CN107168053B - 一种具有随机滤波增益变化的有限域滤波器设计方法 - Google Patents

一种具有随机滤波增益变化的有限域滤波器设计方法 Download PDF

Info

Publication number
CN107168053B
CN107168053B CN201710306829.8A CN201710306829A CN107168053B CN 107168053 B CN107168053 B CN 107168053B CN 201710306829 A CN201710306829 A CN 201710306829A CN 107168053 B CN107168053 B CN 107168053B
Authority
CN
China
Prior art keywords
filter
matrix
random
follows
finite field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710306829.8A
Other languages
English (en)
Other versions
CN107168053A (zh
Inventor
刘磊
彭博
李辉
于博文
张捷
吕明
马立丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710306829.8A priority Critical patent/CN107168053B/zh
Publication of CN107168053A publication Critical patent/CN107168053A/zh
Application granted granted Critical
Publication of CN107168053B publication Critical patent/CN107168053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • External Artificial Organs (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供一种具有随机滤波增益变化的有限域滤波器设计方法,包括:步骤1,建立具有随机滤波增益变化和量化效应的离散时变随机非线性系统数学模型;步骤2,设计方差约束和H有限域滤波器。

Description

一种具有随机滤波增益变化的有限域滤波器设计方法
技术领域
本发明涉及一种滤波器设计方法,特别是一种具有随机滤波增益变化的有限域滤波器设计方法。
背景技术
滤波或状态估计是控制工程和信号处理领域的基础性问题,在航空航天、工业过程控制、自动控制系统中得到了广泛的应用。在实际过程中,通常使用估计误差小于某一上界作为滤波系统的性能指标。比如,在高机动目标的跟踪中,只需要估计误差小于某一上界,而并不需要最小,因此,对方差约束滤波问题的研究具有重要的意义。
网络技术在带来便利的同时,也从以下两个方面对滤波器的设计提出了挑战:一方面,网络技术实现了被控对象和滤波器在地理空间上的分离,滤波参数通过网络传输时,可能会发生微小的随机变化;另一方面,由于数字计算机存储系统的字长是有限的,滤波参数连续信号在进入计算机系统之前必须进行量化,所以会产生截断误差。
现有的滤波器设计研究大都默认滤波器参数能够准确实现,而实际情况中,由于环境变化、仪器精度、未知干扰等因素的影响,滤波器结构参数会发生摄动。Keer等证明,对于通过H2,H,l1及μ等方法得到的控制器,其参数极其微小的摄动会破坏系统的稳定性。
发明内容
本发明提供一种具有随机滤波增益变化的有限域滤波器设计方法,该方法对具有随机滤波增益变化和量化效应的一类离散时变随机非线性系统,提出基于方差约束下的H有限域滤波器设计方法。
一种具有随机滤波增益变化的有限域滤波器设计方法,包括:
步骤1,建立具有随机滤波增益变化和量化效应的离散时变随机非线性系统数学模型;
步骤2,设计方差约束和H有限域滤波器;
步骤3,验证方差约束和H有限域滤波器设计方法的有效性。
本发明使用方差约束和H技术来设计一类离散时变随机非线性系统的有限域滤波器。所设计的滤波器考虑了随机发生的网络诱导滤波增益变化,并利用扇形有界不确定性技术处理量化效应,降低系统运算的复杂度。综合运用Schur complement和S-procedure引理得到滤波器的LMI表达形式,并给出了有限域滤波器参数求解的迭代算法。同时本发明能够处理网络诱导参数增益变化和量化效应对滤波性能的影响,在滤波器LMIs表达形式有解的情况下,保证系统满足H性能指标和协方差性能指标。仿真结果验证了算法的有效性,说明达到了预期的设计目标。
下面结合说明书附图对本发明作进一步描述。
附图说明
图1是本发明的方法流程图。
图2是状态x1(k)及其估计
Figure BDA0001285948890000021
示意图。
图3是状态x2(k)及其估计
Figure BDA0001285948890000022
示意图。
图4是输出z(k)及其估计
Figure BDA0001285948890000023
示意图。
具体实施方式
一种具有随机滤波增益变化的有限域滤波器设计方法,按以下步骤实现:
步骤一、建立具有随机滤波增益变化和量化效应的离散时变随机非线性系统数学模型;
步骤二、设计方差约束和H有限域滤波器;
步骤三、验证方差约束和H有限域滤波器设计方法的有效性。
步骤一中所述建立具有随机滤波增益变化和量化效应的离散时变随机非线性系统数学模型具体为:
考虑定义在k∈[0,N]上的离散时变随机非线性系统:
Figure BDA0001285948890000024
其中
Figure BDA0001285948890000025
是状态向量,
Figure BDA0001285948890000026
是过程输出,
Figure BDA0001285948890000027
是待估信号。w(k)是定义在概率空间(Ω,F,Prob)上的一维零均值高斯白噪声序列并且满足
Figure BDA0001285948890000031
A(k),A1(k),B(k),C(k),D1(k),D2(k)是维数适当的已知实时变矩阵。
r(k)是取值为1或0且服从如下Bernoulli分布的随机变量:
Figure BDA0001285948890000032
其中
Figure BDA0001285948890000039
是已知常数。
f(k,x(k))是满足下面条件的非线性函数
||f(k,x(k))|2≤θ(k)||G(k)x(k)||2 (3)
其中k∈[0,N],θ(k)>0为已知正实数,G(k)是已知矩阵。
Figure BDA0001285948890000033
Figure BDA0001285948890000034
是l2[0,N]中的外部扰动且满足
Figure BDA0001285948890000035
其中W是一已知正定矩阵。
考虑测量信号的量化效应,定义量化器h(·)=[h1(·) h2(·) … hr(·)]T,则量化过程的对应关系为:h(y(k))=[h1(y(1)(k)) h2(y(2)(k)) … hr(y(r)(k))]T
量化器为对数量化器,并满足对称关系,即hj(-y)=-hj(y) (j=1,2,…,r),对每一个hj(·)(1≤j≤r),量化水平集具有如下形式:
Figure BDA0001285948890000036
其中χj(j=1,2,…,r)为量化密度。每个量化水平对应一个区间,则每个量化水平集正好覆盖整个区间。选取如下的量化函数:
Figure BDA0001285948890000037
其中
Figure BDA0001285948890000038
由上式可知:hj(y(j)(k))=(1+Δ(j)(k))y(j)(k)|Δ(j)(k)|≤δj。所以,可以将量化效应转化成扇形有界的不确定性。
定义Δ(k)=diag{Δ(1)(k),Δ(2)(k)…,Δ(r)(k)},Δ=diag{δ1,δ2,…,δr},则未知实值时变矩阵
Figure BDA0001285948890000041
满足F(k)FT(k)≤I。具有量化效应的测量输出可以表示如下:
h(y(k))=(I+Δ(k))y(k)=(I+Δ(k))(B(k)x(k)+D2(k)v(k)) (5)
考虑到随机发生的滤波增益变化,采用如下的时变滤波器结构:
Figure BDA0001285948890000042
其中
Figure BDA0001285948890000043
是状态估计,
Figure BDA0001285948890000044
是估计输出,Af(k),Bf(k),Cf(k)是待求的适维滤波器参数矩阵。参数不确定性ΔAf(k),ΔBf(k),ΔCf(k)定义为:
ΔAf(k)=HA(k)ΔA(k)EA(k)
ΔBf(k)=HB(k)ΔB(k)EB(k)
ΔCf(k)=HC(k)ΔC(k)EC(k)
矩阵Ho(k),Eo(k)已知,不确定矩阵Δo(k)满足
Figure BDA0001285948890000045
其中o=A,B,C。
随机变量α(k),β(k),γ(k)互不相关且服从Bernoulli分布,它们满足
Figure BDA0001285948890000046
Figure BDA0001285948890000047
Figure BDA0001285948890000048
其中
Figure BDA0001285948890000049
是已知实数。
Figure BDA00012859488900000410
得到如下增广系统
Figure BDA00012859488900000411
其中
Figure BDA00012859488900000412
Figure BDA00012859488900000413
Figure BDA0001285948890000051
Figure BDA0001285948890000052
Figure BDA0001285948890000053
增广系统(8)的状态协方差矩阵定义为
Figure BDA0001285948890000054
滤波器设计的目标是使得下列两个条件同时成立:
对于给定的实数γ>0,矩阵S>0及初始状态η(0),系统的H性能指标:
Figure BDA0001285948890000055
其中
Figure BDA0001285948890000056
对于给定的正定矩阵序列{Ψ(k)}0<k≤N,采样时刻k,估计误差协方差指标满足:
Figure BDA0001285948890000057
步骤二中所述设计方差约束和H有限域滤波器包括以下五个部分
在滤波器设计之前,先给出下面将要用到的引理:
引理1:(Schur complement)给定常数矩阵S1,S2和S3,其中
Figure BDA0001285948890000058
Figure BDA0001285948890000059
那么
Figure BDA00012859488900000510
当且仅当
Figure BDA00012859488900000511
引理2:(S-procedure)N=NT,H和E是适当维数的实矩阵,且FT(t)F(t)≤I。
则不等式N+HFE+(HFE)T<0,当且仅当存在一个正实数ε使得N+εHHT-1ETE<0,或者,等价地,
Figure BDA00012859488900000512
引理3:对于任意向量a,b∈Rn,有
abT+baT≤aaT+bbT (14)
引理4:对于任意向量a∈Rn,总有
aaT≤trace(aaT)I (15)
(一)H性能分析,为了方便讨论,做如下假设:
Figure BDA0001285948890000061
其中,γ为正实数,S为正定矩阵,{τ1(k)}0≤k≤N-1为实数序列,{Q(k)}1≤k≤N为正定矩阵序列,且满足满足Q(0)≤γ2[I -I]TS[I -I],
Figure BDA0001285948890000062
Figure BDA0001285948890000063
Figure BDA0001285948890000064
Figure BDA0001285948890000065
定义
Figure BDA0001285948890000066
代入(8),得到
Figure BDA0001285948890000067
其中
Figure BDA0001285948890000068
Figure BDA0001285948890000069
添加零项
Figure BDA00012859488900000610
Figure BDA00012859488900000611
得到
Figure BDA00012859488900000612
其中
Figure BDA00012859488900000613
根据(3),容易得到
Figure BDA0001285948890000071
对上式两边令k从0到N-1求和,得到
Figure BDA0001285948890000072
根据上面的不等式可以得到
Figure BDA0001285948890000073
注意到Λ<0,Q(N)>0及初始条件Q(0)≤γ2[I -I]TS[I -I],所以J<0,那么系统的H性能指标得到满足。
(二)方差性能分析,为了讨论的方便,做如下假设:
P(k+1)≥Φ(P(k)) (23)
其中{P(k+1)}0≤k≤N为正定矩阵序列,且满足
Figure BDA0001285948890000074
Figure BDA0001285948890000075
Figure BDA0001285948890000076
由(9),知
Figure BDA0001285948890000077
根据引理4,得到
Figure BDA0001285948890000078
及引理3,有
Figure BDA0001285948890000081
Figure BDA0001285948890000082
Figure BDA0001285948890000083
以,由(24),得到
Figure BDA0001285948890000084
运用归纳法,很显然
Figure BDA0001285948890000085
成立,令
Figure BDA0001285948890000086
那么
Figure BDA0001285948890000087
有如下不等式成立
Figure BDA0001285948890000088
那么系统的方差约束性能指标得到满足。
(三)在统一的框架下考虑系统方差约束和H性能指标,运用Schur Complement引理对(一)(二)的假设条件进行处理,得到假设条件如下等价表述:
Figure BDA0001285948890000089
Figure BDA0001285948890000091
其中,(29)对应于(16),(30)对应于(23)。
(四)方差约束和H有限域非脆弱滤波器设计,在(三)工作的基础上,综合运用S-procedure和Schur Complement引理,消除矩阵不等式(29)(30)中的非线性项,从而得到一组线性矩阵不等式(LMIs),如下所示:
Figure BDA0001285948890000092
Figure BDA0001285948890000093
Figure BDA0001285948890000094
其中,
Figure BDA0001285948890000095
Figure BDA0001285948890000096
Figure BDA0001285948890000097
Figure BDA0001285948890000098
Figure BDA0001285948890000099
Figure BDA00012859488900000910
Figure BDA0001285948890000101
Figure BDA0001285948890000102
Figure BDA0001285948890000103
Figure BDA0001285948890000104
Ξ5=[A1(k) 0 0 0 0 0],Ξ6=[C(k) -Cf(k) 0 0 0 0]
Figure BDA0001285948890000105
Figure BDA0001285948890000106
Figure BDA0001285948890000107
Figure BDA0001285948890000108
Figure BDA0001285948890000109
Figure BDA00012859488900001010
Figure BDA00012859488900001011
Figure BDA00012859488900001012
Figure BDA00012859488900001013
Figure BDA00012859488900001014
Figure BDA00012859488900001015
Figure BDA00012859488900001016
Figure BDA00012859488900001017
Figure BDA00012859488900001018
Figure BDA00012859488900001019
Figure BDA00012859488900001020
Figure BDA0001285948890000111
Figure BDA0001285948890000112
Figure BDA0001285948890000113
Figure BDA0001285948890000114
Figure BDA0001285948890000115
Figure BDA0001285948890000116
Figure BDA0001285948890000117
γ为正实数,S为正定矩阵,{Ψ(k)}0≤k≤N+1为方差上界矩阵序列,
Figure BDA0001285948890000118
Figure BDA0001285948890000119
为正定矩阵序列,
1(k)}0≤k≤N,{∈1(k)}0≤k≤N,{∈2(k)}0≤k≤N,{∈3(k)}0≤k≤N,{∈A(k)}0≤k≤N
{∈B(k)}0≤k≤N,{∈C(k)}0≤k≤N
Figure BDA00012859488900001110
为实数序列,
Figure BDA00012859488900001111
{P3(k)}1≤k≤N+1,{Af(k)}0≤k≤N,{Bf(k)}0≤k≤N,{Cf(k)}0≤k≤N为实值矩阵序列,且满足
Figure BDA00012859488900001112
Figure BDA00012859488900001113
Figure BDA00012859488900001114
下面介绍详细设计过程,首先对变量P(k)和Q(k)做如下分解:
Figure BDA0001285948890000121
Figure BDA0001285948890000122
Figure BDA0001285948890000123
因此,条件Q(0)≤γ2[I -I]TS[I -I]和
Figure BDA0001285948890000124
与(34)等价。
为了对(29)中的不确定参数Δ(k)进行估计,将(29)重写为如下等价式:
N(k)+H(k)F(k)E(k)+(H(k)F(k)E(k))T<0 (36)
其中
Figure BDA0001285948890000125
Figure BDA0001285948890000126
Figure BDA0001285948890000127
Figure BDA0001285948890000128
Figure BDA0001285948890000129
Figure BDA00012859488900001210
Figure BDA00012859488900001211
根据S-procedure引理,得到
Figure BDA0001285948890000131
很明显在(37)只存在不确定性参数ΔA(k),ΔB(k),ΔC(k),为了估计它们,可以将上式重写为
Figure BDA0001285948890000132
其中
Figure BDA0001285948890000133
Figure BDA0001285948890000134
Figure BDA0001285948890000135
Figure BDA0001285948890000136
Figure BDA0001285948890000137
Figure BDA0001285948890000138
Figure BDA0001285948890000139
Figure BDA00012859488900001310
Figure BDA0001285948890000141
Figure BDA0001285948890000142
Figure BDA0001285948890000143
Figure BDA0001285948890000144
Figure BDA0001285948890000145
Figure BDA0001285948890000146
Figure BDA0001285948890000147
那么,由SchurComplement和S-procedure引理,(29)等效于(31)。类似地,可以得到(30)等效于(32),至此完成了方差约束和H有限域非脆弱滤波器的设计。
(五)H和协方差有限域滤波器设计算法(NFD)概括如下
步骤1,对于给定的正实数γ>0,正定矩阵S>0,初始状态误差
Figure BDA0001285948890000148
及方差约束矩阵Ψ(0)。选取合适的初始值{Q1(0),Q2(0),Q3(0),P1(0),P2(0),P3(0)}满足初始条件(32),令k=0;
步骤2,时刻k,通过求解线性矩阵不等式组(31)-(33)得到矩阵
Figure BDA0001285948890000149
及滤波器矩阵参数Af(k),Bf(k),Cf(k);
步骤3,令k=k+1,调用更新表达式(35)得
Figure BDA00012859488900001410
步骤4,如果k<N,那么执行步骤2,否则执行下一步;
步骤5,结束。
步骤三中验证方差约束和H有限域滤波器设计方法有效性的具体方式如下:
通过给出一个数值仿真实例,利用Matlab/LMI工具箱对所设计的滤波器参数进行求解,并验证方差约束和H性能指标。
考虑如下离散系统:
Figure BDA0001285948890000151
零均值噪声ω(k)服从标准正态分布,非线性函数f(k,x(k))及外部扰动w(k),v(k)如
Figure BDA0001285948890000152
Figure BDA0001285948890000153
随机变量r(k),α(k),β(k),γ(k)的期望为
Figure BDA0001285948890000154
指数量化器h(·)的参数为χ1=0.3,χ2=0.6且不确定参数F(k)满足FT(k)F(k)≤I。
滤波器增益变化中的已知矩阵参数Ho(k),Eo(k) (o=A,B,C)如下
Figure BDA0001285948890000155
Figure BDA0001285948890000156
HC(k)=0.2,HC(k)=[0.1+0.2exp(-k) 0]
且不确定参数Δo(k)满足
Figure BDA0001285948890000157
初始状态x(0)=[0.26 -0.4]T,初始估计状态
Figure BDA00012859488900001511
正实数γ=0.5,正定矩阵S=diag{8,8},Ψ(0)=[1.4036,-0.0144;-0.0144,1.4036],
Ψ(k)=diag{0.2,0.2} (k=1,…,N),Q1(0)=diag{1,1},Q2(0)=diag{1,1},Q3(0)=0及
Figure BDA0001285948890000158
验证结果如图2-4所示,图2、3分别给出了状态变量x1(k)-x2(k)及它们的估计量
Figure BDA0001285948890000159
图4给出了输出z(k)和它的估计量
Figure BDA00012859488900001510
通过对仿真结果的计算得到H性能指标J=-0.1236,并验证了
Figure BDA0001285948890000161
对所有的k=0,…,N成立。仿真结果说明了本发明所提出的滤波器设计方法的有效性。
综上所述,本发明给出了一类离散时变随机非线性系统的方差约束和H有限域滤波器设计方法,所设计的滤波器具有随机发生的滤波增益变化且受量化作用影响。随机非线性现象是由服从Bernoulli分布规律的随机变量描述的在两种非线性扰动之间的二元切换;滤波增益的随机变化用来描述受网络带宽影响发生的滤波器参数的微小随机变化;量化器采用指数型,并通过一定的方法将量化不确定转化为扇形有界不确定以降低问题的复杂性。在非线性干扰和外部扰动为非零均值时,成功进行方差约束设计。通过解一组递推线性矩阵不等式,给出了使滤波误差系统同时满足方差约束和H性能指标的滤波器存在的充分条件。最后,通过一个仿真实例说明了所提出的滤波器设计方法的有效性。

Claims (1)

1.一种具有随机滤波增益变化的有限域滤波器设计方法,其特征在于,包括以下步骤:
步骤1,建立具有随机滤波增益变化和量化效应的离散时变随机非线性系统数学模型;
步骤2,设计H和L2-L有限域滤波器;
步骤1中所述建立具有随机滤波增益变化和量化效应的离散时变随机非线性系统数学模型具体为:
考虑定义在k∈[0,N]上的离散时变随机非线性系统:
Figure FDA0002566702190000011
其中
Figure FDA0002566702190000012
是状态向量;
Figure FDA0002566702190000013
是过程输出;
Figure FDA0002566702190000014
是待估信号;
Figure FDA0002566702190000015
Figure FDA0002566702190000016
是l2[0,N]中的外部扰动输入;A(k),C(k),L(k),D1(k),D2(k)是维数合适的已知实时变矩阵,r(k)是取值为1或0且服从如下Bemoulli分布的随机变量,期望值为
Figure FDA0002566702190000017
f(.,.):R+×Rn→Rn和g(.,.):R+×Rn→Rn是非线性向量函数且满足条件f(k,0)=0,g(k,0)=0及
Figure FDA0002566702190000018
其中矩阵B1(k),B2(k)已知,δ(k)是任意列向量;
具有量化效应的测量输出可以表示如下:
h(y(k))=(I+Δ(k))y(k)=(I+Δ(k))(C(k)x(k)+D2(k)v(k)) (3)
考虑到随机发生的滤波增益变化,采用如下的时变滤波器结构:
Figure FDA0002566702190000019
其中
Figure FDA00025667021900000110
是状态估计,
Figure FDA00025667021900000111
是估计输出,K(k)是待求的滤波器矩阵,随机发生的滤波器增益变化定义为:ΔK(k)=Ho(k)Δo(k)Eo(k),其中Ho,Eo已知,未知不确定矩阵Δo满足
Figure FDA0002566702190000021
与r(k)不相关的随机变量α(k)服从Bernoulli分布,它被用来描述随机发生的滤波增益变化,期望值为
Figure FDA0002566702190000022
Figure FDA0002566702190000023
η(k)=[xT(k) eT(k)]T,结合(1)、(3)、(4),得到如下增广系统:
Figure FDA0002566702190000024
其中
Figure FDA0002566702190000025
Figure FDA0002566702190000026
Figure FDA0002566702190000027
Figure FDA0002566702190000028
H(k,x(k))=[fT(k,x(k))gT(k,x(k))]T
Figure FDA0002566702190000029
Figure FDA00025667021900000210
Figure FDA00025667021900000211
Figure FDA00025667021900000212
滤波器设计的目标是使得下列两个条件同时成立:
对于给定的实数γ>0,矩阵S>0及初始状态η(0),系统的H性能指标:
Figure FDA00025667021900000213
其中
Figure FDA00025667021900000214
对于给定的实数δ>0,矩阵R>0及初始状态η(0),系统的L2-L性能指标:
Figure FDA00025667021900000215
其中
Figure FDA00025667021900000216
步骤2包括以下五个部分:
(一)H性能分析,定义J1(k):=ηT(k+1)Q(k+1)η(k+1)-ηT(k)Q(k)η(k),代入(5),得到
Figure FDA0002566702190000031
在上式两边添加零项
Figure FDA0002566702190000032
并考虑
Figure FDA0002566702190000033
得到
Figure FDA0002566702190000034
在式(9)两边对k从0到N-1求和,得到
Figure FDA0002566702190000035
从而得到,满足H性能的充分条件;
(二)L2-L性能分析,定义
Figure FDA0002566702190000036
运用与H性能分析中类似的处理方法,得到
Figure FDA0002566702190000037
假设Ω<0及
Figure FDA0002566702190000038
得到
Figure FDA0002566702190000039
从而得到满足L2-L性能的充分条件;
(三)在统一的框架下考虑系统H和L2-L性能指标,运用Schur Complement引理对(一)(二)满足性能指标的充分条件进行处理,得到充分条件如下等价表述,是(四)滤波器设计的基础工作;
Figure FDA00025667021900000310
Figure FDA0002566702190000041
Figure FDA0002566702190000042
(四)H和L2-L有限域非脆弱滤波器设计,在(三)工作的基础上,综合运用S-procedure和Schur Complement引理,消除矩阵不等式中的非线性项,从而得到一组LMIs,如下所示:
Figure FDA0002566702190000043
Figure FDA0002566702190000044
Figure FDA0002566702190000045
其中
Figure FDA0002566702190000046
Figure FDA0002566702190000047
Figure FDA0002566702190000048
Figure FDA0002566702190000049
Figure FDA0002566702190000051
Figure FDA0002566702190000052
Figure FDA0002566702190000053
Figure FDA0002566702190000054
Figure FDA0002566702190000055
Figure FDA0002566702190000056
Figure FDA0002566702190000057
Figure FDA0002566702190000058
Figure FDA0002566702190000059
Figure FDA00025667021900000510
Figure FDA00025667021900000511
Figure FDA00025667021900000512
Figure FDA00025667021900000513
Figure FDA00025667021900000514
γ和δ为正实数,S和R为正定矩阵,{∈1(k)}0≤k≤N-1,{∈2(k)}0≤k≤N-1,{ε1(k)}0≤k≤N-1,{ε2(k)}0≤k≤N-1,{ε3(k)}0≤k≤N-1及{ε4(k)}0≤k≤N-1为正实数序列,
Figure FDA00025667021900000515
Figure FDA00025667021900000516
为正定矩阵序列,{K(k)}0≤k≤N-1为实值矩阵簇,且满足
Figure FDA00025667021900000517
Figure FDA00025667021900000518
(五)H和L2-L有限域非脆弱滤波器设计求解算法概括如下
步骤5.1,给定正实数γ>0,δ>0,正定矩阵S>0,R>0,L(0),选取合适的初始值{Q1(0),Q2(0),P1(0),P2(0)}满足初始条件(19),令k=0;
步骤5.2,在时刻k求解线性矩阵不等式组(16)-(18)得到矩阵
Figure FDA0002566702190000061
及滤波器矩阵参数K(k);
步骤5.3,令k=k+1,调用更新表达式(20)得到{Q1(k),Q2(k),P1(k),P2(k)};
步骤5.4,如果k<N,那么跳到步骤5.2,否则进入下一步;
步骤5.5,结束。
CN201710306829.8A 2017-05-04 2017-05-04 一种具有随机滤波增益变化的有限域滤波器设计方法 Active CN107168053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710306829.8A CN107168053B (zh) 2017-05-04 2017-05-04 一种具有随机滤波增益变化的有限域滤波器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710306829.8A CN107168053B (zh) 2017-05-04 2017-05-04 一种具有随机滤波增益变化的有限域滤波器设计方法

Publications (2)

Publication Number Publication Date
CN107168053A CN107168053A (zh) 2017-09-15
CN107168053B true CN107168053B (zh) 2020-10-30

Family

ID=59814011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710306829.8A Active CN107168053B (zh) 2017-05-04 2017-05-04 一种具有随机滤波增益变化的有限域滤波器设计方法

Country Status (1)

Country Link
CN (1) CN107168053B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847829B (zh) * 2018-07-23 2022-03-04 哈尔滨理工大学 一种具有随机发生不确定性和量化测量的非线性滤波方法
CN110262245A (zh) * 2019-07-02 2019-09-20 南京理工大学 基于事件触发机制的多智能体系统的控制器设计方法
CN113655715B (zh) * 2021-07-27 2023-02-28 中国地质大学(武汉) 一种多信道离散网络控制系统的性能优化方法
CN113625570A (zh) * 2021-08-16 2021-11-09 南京理工大学 一种量测异常下非线性保概率包络约束滤波器的设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436179A (zh) * 2011-11-25 2012-05-02 中国电力科学研究院 一种线性不确定性系统鲁棒故障检测滤波器设计方法
CN102667755A (zh) * 2009-09-03 2012-09-12 华莱士·E.·拉里莫尔 通过迭代线性子空间计算对时变、变参数和非线性系统进行实验建模的方法和系统
CN106227700A (zh) * 2016-08-15 2016-12-14 江南大学 一种网络化控制系统的非脆弱耗散滤波方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667755A (zh) * 2009-09-03 2012-09-12 华莱士·E.·拉里莫尔 通过迭代线性子空间计算对时变、变参数和非线性系统进行实验建模的方法和系统
CN102436179A (zh) * 2011-11-25 2012-05-02 中国电力科学研究院 一种线性不确定性系统鲁棒故障检测滤波器设计方法
CN106227700A (zh) * 2016-08-15 2016-12-14 江南大学 一种网络化控制系统的非脆弱耗散滤波方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Robust H∞ and l2-l∞ Filtering for Discrete Time Delay Systems with Nonlinear Disturbances;huijun Gao,etc;《2004 8th International Conference on Control Automation robotics and Vision》;20041209;全文 *
具有区域极点和方差约束的Delta算子系统鲁棒H∞滤波;张端金等;《控制与决策》;20040131;正文第12-15页 *
基于不完全测量信息的非线性随机系统的滤波与控制;沈波;《中国优秀硕士学位论文全文数据库》;20110715(第7期);正文第2章 *

Also Published As

Publication number Publication date
CN107168053A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107168053B (zh) 一种具有随机滤波增益变化的有限域滤波器设计方法
Sathishkumar et al. Non-fragile filtering for singular Markovian jump systems with missing measurements
Chang et al. Robust static output feedback H∞ control for uncertain fuzzy systems
Liu et al. Asynchronous output feedback dissipative control of Markovian jump systems with input time delay and quantized measurements
CN108733031B (zh) 一种基于中间估计器的网络控制系统故障估计方法
Bigdeli The design of a non-minimal state space fractional-order predictive functional controller for fractional systems of arbitrary order
CN109523155B (zh) 一种蒙特卡洛及最小二乘支持向量机的电网风险评估方法
Braga et al. Discretization and event triggered digital output feedback control of LPV systems
CN110365311B (zh) 随机传感器饱和下多率时变网络系统滤波器的设计方法
CN110852417B (zh) 面向物联网应用的单深度神经网络模型鲁棒性提升方法
Zheng et al. Asynchronous nonfragile H∞ filtering for discrete-time nonlinear switched systems with quantization
Sentoni et al. State‐space nonlinear process modeling: Identification and universality
Luo et al. A new approach to generalized dissipativity analysis for fuzzy systems with coupling memory sampled-data control
CN104932269B (zh) 一种考虑控制输入约束的鲁棒非脆弱保性能控制方法
Zhao et al. Quantized recursive filtering for networked systems with stochastic transmission delays
Zhang et al. Sliding mode control for networked systems with randomly varying nonlinearities and stochastic communication delays under uncertain occurrence probabilities
CN107065557B (zh) 一种具有随机滤波增益变化的有限域滤波器设计方法
Jing Identification of a deterministic Wiener system based on input least squares algorithm and direct residual method
Tiwari et al. Computationally efficient data-driven discovery and linear representation of nonlinear systems for control
Barbosa et al. Equivalence of non‐linear model structures based on Pareto uncertainty
CN115183969A (zh) 一种bwbn模型的参数估计方法及系统
Zhao et al. Finite-time stochastic input-to-state stability and observer-based controller design for singular nonlinear systems
Vörös Modeling and identification of nonlinear cascade and sandwich systems with general backlash
Jumaev et al. Microcontroller device for increasing the accuracy of PID regulators
CN109474258B (zh) 基于核极化策略的随机傅立叶特征核lms的核参数优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant