股份有限公司 | 一种废水直进式溴化锂吸收式热泵机组 |
CN111306836A (zh) * | 2019-04-01 | 2020-06-19 | 哈尔滨工大金涛科技股份有限公司 | 一种高温废水溴化锂吸收式制冷一体机 |
CN111306837A (zh) * | 2019-04-01 | 2020-06-19 | 哈尔滨工大金涛科技股份有限公司 | 一种溴化锂吸收式热泵机组 |
CN110657602A (zh) * | 2019-04-27 | 2020-01-07 | 哈尔滨工大金涛科技股份有限公司 | 一种废水直进式溴化锂吸收式热泵机组 |
CN111854219A (zh) * | 2019-04-27 | 2020-10-30 | 哈尔滨工大金涛科技股份有限公司 | 一种废水型溴化锂吸收式制冷机组 |
CN115369195B (zh) * | 2022-08-24 | 2023-08-22 | 山东青冶节能产业研究院有限公司 | 一种高炉冲渣水余热回收系统及其工作方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852521A (zh) * | 2010-06-10 | 2010-10-06 | 大连三洋制冷有限公司 | 一种负荷调节方法 |
CN201842857U (zh) * | 2010-10-28 | 2011-05-25 | 重庆钢铁(集团)有限责任公司 | 用于rh干式抽真空系统的双工位装置 |
CN104567079A (zh) * | 2014-12-31 | 2015-04-29 | 北京京诚科林环保科技有限公司 | 热水型溴化锂吸收式冷水机组 |
CN105890220A (zh) * | 2016-06-02 | 2016-08-24 | 松下制冷(大连)有限公司 | 直燃高效环保型溴化锂吸收式冷热水机组 |
CN106705686A (zh) * | 2016-12-26 | 2017-05-24 | 杨胜东 | 一种负压自冷却蒸汽喷射式热泵及其系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2766741B2 (ja) * | 1991-04-05 | 1998-06-18 | 三菱重工業株式会社 | 原子力発電所の排熱回収装置 |
JP6035478B2 (ja) * | 2013-10-30 | 2016-11-30 | オリオン機械株式会社 | 気液分離装置および吸引システム |
-
2017
- 2017-06-23 CN CN201710487243.6A patent/CN107178928B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852521A (zh) * | 2010-06-10 | 2010-10-06 | 大连三洋制冷有限公司 | 一种负荷调节方法 |
CN201842857U (zh) * | 2010-10-28 | 2011-05-25 | 重庆钢铁(集团)有限责任公司 | 用于rh干式抽真空系统的双工位装置 |
CN104567079A (zh) * | 2014-12-31 | 2015-04-29 | 北京京诚科林环保科技有限公司 | 热水型溴化锂吸收式冷水机组 |
CN105890220A (zh) * | 2016-06-02 | 2016-08-24 | 松下制冷(大连)有限公司 | 直燃高效环保型溴化锂吸收式冷热水机组 |
CN106705686A (zh) * | 2016-12-26 | 2017-05-24 | 杨胜东 | 一种负压自冷却蒸汽喷射式热泵及其系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107178928A (zh) | 2017-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107178928B (zh) | 一种冲渣水余热提取型溴化锂吸收式冷热水机组 | |
CN101509716A (zh) | 利用余热制冷方式提高冷却效率的电厂冷却系统 | |
CN102052799A (zh) | 一种利用余热生产低温水的装置 | |
CN108721924B (zh) | 一种水汽能潜热回馈溶液浓缩系统 | |
CN105444464A (zh) | 采暖常温排烟的烟气型溴化锂吸收式冷、热水机组 | |
CN105423594A (zh) | 采暖常温排烟的烟气热水型溴化锂吸收式冷、热水机组 | |
CN104089430A (zh) | 一种回收含湿气流余热的喷淋式开式吸收式热泵系统 | |
CN204329397U (zh) | 冷水机组 | |
CN102620489B (zh) | 一种带防冻溶液再生热回收装置的空调热泵机组 | |
CN210601824U (zh) | 油烟机余热回收系统 | |
CN111623550A (zh) | 直冷机 | |
CN204063674U (zh) | 溴化锂吸收式制冷机组 | |
CN2763755Y (zh) | 一种溴化锂吸收式双效汽车余热制冷机 | |
CN102692054B (zh) | 一种热源塔制冷供热专用机组 | |
CN102620474B (zh) | 一种带防冻溶液再生热回收装置的空调冷热水机组 | |
CN105423596A (zh) | 一种采暖高效烟气型溴化锂吸收式冷、热水机组 | |
CN206989496U (zh) | 一种余热回收型溴化锂吸收式冷热水机组 | |
CN212227430U (zh) | 直冷机 | |
CN212081679U (zh) | 一种乏汽直接利用型冷水机组 | |
CN208504788U (zh) | 一种环保高效烟气热水型溴化锂吸收式冷、热水机组 | |
CN203501533U (zh) | 超高温吸收式溴化锂热泵 | |
CN109059353B (zh) | 一种基于吸收式热泵的余热回收系统及余热回收工艺 | |
CN202648020U (zh) | 一种热源塔制冷供热专用机组 | |
CN202813876U (zh) | 一种喷淋液烘干式超低温风能热泵空调装置 | |
CN108362034B (zh) | 一种环保高效烟气型溴化锂吸收式冷、热水机组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 117 Huaihe West Road, Dalian Economic and Technological Development Zone, Liaoning Province, 116000 Patentee after: Bingshan Songyang Refrigeration (Dalian) Co.,Ltd. Country or region after: China Address before: 117 Huaihe West Road, Dalian Economic and Technological Development Zone, Liaoning Province, 116000 Patentee before: PANASONIC REFRIGERATION (DALIAN) CO.,LTD. Country or region before: China |
|
CP03 | Change of name, title or address |