CN107170853A - 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法 - Google Patents

一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法 Download PDF

Info

Publication number
CN107170853A
CN107170853A CN201710318230.6A CN201710318230A CN107170853A CN 107170853 A CN107170853 A CN 107170853A CN 201710318230 A CN201710318230 A CN 201710318230A CN 107170853 A CN107170853 A CN 107170853A
Authority
CN
China
Prior art keywords
cdznte
gan
thin film
substrate
composite construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710318230.6A
Other languages
English (en)
Other versions
CN107170853B (zh
Inventor
沈悦
张宗坤
徐宇豪
沈意斌
黄健
顾峰
王林军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710318230.6A priority Critical patent/CN107170853B/zh
Publication of CN107170853A publication Critical patent/CN107170853A/zh
Application granted granted Critical
Publication of CN107170853B publication Critical patent/CN107170853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法,其步骤为:(1)将商用CdZnTe多晶体研磨成粉末作为升华源;(2)镀有氮化镓(GaN)的单晶硅片作为衬底,再用氮气吹干,放入近空间升华反应室内;(3 将升华室内气压抽至5pa以下;开卤素灯将升华源和衬底加热到600℃、550℃;生长20min,冷却至室温,取出,即得到GaN/CdZnTe薄膜;(4)用蒸镀法向上述GaN/CdZnTe薄膜表面蒸镀金属电极,再将金属电极放在N2氛围下退火,使GaN/CdZnTe与金属电极之间形成更好的欧姆接触,即制得复合结构的GaN/CdZnTe薄膜紫外光探测器。该方法使用的GaN衬底可以保证复合结构的GaN/CdZnTe薄膜紫外光探测器在高温、强辐射环境下的使用,对紫外光也具有有良好的稳定性和光响应特性。

Description

一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法
技术领域
本发明涉及一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法,属于无机非金属材料制造工艺技术领域。
背景技术
紫外光探测技术是继红外和激光探测技术之后的新的军民两用的光电探测技术。目前,高灵敏度的紫外光探测大多采用的是对紫外光敏感的真空光电倍增管及相似的真空类型器件。但是,与固体型的探测器件相比,真空类型器件存在体积大和工作电压高的缺点;例如硅光电探测器件对可见光有响应,该特点在紫外光探测中就会成为缺点。此时,要求只对紫外信号进行探测,就需要昂贵的前置滤光设施。随着宽禁带半导体材料研究的逐步深入,研制出多种结构的紫外光探测器,如光导型、p-n结型、肖特基结型、p-i-n 型、异质结型、MSM型等紫外光探测器。实际应用中需要量子效率高、面积大、分辨率高、动态范围宽、速度快、噪声低的紫外光探测器。光电导探测器是利用半导体的光电导效应而制作的光探测器,是在半导体薄膜上淀积两个欧姆接触电极而形成的光电导探测器。其主要优点是内部增益较高,结构简单;主要缺点是响应速度慢,器件的暗电流和漏电流大。
CdZnTe单晶材料属于II-VI族化合物半导体,是由 CdTe与ZnTe按一定比例组合而成的固熔体化合物。该材料的晶格常数从CdTe的晶格常数到ZnTe 的晶格常数连续变化,禁带宽度也会在1.45eV到2.28eV之间连续变化。作为一种宽禁带半导体,CdZnTe适用于紫外光探测,且CdZnTe材料本身电阻率高,用作紫外光探测时有着较小的暗电流和漏电流。但是,传统的Si、GaAs等材料作为衬底,由于禁带宽度过小,无法保证紫外光探测器在高温、强辐射条件下的正常使用。
发明内容
本发明的目的在于克服已有技术存在的不足,提供一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法,该方法制备的GaN/CdZnTe薄膜紫外光探测器对紫外光具有良好的稳定性和响应特性。
为达到上述目的,本发明采用如下技术方案:
一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法,该方法包括如下步骤:
(1). CdZnTe多晶升华源的准备:将CdZnTe多晶体研磨成粉末作为升华源;
(2). 衬底预处理:采用镀有氮化镓(GaN)的单晶硅片作为衬底,将衬底分别用丙酮、酒精、去离子水分别清洗15分钟,洗去衬底表面的杂质和有机物,再用氮气吹干后放入近空间升华反应室内;
(3). CdZnTe薄膜的生长过程:开机械泵抽真空,将升华室内气压抽至5pa以下;开卤素灯将升华源和衬底分别加热到600℃、550℃;生长20min后,关闭卤素灯,待样品冷却至室温后,关闭机械泵,取出样品,即得到GaN/CdZnTe薄膜;
(4). GaN/CdZnTe薄膜紫外光探测器制作:采用蒸镀法向上述GaN/CdZnTe薄膜表面蒸镀厚为100nm的金电极,然后将金电极放在N2气体氛围下于450℃退火30min ,使GaN/CdZnTe薄膜与金电极之间形成更好的欧姆接触,最后制得复合结构的GaN/CdZnTe薄膜紫外光探测器。
所述的CdZnTe多晶体为峨眉半导体材料厂生产的商用CdZnTe多晶体基片。
本发明与现有技术相比较,具有的优点在于:
该方法由于采用氮化镓(GaN),其具有直接带隙,禁带宽度达到3.43eV,且热导高、化学惰性高、热稳定性好;该氮化镓(GaN)抗辐射能力强,便于制作欧姆接触、异质结构,用作生长CdZnTe的衬底,有利于快速生长大面积、高质量的CdZnTe薄膜;该方法使用的GaN衬底可以保证复合结构的GaN/CdZnTe薄膜紫外光探测器在高温、强辐射环境下的使用,对紫外光也具有有良好的稳定性和光响应。
附图说明
图1是本发明实施例制备的一种复合结构的GaN/CdZnTe薄膜紫外光探测器的表面扫描电镜(SEM)图;
图2为图1的截面剖面图;
图3是本发明实施例制备的一种复合结构的GaN/CdZnTe薄膜紫外光探测器的X衍射衍射(XRD)图;
图4是本发明实施例制备的一种复合结构的GaN/CdZnTe薄膜紫外光探测器的I-V曲线图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例
一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法,该方法包括如下步骤:
(1). CdZnTe多晶升华源的准备:将CdZnTe多晶体研磨成粉末作为升华源,所述的CdZnTe多晶体为峨眉半导体材料厂生产的商用CdZnTe多晶体基片;(2). 衬底预处理:采用镀有氮化镓(GaN)的单晶硅片作为衬底,将衬底分别用丙酮、酒精、去离子水分别清洗15分钟,洗去衬底表面的杂质和有机物,再用氮气吹干后放入近空间升华反应室内;
(3). CdZnTe薄膜的生长过程:开机械泵抽真空,将升华室内气压抽至5pa以下;开卤素灯将升华源和衬底分别加热到600℃、550℃;生长20min后,关闭卤素灯,待样品冷却至室温后,关闭机械泵,取出样品,即得到GaN/CdZnTe薄膜;
(4). GaN/CdZnTe薄膜紫外光探测器制作:采用蒸镀法向上述GaN/CdZnTe薄膜表面蒸镀厚为100nm的金电极,然后将金电极放在N 2气体氛围下于450℃退火30min ,使GaN/CdZnTe薄膜与金电极之间形成更好的欧姆接触,最后制得复合结构的GaN/CdZnTe薄膜紫外光探测器,如图1、图2所示。
从图1、2中可以看出,所示的CdZnTe薄膜在GaN衬底上生长良好,颗粒成型且较为致密,厚度也达到了45μm。
对本实施例制得的复合结构的GaN/CdZnTe薄膜紫外光探测器进行X射线衍射(XRD)分析测试,如图3所示, 图中,(111)晶面处、(333)晶面处所示的衍射峰分别对应的衍射角为23.980°、76.900°,从图3中看出,(111)晶面、(333)晶面处所示的衍射峰与10%Zn含量的CdZnTe的衍射峰匹配良好,且所得CdZnTe薄膜沿(111)晶向择优生长。
如图4所示,用4200-SCS半导体特性分析系统测量上述实施例制备的复合结构的GaN/CdZnTe薄膜紫外光探测器在黑暗和252nm的紫外光照射条件下的I-V 特性曲线,从图4中可以看出,本发明的复合结构的GaN/CdZnTe薄膜紫外光探测器与金属电极形成欧姆接触,接触良好,且施加10V偏压时,暗电流达到10-10A,光照下到达10-8A,光电流与暗电流之间的差值大,具有良好的响应特性。

Claims (2)

1.一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法,其特征在于,该方法包括如下步骤:
(1) CdZnTe多晶升华源的准备:将CdZnTe多晶体研磨成粉末作为升华源;
(2) 衬底预处理:采用镀有氮化镓(GaN)的单晶硅片作为衬底,将衬底分别用丙酮、酒精、去离子水分别清洗15分钟,洗去衬底表面的杂质和有机物,再用氮气吹干后放入近空间升华反应室内;
(3) CdZnTe薄膜的生长过程:开机械泵抽真空,将升华室内气压抽至5pa以下;开卤素灯将升华源和衬底分别加热到600℃、550℃;生长20min后,关闭卤素灯,待样品冷却至室温后,关闭机械泵,取出样品,即得到GaN/CdZnTe薄膜;
(4) GaN/CdZnTe薄膜紫外光探测器制作:采用蒸镀法向上述GaN/CdZnTe薄膜表面蒸镀厚为100nm的金电极,然后将金电极放在N2气体氛围下于450℃退火30min ,使GaN/CdZnTe薄膜与金电极之间形成更好的欧姆接触,最后制得薄膜复合结构的GaN/CdZnTe薄膜紫外光探测器。
2.根据权利要求1 所述的一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法,其特征在于,上述步骤(1)中所述的CdZnTe多晶体为峨眉半导体材料厂生产的商用CdZnTe多晶体基片。
CN201710318230.6A 2017-05-08 2017-05-08 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法 Active CN107170853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710318230.6A CN107170853B (zh) 2017-05-08 2017-05-08 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710318230.6A CN107170853B (zh) 2017-05-08 2017-05-08 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法

Publications (2)

Publication Number Publication Date
CN107170853A true CN107170853A (zh) 2017-09-15
CN107170853B CN107170853B (zh) 2019-02-22

Family

ID=59812564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710318230.6A Active CN107170853B (zh) 2017-05-08 2017-05-08 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法

Country Status (1)

Country Link
CN (1) CN107170853B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258081A (zh) * 2017-12-07 2018-07-06 上海大学 CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN109524491A (zh) * 2018-10-29 2019-03-26 上海大学 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709395A (zh) * 2012-06-12 2012-10-03 上海大学 一种CdZnTe薄膜紫外光探测器的制备方法
CN103500776A (zh) * 2013-09-26 2014-01-08 上海大学 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN103904160A (zh) * 2014-03-21 2014-07-02 上海大学 一种基于CdZnTe薄膜的X射线探测器的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709395A (zh) * 2012-06-12 2012-10-03 上海大学 一种CdZnTe薄膜紫外光探测器的制备方法
CN103500776A (zh) * 2013-09-26 2014-01-08 上海大学 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN103904160A (zh) * 2014-03-21 2014-07-02 上海大学 一种基于CdZnTe薄膜的X射线探测器的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUNNING GAO, ET AL.: "Study of Te aggregation at the initial growth stage of CdZnTe films deposited by CSS", 《APPL PHYS A MATERIALS SCIENCE PROCESSING》 *
K. YASUDA, ET AL.: "Growth Characteristics of CdZnTe Layers Grown by Metalorganic Vapor Phase Epitaxy Using Dimethylzinc, Dimethylcadmium, Diethyltelluride, and Dimethyltelluride as Precursors", 《JOURNAL OF ELECTRONIC MATERIALS》 *
RICHARD KODAMA, ET AL.: "Nitrogen Plasma Doping of Single-Crystal ZnTe and CdZnTe on Si by MBE", 《ELECTRONIC MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258081A (zh) * 2017-12-07 2018-07-06 上海大学 CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN109524491A (zh) * 2018-10-29 2019-03-26 上海大学 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法

Also Published As

Publication number Publication date
CN107170853B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
Yamada et al. Visible-blind wide-dynamic-range fast-response self-powered ultraviolet photodetector based on CuI/In-Ga-Zn-O heterojunction
EP0177918B1 (en) Uv detector and method for fabricating it
Tani et al. Phototransport effects in polyacetylene,(CH) x
Wang et al. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe 2/Ge heterojunction
CN108470675B (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN105742398A (zh) 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
Bhardwaj et al. High responsivity Mg x Zn 1–x O based ultraviolet photodetector fabricated by dual ion beam sputtering
Ma et al. High-photoresponsivity self-powered a-, ε-, and β-Ga2O3/p-GaN heterojunction UV photodetectors with an in situ GaON layer by MOCVD
CN111244203B (zh) 基于Ga2O3/CuI异质PN结的日光盲紫外探测器
Liu et al. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector
CN105789377A (zh) 一种基于氧化镓薄膜的新型火焰探测器及其制备方法
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN109873047A (zh) 一种新型异质结光子型红外探测器及制备方法及应用
Yıldırım et al. Self-powered ZrO2 nanofibers/n-Si photodetector with high on/off ratio for detecting very low optical signal
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
Gwozdz et al. Deep traps in the ZnO nanorods/Si solar cells
CN107170853B (zh) 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
Kaplan et al. Photoelectrical properties of fabricated ZnS/Si heterojunction device using thermionic vacuum arc method
CN110808296A (zh) 一种双层半导体结构的光电导型深紫外单色光电探测器
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
CN109449243A (zh) 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
AU6536899A (en) Visible-blind UV detectors
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant