CN107172372B - 一种应用于cmos图像传感器的高精度阵列模数转换器 - Google Patents

一种应用于cmos图像传感器的高精度阵列模数转换器 Download PDF

Info

Publication number
CN107172372B
CN107172372B CN201710269898.6A CN201710269898A CN107172372B CN 107172372 B CN107172372 B CN 107172372B CN 201710269898 A CN201710269898 A CN 201710269898A CN 107172372 B CN107172372 B CN 107172372B
Authority
CN
China
Prior art keywords
capacitor
analog
digital converter
comparator
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710269898.6A
Other languages
English (en)
Other versions
CN107172372A (zh
Inventor
常玉春
杨姝
刘明杭
慕雨松
徐弘基
李亮
孙睿智
臧范军
王仁广
张东旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710269898.6A priority Critical patent/CN107172372B/zh
Publication of CN107172372A publication Critical patent/CN107172372A/zh
Application granted granted Critical
Publication of CN107172372B publication Critical patent/CN107172372B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明公开了一种应用于CMOS图像传感器的高精度阵列模数转换器,属于模拟电路设计技术领域,包括采样保持电路、比较器、数模转换器、逐次逼近寄存器及数字纠错电路;所述模数转换器采用全差分结构,输入信号经过采样保持电路输出给电容阵列顶级板同时接入比较器输入端,比较器输出端与逐次逼近寄存器相连,逐次逼近寄存器根据比较器结果控制电容阵列并将其存储,输出给数字纠错电路,得到最终的二进制输出。本发明将电容阵列分为三段电容阵列,其中每一段电容阵列均采用非二进制冗余电容架构设计,对于电路的不完全建立、参考电压的抖动与噪声及动态比较器的亚稳态导致的比较错误有一定程度的容忍。还采用了动态比较器,没有静态电流,有效降低了整体电路的功耗。

Description

一种应用于CMOS图像传感器的高精度阵列模数转换器
技术领域
本发明属于模拟电路设计技术领域,具体涉及一种应用于CMOS图像传感器的阵列逐次逼近式模数转换器。
背景技术
随着CMOS技术的飞速发展,各种系统对模数转换器的要求也越来越高。目前ADC的发展趋势主要有以下两个方向:
1、向低功耗,面积小方向发展
随着集成电路的规模越来越大,功耗成为了各个性能类似的芯片比较的重要指标。对着CMOS技术的发展,CMOS的工艺不断进步,从几um下降到现在的几十nm,同时各个模块所要求的供电电压也在不断地降低。通过电源休眠工作方式,低电压等措施核技术,不断的改进功耗。这些都非常符合现在便携式电子设备的要求。
2、向高性能方向发展
通过新型的电路结构设计,结合现在不断进步的工艺,补偿等技术,ADC的性能也不断地被提高,向着高速、高精度方向发展。其中,逐次逼近式模数转换器(SAR ADC)是一种中高精度和中等速度的模数转换器,优点是面积小、功耗低、速度快等,常被应用于雷达、通信、图像传感等领域。逐次逼近式模数转换器(SAR ADC)通常采用电荷重分配型结构,由于电容型逐次逼近式模数转换器的单位电容总量与模数转换器(ADC)精度成指数关系,对于较高精度的逐次逼近式模数转换器(SAR ADC)而言,电容总量和芯片面积会急剧增加,开关电容切换时消耗的动态功耗也随之增大。
因此,对于高精度的电容型逐次逼近式模数转换器,通常需要使用大电容,这样造成的结果是:充放电功耗大,制作芯片所需要的面积大,经济成本提高等。同时由于模数转换器精度的提高,电容失配,比较器比较错误等对于模数转换器影响更大,这些都限制了逐次逼近式模数转换器的设计。
发明内容
为了解决现有技术中存在的问题,本发明的目的是提供一种应用于CMOS图像传感器(CMOS Image Sensor以下简称为CIS)的逐次逼近式模数转换器,这种架构的模数转换器能够实现高精度,同时有效减少了电容阵列所需面积。
本发明提供了一种应用于CMOS图像传感器的高精度阵列模数转换器,包括采样保持电路、比较器、数模转换器(ADC)、逐次逼近寄存器及数字纠错电路(DEC);所述模数转换器采用全差分结构,输入信号经过采样保持电路输出给电容阵列顶级板同时接入比较器输入端,比较器输出端与逐次逼近寄存器相连,逐次逼近寄存器根据比较器结果控制电容阵列并将其存储,输出给数字纠错电路,得到最终的二进制输出。
进一步地,所述的模数转换器采用基于电荷重分配原理的分段式电容架构,将模数转换器电容阵列分为三段,通过桥接电容进行连接。
进一步地,所述的每一段模数转换器电容阵列均采用非二进制的冗余电容阵列。
进一步地,所述的模数转换器采用电容顶级板采样,即采样之后立即进行比较,可以节省一半的电容阵列。同时在没有共模电平输入的情况下,可以保证逐次逼近的信号线在每次转换过程中最终在同一共模电压的情况下进行比较。
进一步地,所述的模数转换器中采用了相关反向开关的开关逻辑模块;其中,开关逻辑模块包括开关逻辑运算模块及开关逻辑控制模块;
所述开关逻辑运算模块,包括延迟模块、异或门、与非门、与门;其中,异或门第一输入端第二输入端分别为两次比较器的输出结果,异或门的输出连接与非门的第一输入端,逐次逼近寄存器输出的上升沿控制时钟经过延迟模块连接与非门的第二输入端,与非门的输出连接与门的第一输入端,模数转换器的采样时钟连接与门的第二输入端;
所述开关逻辑控制模块,包含两种不同的架构;第一种逻辑控制模块架构用于控制电容
Figure GDA0001330154220000021
的底极板电压,包含D触发器,反相器;比较器的输出结果连接D触发器的D端,逐次逼近寄存器的上升沿控制信号连接D触发器的C端,开关逻辑运算模块的与门输出端连接D触发器的RN端,D触发器的Q端连接反相器的输入端,反相器的输出端连接对应电容底极板;第二种逻辑控制模块架构用于控制电容C2、C3、C4、C5、C6、C8、C9、C10、C11、C12、C13、C14、C15的底极板电压,包含D触发器,延时模块,与门及反相器;比较器的输出结果连接D触发器的D端,逐次逼近寄存器的上升沿控制信号连接D触发器的C端,模数转换器采样时钟连接D触发器的RN端,D触发器的Q端连接与门的第一输入端,逻辑运算模块输出端连接与门的第二输入端,与门的输出端连接反相器的输入端,反相器的输出端连接对应电容的底极板。
所述开关逻辑即反复对同一电容进行操作,采用这种开关逻辑的电容阵列,在需要转换相同电容值(不同位)时,可以只转动同一个电容。这样可以避免由于工艺造成的电容失配引起的电容值误差对于模数转换器的影响,提高了模数转换器的线性度。
与现有技术相比,本发明具有如下优点:
1、采用了基于电荷重分配原理的分段式电容架构,整体架构设计采用了分段电容设计。每段电容均采用非二进制的电容阵列,并在此基础上进行电容阵列的权重调整,将较大的电容分裂为几个小的电容。这种结构的电容阵列可以为模数转换器提供一定的冗余,防止了由于比较器的错误比较结果和参考电压上的噪声对模数转换器的动态性能造成下降。同样高位、中位及低位电容阵列段间也采用冗余设计,使得模数转换器在模拟域向数字域转换的过程中不丢码,为之后的处理过程提供原始数据基础。
2、采用了非二进制的冗余电容架构。通过开关逻辑控制电路,整体操作中只需要转换少数电容的下级板电压,即可完成模数转换器的逐次逼近过程。减小了由于工艺问题导致的电容失配而引起的动态性能下降。并且我们设计的非二进制的冗余电容阵列架构设计可以通过简单的数字校准电路对模数转换器得到的数字码进行处理得到最终所需要的二进制码。
3、采用顶级板采样架构,即采样之后立即比较,可以节省一半的电容阵列。同时在没有共模电平输入的情况下,这样可以保证逐次逼近的信号线在每次模数转换过程最终都在共模电压稳定的情况下进行比较。这种情况下预放大器具有一定增益,等效比较器输入噪声为较小的恒定值,从而提高模数转换器的动态性能。
4、将动态比较器的输出信号,经过逻辑运算产生再经过延迟单元,得到的异步时钟重新输入至动态比较器控制动态比较器工作。
附图说明
图1:传统技术中的SAR ADC结构示意图;
图2:传统技术中的SAR ADC电路原理图;
图3:传统技术中的SAR ADC转换图(前五位);
图4:本发明提出的SAR ADC的整体架构图;
图5:本发明提出的SAR ADC的电路原理图;
图6:带有电容值的SAR ADC电路原理图;
图7:本发明的模数转换器与传统模数转换器的MonteCarlo仿真结果ENOB对比图;
图8:本发明的模数转换器与传统模数转换器MonteCarlo仿真结果rms DNL对比图。
具体实施方式
下面将结合说明书附图,对本发明做进一步的说明。
如图2所示,该SAR ADC采用全差分结构。以一端为例:在采样阶段,电容的底级板连接到Vip,电容顶级板连接到共模电压Vcm。接下来,最高位电容顶级板由共模电压Vcm转换到Vrefp,其他位电容顶级板转换到接Vrefn。这时比较器进行第一次比较并输出比较结果,如果Vip大于Vin,则最高位(简称MSB)值B1为二进制1,反之,为0,同时最高位电容顶级板转换到接Vrefn。然后次高位电容顶级板接到Vrefp,比较器进行第二次比较并输出比较结果。该ADC重复这个过程直至最低位(LSB)的数值确定。
图3为图2所示SAR ADC前5位Vip,Vin的转换过程。
采样阶段,P端所有电容底极板连接到电压Vip,N端所有电容底极板连接到电压Vin。开关Sp1,Sn1闭合,所有电容顶级板连接到共模电压Vcm。比较阶段,开关Sp1、Sn1断开,P端电容C1对应的开关Sp2接到Vrefp,P端其他位电容开关接到Vrefn,N端电容C1对应的开关Sn2接Vrefn,N端其他位电容开关接到Vrefp。如图3所示,第一次比较,对应的Bout输出第一位B1为数字码1,P端电容C2对应的开关Sp3由Vrefn转接到Vrefp,N端电容C2对应的开关Sn3由Vrefp转接到Vrefn。两端其他位电容开关状态保持不变。如图所示第二次比较结果为B2位输出数字码1,P端电容C3对应的开关Sp4由Vrefn转接到Vrefp,N端电容C3对应的开关Sn4由Vrefp转接到Vrefn。两端其他位电容开关状态保持不变。接下来进行第三次比较,B3为0。P端电容C3对应的开关Sp4由Vrefp转接到Vrefn,N端电容C3对应的开关Sn4由Vrefn转接到Vrefp。P端电容C4对应的开关Sp5由Vrefn转接到Vrefp,N端电容C4对应的开关Sn5由Vrefp转接到Vrefn。第四次比较,B4为1。P端电容C5对应的开关Sp6由Vrefn转接到Vrefp,N端电容C5对应的开关Sn6由Vrefp转接到Vrefn。第五次比较,B5为1。P端电容C6对应的开关Sp7由Vrefn转接到Vrefp,N端电容C6对应的开关Sn7由Vrefp转接到Vrefn。
以上为图3所示的传统模数转换器前五位(bit)比较过程。
图4为本发明提出的异步逐次逼近式模数转换器的系统框架图,包括采样保持电路、比较器、数模转换器(DAC)、逐次逼近寄存器及数字纠错电路(DEC);所述模数转换器采用全差分结构,输入信号经过采样保持电路输出给电容阵列顶级板同时接入比较器输入端,比较器输出端与逐次逼近寄存器相连,逐次逼近寄存器根据比较器结果控制电容阵列并将其存储,输出给数字纠错电路,得到最终的二进制输出。
如图5所示:本发明提出的SAR ADC为全差分结构。该ADC应用电容顶级板采样的分段式非二进制冗余电容阵列。本发明提出的SAR ADC相对于图2所示的传统SAR ADC,节省了一次电容转换,同时也节省了一半的电容阵列。SAR ADC接收差分输入信号Vip/Vin并输出数字码Dout[n+4:0],其中,输出数字码Dout[n:0]中的位(bit)n为最高有效位(MSB)。
如图5所示,MSB段电容C1被拆分为电容C1-1,C1-2。电容C1-1又分为两个电容:
Figure GDA0001330154220000051
电容
Figure GDA0001330154220000052
分别与电容C2,C3取值相同。电容C1-2又分为三个电容:
Figure GDA0001330154220000053
其分别与电容C4,C5,C6电容值相等。LSB1段电容C7被拆分为电容C7-1,C7-2。电容C7-1又分为两个电容:
Figure GDA0001330154220000054
电容
Figure GDA0001330154220000055
分别与电容C8,C9取值相同。电容C7-2又分为三个电容:
Figure GDA0001330154220000056
Figure GDA0001330154220000061
其分别与电容C10,C11,C12电容值相等。LSB2段电容C13,C14,C15,C16电容取值遵循二进制原理。
在下述过程中,我们将第一次比较结果称为B1,第二次比较结果称为B2,以此类推。
每一个数据转换周期包括采样阶段和比较阶段,其中比较阶段分为18次比较过程。
在采样阶段,开关Sp1,Sn1闭合。电容阵列对模拟输入信号Vip/Vin进行取样。MSB段所有电容的顶级板连接输入信号,电容C1-1、C1-2对应的开关Sp2、Sp3、Sp6、Sp7、Sp8、Sn2、Sn3、Sn6、Sn7、Sn8接到refn,电容C2、C3、C4、C5、C6对应的开关Sp4、Sp5、Sp9、Sp10、Sp11、Sn4、Sn5、Sn9、Sn10、Sn11接到电压refp上。LSB1段所有电容的顶级板连接输入信号,电容C7-1、C7-2对应的开关Sp12、Sp13、Sp16、Sp17、Sp18、Sn12、Sn13、Sn16、Sn17、Sn18接到refn,电容C8、C9、C10、C11、C12对应的开关Sp14、Sp15、Sp19、Sp20、Sp21、Sn14、Sn15、Sn19、Sn20、Sn21接到电压refp上。LSB2段所有电容的顶级板连接输入信号,电容C13、C14、C15对应的开关Sp22、Sp23、Sp24、Sn22、Sn23、Sn24、接到电压refp,电容C16的底极板始终连接电压refp。
采样阶段结束后,进入比较阶段,比较器将电容阵列采样之后的信号进行立即比较,开关Sp1,Sn1断开。在第一次比较过程,如果比较结果Vp>Vn,则B1=1,Vn端的电容
Figure GDA0001330154220000062
对应的开关Sn2,Sn3接电压refp,其他位电容开关保持不动。如果Vp<Vn,则B1=0,Vp端的电容
Figure GDA0001330154220000063
对应得开关Sp2,Sp3接电压refp,其他位电容开关保持不动。
第二次比较过程中:如果B1=1且B2=1,则Vp端电容C2对应的开关Sp4由接refp转接到refn,如果B1=1而B2=0,将电容
Figure GDA0001330154220000064
的开关Sn2接到电压refn,电容C2位的开关保持不动;如果B1=0而B2=1,将电容
Figure GDA0001330154220000065
的开关Sn2接到电压refn,电容C2位的开关保持不动,如果B1=0且B2=0则Vn端电容C2对应的开关Sn4由接refp转接到refn。
第三次比较过程:如果B1=1且B3=1,即Vp>Vn,将Vp端的电容C3对应的开关Sp5由refp接到refn,如果B1=1而B3=0,将Vn端的电容
Figure GDA0001330154220000071
对应的开关Sn3转接到refn,电容C3的开关状态保持不变;如果B1=0而B3=1,将Vp端的电容
Figure GDA0001330154220000072
对应的开关Sp3由refp接到refn,如果B1=0且B3=0,将Vn端电容C3对应的开关Sp5转接到refn。
第四次比较过程:如果Vp>Vn,B4=1,将Vn端的电容
Figure GDA0001330154220000073
对应的开关Sn6,Sn7,Sn8由refn接到refp;如果Vp<Vn,B4=0将Vp端的电容
Figure GDA0001330154220000074
Figure GDA0001330154220000075
对应的开关Sp6,Sp7,Sp8由refn接到refp。
第五次比较过程:如果B4=1且B5=1,将Vp端的电容C4对应的开关Sp9由refp接到refn,如果B4=1而B5=0,将Vn端的电容
Figure GDA0001330154220000076
对应的开关Sn6转接到refn;如果B4=0而B5=1,将Vp端的电容
Figure GDA0001330154220000077
对应的开关Sp6由refp接到refn,如果B4=0且B5=0,将Vn端电容C4对应的开关Sn9转接到refn。
第六次比较过程:如果B4=1且B6=1,将Vp端的电容C5对应的开关Sp10由refp接到refn,如果B4=1,B6=0,将Vn端的电容
Figure GDA0001330154220000078
对应的开关Sn7转接到refp;如果B4=0而B6=1,将Vp端的电容
Figure GDA0001330154220000079
对应的开关Sp7由refp接到refn,如果B4=0且B5=0,将Vn端电容C5对应的开关Sn10转接到refn。
第七次比较过程:如果B4=1且B7=1,将Vp端的电容C6对应的开关Sp11由refp接到refn,如果B4=1而B7=0,将Vn端的电容
Figure GDA00013301542200000710
对应的开关Sn8转接到refn;如果B4=0而B7=1,将Vp端的电容
Figure GDA00013301542200000711
对应的开关Sp8由refp接到refn,如果B4=0且B7=0,将Vn端电容C6对应的开关Sn11转接到refn。
第八次比较过程:如果Vp>Vn,B8=1,Vn端的电容
Figure GDA00013301542200000712
对应的开关Sn12,Sn13接电压refp。如果Vp<Vn,则B8=0,Vp端的电容
Figure GDA00013301542200000713
对应的开关Sp12,Sp13接电压refp。
第九次比较过程:如果B8=1且B9=1,则VP端电容C8对应的开关Sp14由接refp转接到refn,如果B8=1而B9=0,将电容
Figure GDA0001330154220000081
的开关Sn12接到电压refn;如果B8=0而B9=1,将电容
Figure GDA0001330154220000082
的开关Sn12接到电压refn;如果B8=0且B9=0,Vn端电容C8对应的开关Sn14由接refp转接到refn。
第十次比较过程:如果B8=1且B10=1,将Vp端的电容C9对应的开关Sp15由refp接到refn,如果B8=1而B10=0,将Vn端的电容
Figure GDA0001330154220000083
对应的开关Sn13转接到refn;如果B8=0而B10=1,将Vp端的电容
Figure GDA0001330154220000084
对应的开关Sp13由refp接到refn,如果B8=0且B10=0,将Vn端电容C9对应的开关Sn15转接到refn。
第十一次比较过程:如果Vp>Vn,B11=1,将Vp端的电容
Figure GDA0001330154220000085
对应的开关Sp16,Sp17,Sp18由refn接到refp;如果Vp<Vn,B11=0将Vn端的电容
Figure GDA0001330154220000086
对应的开关Sn16,Sn17,Sn18由refn接到refp。
第十二次比较过程:如果B11=1且B12=1,将Vp端的电容C10对应的开关Sp19由refp接到refn,如果B11=1而B12=0,将Vn端的电容
Figure GDA0001330154220000087
对应的开关Sn17转接到refn;如果B11=0而B12=1,将Vp端的电容
Figure GDA0001330154220000088
对应的开关Sp17由refp接到refn,如果B11=0且B12=0,将Vn端的电容C10对应的开关Sn19转接到refn。
第十三次比较过程:如果B11=1且B13=1,将Vp端的电容C11对应的开关Sp20由refp接到refn,如果B11=1而B13=0,将Vn端的电容
Figure GDA0001330154220000089
对应的开关Sn21转接到refn;如果B11=0而B13=1,将Vp端的电容
Figure GDA00013301542200000810
对应的开关Sp17由refp接到refn,如果B11=0且B13=0,将Vn端的电容C11对应的开关Sn20转接到refn。
第十四次比较过程:如果B11=1且B14=1,将Vp端的电容C12对应的开关Sp21由refp接到refn,如果B11=1而B14=0,将Vn端的电容
Figure GDA00013301542200000811
对应的开关Sn18转接到refn;如果B11=0而B14=1,将Vp端的电容
Figure GDA00013301542200000812
对应的开关Sp18由refp接到refn,如果B11=0且B14=0,将Vn端电容C12对应的开关Sn21转接到refn。
第十五次比较过程:如果Vp>Vn,B15=1,将Vp端的电容C13对应的开关Sp22由refp接到refn,如果Vp<Vn,B15=0,将Vn端的电容C13对应的开关Sn22转接到refn;
第十六次比较过程:如果Vp>Vn,B16=1,将Vp端的电容C14对应的开关Sp23由refp接到refn,如果Vp<Vn,B16=0,将Vn端的电容C14对应的开关Sn23转接到refn;
第十七次比较过程:如果Vp>Vn,B17=1,将Vp端的电容C15对应的开关Sp24由refp接到refn,如果Vp<Vn,B17=0,将Vn端的电容C15对应的开关Sn24转接到refn;
第十八次比较过程:如果Vp>Vn,B18=1,如果Vp<Vn,B18=0;
以上为所述模数转换器的整个工作过程。
采用这种开关逻辑的电容阵列,在需要转换相同电容值(不同位)时,可以只转动同一个电容。这样可以避免由于工艺造成的电容失配引起的电容值误差对于模数转换器的影响,提高了模数转换器的线性度。
图6给出了所述模数转换器每一位电容的取值。如图所示,所述模数转换器从整体上分为三段,通过桥接电容连接。为了避免寄生电容影响转换器的线性度,桥接电容在取值上也具有一定的冗余。三段电容阵列每段都采用非二进制冗余电容架构设计。
图7和图8为传统Monotonic SAR ADC与本发明提出的采用顶级板采样的分段式的非二进制电容阵列SAR在相同工艺电容matching情况下的10000次MonteCarlo仿真结果:ENOB的正态分布拟合及rms DNL(微分非线性误差)的对比图。
其中两种架构的Mean(ENOB)分别为13.78、13.63,对应的std(ENOB)为0.37、0.54,根据正态分布的3sigma原则,两种架构对应于我们设计的模数转换器阵列的ENOB范围分别为12.77-14.79,12.01-15.25,我们设计的模数转换器的整体性能相对于传统架构有部分提升,且应用于CIS中大面阵多数量的列转换器能保证整体模数转换器阵列性能提升,相互行之间的差异减小。

Claims (4)

1.一种应用于CMOS图像传感器的高精度阵列模数转换器,其特征在于,包括采样保持电路、比较器、数模转换器、逐次逼近寄存器及数字纠错电路;所述模数转换器采用全差分结构,输入信号经过采样保持电路输出给电容阵列顶级板同时接入比较器输入端,比较器输出端与逐次逼近寄存器相连,逐次逼近寄存器根据比较器结果控制电容阵列并将其存储,输出给数字纠错电路,得到最终的二进制输出;所述的模数转换器中采用了相关反向开关的开关逻辑模块;其中,开关逻辑模块包括开关逻辑运算模块及开关逻辑控制模块;
所述开关逻辑运算模块,包括延迟模块、异或门、与非门、与门;其中,异或门第一输入端第二输入端分别为两次比较器的输出结果,异或门的输出连接与非门的第一输入端,逐次逼近寄存器输出的上升沿控制时钟经过延迟模块连接与非门的第二输入端,与非门的输出连接与门的第一输入端,模数转换器的采样时钟连接与门的第二输入端;
所述开关逻辑控制模块,包含两种不同的架构;第一种逻辑控制模块架构用于控制电容
Figure FDA0002246902180000011
的底极板电压,包含D触发器,反相器;比较器的输出结果连接D触发器的D端,逐次逼近寄存器的上升沿控制信号连接D触发器的C端,开关逻辑运算模块的与门输出端连接D触发器的RN端,D触发器的Q端连接反相器的输入端,反相器的输出端连接对应电容底极板;第二种逻辑控制模块架构用于控制电容C2、C3、C4、C5、C6、C8、C9、C10、C11、C12、C13、C14、C15的底极板电压,包含D触发器,延时模块,与门及反相器;比较器的输出结果连接D触发器的D端,逐次逼近寄存器的上升沿控制信号连接D触发器的C端,模数转换器采样时钟连接D触发器的RN端,D触发器的Q端连接与门的第一输入端,逻辑运算模块输出端连接与门的第二输入端,与门的输出端连接反相器的输入端,反相器的输出端连接对应电容的底极板。
2.如权利要求1所述的一种应用于CMOS图像传感器的高精度阵列模数转换器,其特征在于,所述的模数转换器采用基于电荷重分配原理的分段式电容架构,将模数转换器电容阵列分为三段,通过桥接电容进行连接。
3.如权利要求2所述的一种应用于CMOS图像传感器的高精度阵列模数转换器,其特征在于,所述的每一段模数转换器电容阵列均采用非二进制的冗余电容阵列。
4.如权利要求1所述的一种应用于CMOS图像传感器的高精度阵列模数转换器,其特征在于,所述的模数转换器采用电容顶级板采样,即采样之后立即进行比较,可以节省一半的电容阵列, 同时在没有共模电平输入的情况下,可以保证逐次逼近的信号线在每次转换过程中最终在同一共模电压的情况下进行比较。
CN201710269898.6A 2017-04-24 2017-04-24 一种应用于cmos图像传感器的高精度阵列模数转换器 Expired - Fee Related CN107172372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710269898.6A CN107172372B (zh) 2017-04-24 2017-04-24 一种应用于cmos图像传感器的高精度阵列模数转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710269898.6A CN107172372B (zh) 2017-04-24 2017-04-24 一种应用于cmos图像传感器的高精度阵列模数转换器

Publications (2)

Publication Number Publication Date
CN107172372A CN107172372A (zh) 2017-09-15
CN107172372B true CN107172372B (zh) 2020-04-17

Family

ID=59812235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710269898.6A Expired - Fee Related CN107172372B (zh) 2017-04-24 2017-04-24 一种应用于cmos图像传感器的高精度阵列模数转换器

Country Status (1)

Country Link
CN (1) CN107172372B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649958A (zh) * 2018-05-11 2018-10-12 成都华微电子科技有限公司 Sar型adc电容重分布阵列归一化桥接电容电路
CN112737582B (zh) * 2020-12-25 2024-04-30 上海华力微电子有限公司 用于sar-adc中差分输出共模电压可控的dac电路及其控制方法
CN112994692B (zh) * 2021-02-26 2022-03-29 电子科技大学 基于亚稳态检测Pipelined-SAR ADC的级间增益和电容失配校准方法
CN113452372A (zh) * 2021-07-08 2021-09-28 西安电子科技大学芜湖研究院 一种模数转换器的分段电容阵列及切换方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662283A (zh) * 2008-12-30 2010-03-03 香港应用科技研究院有限公司 用作逐次逼近模数转换器和数模转换器的两用比较器/运算放大器
CN102843140A (zh) * 2011-06-24 2012-12-26 联发科技股份有限公司 逐次逼近寄存器模数转换器及模数转换方法
CN104617957A (zh) * 2015-01-30 2015-05-13 中国电子科技集团公司第二十四研究所 异步逐次逼近型模数转换器
CN104796148A (zh) * 2015-05-19 2015-07-22 中国电子科技集团公司第二十四研究所 一种高速低功耗逐次逼近型模数转换器
CN105049051A (zh) * 2015-07-28 2015-11-11 青岛歌尔声学科技有限公司 一种逐次逼近型模数转换电路及具该电路的电子设备
CN105720981A (zh) * 2014-12-17 2016-06-29 美国亚德诺半导体公司 用于模数转换器的微处理器辅助校准

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI434517B (zh) * 2011-11-04 2014-04-11 Ind Tech Res Inst 數位類比轉換器的元素的權重的估算方法、裝置及應用其之逐次逼近暫存器類比數位轉換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662283A (zh) * 2008-12-30 2010-03-03 香港应用科技研究院有限公司 用作逐次逼近模数转换器和数模转换器的两用比较器/运算放大器
CN102843140A (zh) * 2011-06-24 2012-12-26 联发科技股份有限公司 逐次逼近寄存器模数转换器及模数转换方法
CN105720981A (zh) * 2014-12-17 2016-06-29 美国亚德诺半导体公司 用于模数转换器的微处理器辅助校准
CN104617957A (zh) * 2015-01-30 2015-05-13 中国电子科技集团公司第二十四研究所 异步逐次逼近型模数转换器
CN104796148A (zh) * 2015-05-19 2015-07-22 中国电子科技集团公司第二十四研究所 一种高速低功耗逐次逼近型模数转换器
CN105049051A (zh) * 2015-07-28 2015-11-11 青岛歌尔声学科技有限公司 一种逐次逼近型模数转换电路及具该电路的电子设备

Also Published As

Publication number Publication date
CN107172372A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
US8508400B2 (en) Successive approximation register analog to digital converter and conversion method thereof
CN107172372B (zh) 一种应用于cmos图像传感器的高精度阵列模数转换器
Martens et al. A 69-dB SNDR 300-MS/s two-time interleaved pipelined SAR ADC in 16-nm CMOS FinFET with capacitive reference stabilization
Fan et al. High-resolution SAR ADC with enhanced linearity
Shen et al. A 6-bit 800-MS/s pipelined A/D converter with open-loop amplifiers
Krämer et al. A 14-bit 30-MS/s 38-mW SAR ADC using noise filter gear shifting
Matsuura Recent progress on CMOS successive approximation ADCs
Hu et al. A 0.6 V 6.4 fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40nm CMOS
Saisundar et al. A 1.8 V 1MS/s rail-to-rail 10-bit SAR ADC in 0.18 μm CMOS
CN108880546A (zh) 一种应用于逐次逼近模数转换器的电容校正方法
Fan Effective method to improve linearity of high-resolution SAR ADC
CN106209106A (zh) 一种提高混合电阻电容型模数转换器动态性能的位循环方法
CN110176930B (zh) 测量传输曲线跳变高度的多位分辨率子流水线结构
Jun et al. IC Design of 2Ms/s 10-bit SAR ADC with Low Power
Chung et al. A 24μW 12b 1MS/s 68.3 dB SNDR SAR ADC with two-step decision DAC switching
Waho Non-binary successive approximation analog-to-digital converters: A survey
CN107786206B (zh) 一种Pipeline SAR-ADC系统
Li et al. High-resolution and high-speed integrated cmos ad converters for low-power applications
Chen et al. A 10-b 500ms/s partially loop-unrolled sar adc with a comparator offset calibration technique
Mao et al. A configurable nonbinary 7/8-bit 800-400 MS/s SAR ADC in 65 nm CMOS
Fan et al. Capacitor recombination algorithm combined with LMS algorithm in 16-bit SAR ADC with redundancy
Chen et al. A successive approximation ADC with resistor-capacitor hybrid structure
Wawryn et al. Low power 9-bit pipelined A/D and 8-bit self-calibrated D/A converters for a DSP system
Chen et al. A 12-bit 1MS/s non-calibrating SAR A/D converter based on 90nm CMOS process
Lim et al. A non-binary CR hybrid DAC for 12 b 100 MS/s CMOS SAR ADCs with fast residue settling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200417

Termination date: 20210424

CF01 Termination of patent right due to non-payment of annual fee