CN107164657A - 一种石墨烯/La‑Fe‑B系低温储氢合金复合材料的制备方法 - Google Patents

一种石墨烯/La‑Fe‑B系低温储氢合金复合材料的制备方法 Download PDF

Info

Publication number
CN107164657A
CN107164657A CN201710450339.5A CN201710450339A CN107164657A CN 107164657 A CN107164657 A CN 107164657A CN 201710450339 A CN201710450339 A CN 201710450339A CN 107164657 A CN107164657 A CN 107164657A
Authority
CN
China
Prior art keywords
graphene
hydrogen storage
low temperature
alloy
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710450339.5A
Other languages
English (en)
Other versions
CN107164657B (zh
Inventor
李书存
郭承晓
尹伟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201710450339.5A priority Critical patent/CN107164657B/zh
Publication of CN107164657A publication Critical patent/CN107164657A/zh
Application granted granted Critical
Publication of CN107164657B publication Critical patent/CN107164657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种石墨烯/La‑Fe‑B系低温储氢合金复合材料的制备方法,它主要包括如下步骤:(1)制备石墨烯,利用改进的hummers方法,按石墨粉:NaNO3:KMnO4:浓硫酸的质量百分比为:1:1~2:6~8:87~97的比例混合反应后加入HCL,陈化、去除杂质、冲洗、抽滤,微波1min;(2)制备合金粉末,将La、Fe、Ni、Mn、B、Al,按照相应配比置于熔炼炉中,采用常规熔炼方法,制成成分均匀的La15Fe2Ni72Mn7B2Al2合金锭,自然冷却后破碎;(3)按石墨烯与合金粉末的质量百分比为1~5:95~99的比例,将石墨烯和合金粉末球磨1小时,制得石墨烯/La‑Fe‑B系低温储氢合金复合材料。本发明制得的低温储氢合金复合材料在低温条件下仍然能保持良好的放电性能。

Description

一种石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法
技术领域
本发明属于材料技术领域,特别涉及一种储氢合金的制备方法。
背景技术
由于环境污染日益严重和传统能源危机的产生,世界上许多国家大规模地开展了新型能源的研究和开发工作。氢能是研究的重要能源之一。开发合适的储氢材料是解决氢能技术规模化应用所面临的氢的规模制备、储存和运输等科学挑战的关键问题。储氢合金的储氢密度要高于液态氢甚至固态氢,使用时占用空间小,作为储氢介质是非常合适的。
自储氢合金被首次提出以来,就以其高能量密度,循环的稳定性高,高倍率的良好性能以及其对环境的无污染受到全世界的广泛关注。目前储氢材料的研究已经取得了一定的成果,但这些成果大部分是针对常温下的材料性能或是高温性能,而对于低温下的储氢材料的电化学性能关注相对较少。大多数电极材料在0℃以下情况下变得容量低、衰减快,甚至出现放不出电的情况。例如,AB5型(LaNi5系列)合金负极材料,在-25℃以下,放电容量急剧衰减,在-40℃时,几乎放不出电.我国“三北”(东北,西北,华北)地区(占国土面积1/3以上),欧洲和北美地区(占世界面积1/3),冬季气温低到-35℃至-40℃,急需研制能在-40℃应用的MH-Ni电池新型负极材料。
发明内容
本发明的目的在于提供一种在低温条件下仍然能保持良好的放电性能的石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法。
本发明的技术方案如下:
(1)制备石墨烯
利用改进的hummers方法制成氧化石墨烯,按石墨粉:NaNO3:KMnO4:浓硫酸的质量百分比为:1:1~2:6~8:87~97的比例,将石墨粉和硝酸钠混合均匀,加入浓度为98%的浓硫酸,在剧烈搅拌的同时少量分批的加入高锰酸钾,在冰水浴中搅拌、反应2h,在此期间一直保持剧烈搅拌;然后将温度控制在35~50℃,继续搅拌的同时按照每100g上述混合物加入0~200ml蒸馏水,搅拌、反应时间为0.75~3h;继续升温至80~95℃,每100g上述混合物再加入0~400ml蒸馏水,反应15~30min;自然降至75~85℃温度后,按每95~105g反应物中加入10ml H2O2溶液的比例,用滴管少量多次向反应物加入浓度为30%的H2O2溶液,直至反应物无冒泡且溶液成金黄色;
静置0.5~1h,按每1000mL HCL加入200~300g金黄色溶液的比例,向上述金黄色溶液加入的质量分数为5%的HCL,陈化两天,去除杂质;
将陈化过后的物质用去离子水冲洗至中性,抽滤,40~60℃干燥,即可得到氧化石墨。
将干燥的氧化石墨放入坩埚中,放入微波炉中,用300~500℃温度微波1min即得到石墨烯;
(2)制备合金粉末
将纯度均大于99.9%的合金原料La、Fe、Ni、Mn、B、Al,按照相应配比置于熔炼炉中,按熔点由低到高依次放入熔炼槽中,采用常规熔炼方法,通入高纯氩气作为保护气,在熔炼过程中翻转两到三次,制成成分均匀的La15Fe2Ni72Mn7B2Al2合金锭,自然冷却后机械破碎,用研钵研磨成200目以下的粉末;
(3)制备石墨烯/合金复合储氢材料
按石墨烯与合金粉末的质量百分比为1~5:95~99的比例,将步骤(1)的石墨烯和步骤(2)的合金粉末同置于球磨罐中,球料比为97~103:1,以高纯氩气作为保护气,球磨1小时,制得石墨烯/La-Fe-B系低温储氢合金复合材料。
本发明与现有技术相比具有如下优点:
(1)制得石墨烯/La-Fe-B系低温储氢合金复合材料在-20℃下,在60mA·g-1电流密度下最大放电容量依然能达到200mAh·g-1以上;
(2)制得石墨烯/La-Fe-B系低温储氢合金复合材料在-20℃情况下,寿命能达到40圈以上;
(3)制得石墨烯/La-Fe-B系低温储氢合金复合材料在-20℃情况下,600mA·g-1电流密度下,倍率放电性能依然能保持在80%以上。
附图说明
图1是本发明实施例1获得石墨烯/La-Fe-B系低温储氢合金复合材料的XRD图。
图2是本发明实施例1获得石墨烯/La-Fe-B系低温储氢合金复合材料的SEM图。
图3是本发明实施例1、2、3获得La15Fe2Ni72Mn7B2Al2/石墨烯复合材料在-20℃的倍率性能图。
图4是本发明实施例1、2、3获得La15Fe2Ni72Mn7B2Al2/石墨烯复合材料在-20℃的最大放电容量。
具体实施方式
实施例1
(1)制备石墨烯
在冰水浴中放入三口烧瓶,将1g石墨粉和1g NaNO3混合倒入三口烧瓶中,在机械搅拌状态下加入49ml浓硫酸(98%),然后用小勺快速分批向烧瓶中加入7g KMnO4,在冰水浴中搅拌、反应2h;升温至45℃,继续搅拌并加入50ml蒸馏水(尽量慢速)稀释,反应3h,继续升温至85℃,加入50ml蒸馏水,反应30min;降温到80℃之后,用滴管加入21mL质量分数为30%H2O2,直至反应物无冒泡且溶液成金黄色,静置0.5h,再加入950ml的质量分数为5%稀盐酸陈化2天后,将陈化过后的物质用去离子水冲洗至中性,抽滤,50℃干燥,即可得到氧化石墨;将干燥的氧化石墨放入坩埚中,再放入微波炉中,用350℃温度微波1min即得到石墨烯;
(2)制备合金粉
取相应配比的金属La,B,Fe,Mn,Ni,Al金属,以熔点由低到高依次从下到上放置到真空电弧熔炼炉内,采用常规熔炼方法,通入高纯氩气作为保护气,高温熔炼翻转两次制备成La15Fe2Ni72Mn7B2Al2合金锭;将熔炼好的合金锭机械破碎,用研钵研磨成200目以下的合金粉末;
(3)制备石墨烯/合金复合材料
将石墨烯粉末与合金粉末按质量百分比为1:99,置于球磨罐中,球料比为100:1球磨1h,充入氩气保护,得到石墨烯/La-Fe-B系低温储氢合金复合材料。
如图1所示,可以看出制备出的材料样品包括三个相:LaNi5,La3Ni13B2和(Fe,Ni)相。
如图2所示,可以看出石墨烯/La-Fe-B系低温储氢合金复合材料是一种微米级的分散均匀的材料。
(4)测试方法
用DC-5测试仪测试材料的衰减性能,倍率性能。取复合储氢材料0.15g与羰基镍0.75g均匀混合,将其放入直径10mm磨具中,在高压下压成厚度2mm的小圆片,将其焊接在镍棒上,以此作为负极。用烧结的Ni(OH)2/NiOOH作为正极材料。所用电解液为KOH溶液。将制备好的模拟电池用DC-5电池测试仪测试其最大容量和倍率性能。其测试结果如图3所示,在放电电流密度为600mA·g-1倍率性能仍然能够保持在91%以上;如图4所示,能够看出在-20℃情况下,复合电极材料的放电容量仍然能够达到210mAh·g-1以上。
实施例2
(1)制备石墨烯
在冰水浴中放入三口烧瓶,将1g石墨粉和1.5g NaNO3混合倒入三口烧瓶中,在机械搅拌状态下加入50ml浓硫酸(98%),然后用小勺快速分批向烧瓶中加入6g KMnO4,在冰水浴中搅拌、反应2h;升温到35℃,继续搅拌并加入100ml蒸馏水(尽量慢速)稀释,反应1h,升温至95℃,加入100ml蒸馏水,反应15min;降温到80℃之后,用滴管加入30ml质量分数为30%H2O2,直至反应物无冒泡且溶液成金黄色;再加入1100ml的质量分数为5%稀盐酸陈化2天后,将陈化过后的物质用去离子水冲洗,抽滤,40℃干燥,即可得到氧化石墨;将干燥的氧化石墨放入坩埚中,再放入微波炉中,用300℃微波1min即得到石墨烯;
(2)制备合金粉
取相应配比的金属La,B,Fe,Mn,Ni,Al金属,以熔点由低到高依次从下到上放置到真空电弧熔炼炉内,采用常规熔炼方法,通入高纯氩气作为保护气,高温熔炼翻转两次制备成La15Fe2Ni72Mn7B2Al2合金锭;将熔炼好的合金锭机械破碎,用研钵研磨成200目以下的合金粉末;
(3)制备石墨烯/合金复合材料
将合金粉末与石墨烯粉末按质量百分比为97:3,置于球磨罐中,球料比为99:1,球磨1h,充入氩气保护,得到石墨烯/La-Fe-B系低温储氢合金复合材料。
(4)测试方法
用DC-5测试仪测试材料的衰减性能,倍率性能。取复合储氢材料0.15g与羰基镍0.75g均匀混合,将其放入直径10mm磨具中,在10-12MPa冷压成厚度1mm的小圆片,将其焊接在镍棒上,以此作为负极。用烧结的Ni(OH)2/NiOOH作为正极材料。所用电解液为KOH溶液。将制备好的模拟电池用DC-5电池测试仪测试其最大容量和倍率性能。其测试结果如图3中的所示,在放电电流密度为600mA·g-1倍率性能仍然能够保持在93%以上;如图4所示,能够看出在-20℃情况下,复合电极材料的放电容量仍然能够达到218mAh·g-1以上。
实施例3
(1)制备石墨烯
在冰水浴中放入三口烧瓶,将1g石墨粉和2g NaNO3混合倒入三口烧瓶中,在机械搅拌状态下加入51ml浓硫酸(98%),然后用小勺快速分批向烧瓶中加入8g KMnO4,在冰水浴中搅拌、反应2h;升温50℃,继续搅拌并加入150ml蒸馏水(尽量慢速)稀释,反应0.75h,升温至90℃,加入100ml蒸馏水,反应30min;降温到80℃之后,用滴管加入35ml质量分数为30%H2O2,直至反应物无冒泡且溶液成金黄色;再加入1000ml的质量分数为5%稀盐酸陈化2天后,将陈化过后的物质用去离子水冲洗,抽滤,60℃干燥,即可得到氧化石墨;将干燥的氧化石墨放入坩埚中,再放入微波炉中,用400℃温度微波1min即得到石墨烯;
(2)制备合金粉
取相应配比的金属La,B,Fe,Mn,Ni,Al金属,以熔点由低到高依次从下到上放置到真空感应熔炼炉内,采用常规熔炼方法,通入高纯氩气作为保护气,高温熔炼翻转三次制备成La15Fe2Ni72Mn7B2Al2合金锭;将熔炼好的合金锭机械破碎,用研钵研磨成200目以下的合金粉末;
(3)制备石墨烯/合金复合材料
将合金粉末与石墨烯粉末按质量百分比为95:5,置于球磨罐中,球料比为97:1,球磨1h,充入氩气保护,得到石墨烯/La-Fe-B系低温储氢合金复合材料。
(4)测试方法
用DC-5测试仪测试材料的衰减性能,倍率性能。取复合储氢材料0.15g与羰基镍0.75g均匀混合,将其放入直径10mm磨具中,在高压下压成厚度1~2mm的小圆片,将其焊接在镍棒上,以此作为负极。用烧结的Ni(OH)2/NiOOH作为正极材料。所用电解液为KOH溶液。将制备好的模拟电池用DC-5电池测试仪测试其最大容量和倍率性能。其测试结果如图3所示,在放电电流密度为600mA·g-1倍率性能仍然能够保持在87%以上;如图4所示,能够看出在-20℃情况下,复合电极材料的放电容量仍然能够达到209mAh·g-1以上。

Claims (1)

1.一种石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法,其特征在于:它包括如下步骤:
(1)制备石墨烯
利用改进的hummers方法制成氧化石墨烯,按石墨粉:NaNO3:KMnO4:浓硫酸的质量百分比为:1:1~2:6~8:87~97的比例,将石墨粉和硝酸钠混合均匀,加入浓度为98%的浓硫酸,在剧烈搅拌的同时少量分批的加入高锰酸钾,在冰水浴中搅拌、反应2h,在此期间一直保持剧烈搅拌;然后将温度控制在35~50℃,继续搅拌的同时按照每100g上述混合物加入0~200ml蒸馏水,搅拌、反应时间为0.75~3h;继续升温至80~95℃,每100g上述混合物再加入0~400ml蒸馏水,反应15~30min;自然降至75~85℃温度后,按每95~105g反应物中加入10ml H2O2溶液的比例,用滴管少量多次向反应物加入浓度为30%的H2O2溶液,直至反应物无冒泡且溶液成金黄色;
静置0.5~1h,按每1000mL HCL加入200~300g金黄色溶液的比例,向上述金黄色溶液加入的质量分数为5%的HCL,陈化两天,去除杂质;
将陈化过后的物质用去离子水冲洗至中性,抽滤,40~60℃干燥,即可得到氧化石墨;
将干燥的氧化石墨放入坩埚中,放入微波炉中,用300~500℃温度微波1min即得到石墨烯;
(2)制备合金粉末
将纯度均大于99.9%的合金原料La、Fe、Ni、Mn、B、Al,按照相应配比置于熔炼炉中,按熔点由低到高依次放入熔炼槽中,采用常规熔炼方法,通入高纯氩气作为保护气,在熔炼过程中翻转两到三次,制成成分均匀的La15Fe2Ni72Mn7B2Al2合金锭,自然冷却后机械破碎,用研钵研磨成200目以下的粉末;
(3)制备石墨烯/合金复合储氢材料
按石墨烯与合金粉末的质量百分比为1~5:95~99的比例,将步骤(1)的石墨烯和步骤(2)的合金粉末同置于球磨罐中,球料比为97~103:1,以高纯氩气作为保护气,球磨1小时,制得石墨烯/La-Fe-B系低温储氢合金复合材料。
CN201710450339.5A 2017-06-15 2017-06-15 一种石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法 Active CN107164657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710450339.5A CN107164657B (zh) 2017-06-15 2017-06-15 一种石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710450339.5A CN107164657B (zh) 2017-06-15 2017-06-15 一种石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107164657A true CN107164657A (zh) 2017-09-15
CN107164657B CN107164657B (zh) 2018-10-16

Family

ID=59820303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710450339.5A Active CN107164657B (zh) 2017-06-15 2017-06-15 一种石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107164657B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467956A (zh) * 2018-03-22 2018-08-31 燕山大学 一种Si/La15Fe2Ni72Mn7B2Mo2复合储氢合金材料的制备方法
CN110492086A (zh) * 2019-09-09 2019-11-22 燕山大学 一种储氢合金复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198907A (ja) * 2014-06-04 2014-10-23 三井金属鉱業株式会社 水素吸蔵合金
CN105428627A (zh) * 2015-12-28 2016-03-23 吉林大学 储氢合金与石墨烯复合材料(HSAs@RGO)的制备方法及其应用
CN106025213A (zh) * 2016-06-08 2016-10-12 广西大学 一种提高La-Mg-Ni基合金电极电化学动力学性能的方法
CN106542744A (zh) * 2016-10-28 2017-03-29 燕山大学 一种特殊形貌ZnO薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198907A (ja) * 2014-06-04 2014-10-23 三井金属鉱業株式会社 水素吸蔵合金
CN105428627A (zh) * 2015-12-28 2016-03-23 吉林大学 储氢合金与石墨烯复合材料(HSAs@RGO)的制备方法及其应用
CN106025213A (zh) * 2016-06-08 2016-10-12 广西大学 一种提高La-Mg-Ni基合金电极电化学动力学性能的方法
CN106542744A (zh) * 2016-10-28 2017-03-29 燕山大学 一种特殊形貌ZnO薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏同驰等: "贮氢合金/石墨烯复合材料的电化学性能", 《电池》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467956A (zh) * 2018-03-22 2018-08-31 燕山大学 一种Si/La15Fe2Ni72Mn7B2Mo2复合储氢合金材料的制备方法
CN108467956B (zh) * 2018-03-22 2019-11-01 燕山大学 一种Si/La15Fe2Ni72Mn7B2Mo2复合储氢合金材料的制备方法
CN110492086A (zh) * 2019-09-09 2019-11-22 燕山大学 一种储氢合金复合材料的制备方法
CN110492086B (zh) * 2019-09-09 2021-01-26 燕山大学 一种储氢合金复合材料的制备方法

Also Published As

Publication number Publication date
CN107164657B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
Liu et al. Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping
CN101533907B (zh) 一种锂离子电池硅基负极复合材料的制备方法
Cheng et al. Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries
Zhang et al. A paired electrolysis approach for recycling spent lithium iron phosphate batteries in an undivided molten salt cell
CN103022437B (zh) 硅合金、石墨烯复合材料及其制备方法
Shangguan et al. Evolution of spent LiFePO4 powders into LiFePO4/C/FeS composites: a facile and smart approach to make sustainable anodes for alkaline Ni-Fe secondary batteries
CN109841821A (zh) 一种高电位大功率型热电池正极材料及其制备方法
Guo et al. Spherical Sn–Ni–C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries
Zhang et al. Double-shelled nanoporous NiO nanocrystal doped MnO/Ni network for high performance lithium-ion battery
CN100426563C (zh) 一种高容量锡锑硅合金锂离子电池负极材料的制备方法
CN107164657B (zh) 一种石墨烯/La-Fe-B系低温储氢合金复合材料的制备方法
CN111602271A (zh) 基于硅的粉末、包括此种粉末的电极及电池组
CN104862514A (zh) 一种ab3型储氢合金的表面改性方法
Lei et al. Construction of heterostructured NiFe 2 O 4-C nanorods by transition metal recycling from simulated electroplating sludge leaching solution for high performance lithium ion batteries
Liu et al. Molten salt disproportionation synthesis of nanosized VN wrapped onto carbon fibers with enhanced lithium-ion storage capabilities
CN113707890B (zh) 一种Au/Cu/Cu2O复合材料、超组装制备方法及应用
Song et al. Progress and challenges of Prussian blue analogs for potassium-ion batteries: a perspective on redox-active transition metals
Luo et al. Porous Ti2 Nb 1 0 O 2 9− x Microspheres Wrapped by Holey-Reduced Graphene Oxide as Superior Anode Material for High-rate Performance Lithium-ion Storage
CN107611413A (zh) 一种掺杂钛的磷酸铁锂正极材料的制备方法
CN107287470B (zh) 一种包含纳米碳化钨材料的铅蓄电池板栅合金及制备方法
CN100383269C (zh) 一种高容量锡-钴合金锂离子电池负极材料的制备方法
CN113690425B (zh) 一种高容量的硅基复合锂电负极材料及其制备方法
CN102856547B (zh) 还原碳纳米管包覆的磷酸亚铁锂正极材料的制备方法
Zhang et al. A novel Si/TiSi2/G@ C composite as anode material with excellent lithium storage performances
Li et al. Carbon-coated SiO for LIBs with superior capacity and cycle stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant