CN107151820A - 一种三维海参状氮化钒微晶的制备方法 - Google Patents

一种三维海参状氮化钒微晶的制备方法 Download PDF

Info

Publication number
CN107151820A
CN107151820A CN201710328498.8A CN201710328498A CN107151820A CN 107151820 A CN107151820 A CN 107151820A CN 201710328498 A CN201710328498 A CN 201710328498A CN 107151820 A CN107151820 A CN 107151820A
Authority
CN
China
Prior art keywords
sea cucumber
pot
vanadium
reaction chamber
vanadium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710328498.8A
Other languages
English (en)
Other versions
CN107151820B (zh
Inventor
高伟
李鑫
殷红
韩作良
高丽莹
李鑫峡
孙多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710328498.8A priority Critical patent/CN107151820B/zh
Publication of CN107151820A publication Critical patent/CN107151820A/zh
Application granted granted Critical
Publication of CN107151820B publication Critical patent/CN107151820B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明一种三维海参状氮化钒微晶的制备方法,属于纳米材料合成领域。制备步骤是将金属钒粉末压制成圆柱状金属钒片,将金属钒片放入与其形状大小契合的石墨锅内,石墨锅内嵌于直流电弧反应腔室的阳极铜锅中,阴极钨棒悬于石墨锅正上方;在冷凝壁套筒和阳极铜锅夹层中通入循环冷却水,向反应腔室通入反应气氮气,进行起弧放电,保持电流70~80A;切断电源后,在氮气气氛中冷却钝化6小时,获得三维海参状氮化钒微晶,主体长约1~3μm,直径约1~2μm,表面海参状结构由粒径100nm的纳米晶和分布于表面的针状晶须聚集而成,晶须长度约为200nm。制备工艺简单高效稳定经济,重复性高,样品纯度高,形貌新颖,有良好的应用前景。

Description

一种三维海参状氮化钒微晶的制备方法
技术领域
本发明属于无机微晶材料制备的技术领域,具体涉及一种三维海参状氮化钒微晶的制备方法。
背景技术
氮化钒(VN),别名钒氮合金,属于新型合金,作为一种添加剂替代钒铁用于微合金化钢的生产,能够最大程度地提高钢的强度、韧性、延展性及抗热疲劳性等综合机械性能,并使钢具有良好的耐高温性和焊接性。VN也是一种良好的催化剂,具有高催化活性、高选择性、良好的稳定性和抗中毒性能。在VN的应用研究中,其形貌各向异性结构材料(包括纳米管、纳米线、纳米棒、纳米带、纳米球及特殊形貌等)所具有的表面特性、结晶过程以及催化活性等物理化学性质也存在明显的差异,因此制备不同形貌VN是近年来研究的热点之一,并具有广阔的市场应用价值。
迄今为止,在特定的反应条件下,已成功制备出各种具有特殊形貌的VN。如在大气压下用N2/Ar/H2微波等离子焰分解气态的VoCl5,得到球形的纳米颗粒;常温下让VCl4和NaNH2反应,得到中空球状氮化钒颗粒;采用静电纺丝技术已制备氮化钒纳米带、纳米纤维;离子溅射法得到氮化钒薄膜等。因此,不同形貌VN的制备是其优异性能得以充分实现的关键,同时如果能有效控制VN的形貌,使其呈现出一定的特殊结晶形态,则能更好的扩展VN的应用领域。
发明内容
本发明要解决的技术问题,是提供一种简单高效、稳定经济的直流电弧等离子体放电法,一步快速制备三维海参状氮化钒微晶。
直流电弧放电装置结构示意图见图1。图1中1为玻璃真空钟罩,2为冷凝壁,是套筒式结构以便通循环冷却水,3为钨棒阴极,4为内嵌石墨锅(与铜锅一起构成阳极),5为铜锅阳极,铜锅阳极也有夹层以便通循环冷却水,6为进水口,7为出水口,8为进气口,9为出气口。本发明的具体技术方案如下:
一种三维海参状氮化钒微晶的制备方法,在直流电弧放电装置中进行制备;首先将金属钒粉末压成形状大小与石墨锅契合的金属钒片,把金属钒片放入石墨锅,再把石墨锅放入直流电弧反应腔室的阳极铜锅中,阴极钨棒固定悬于石墨锅上方,并将反应腔室处于真空状态;其次,在冷凝壁套筒和阳极铜锅夹层中通入循环冷却水,向反应腔室通入氮气,再进行起弧放电,保持电流70~80A,反应15~30分钟后切断电源;最后继续通循环冷却水,并在氮气气氛中冷却至室温,在石墨锅处收集样品,获得纯净的三维海参状氮化钒微晶。
所述的反应腔室通入氮气,是使反应腔室内氮气气压升至40kPa并保持不变。
起弧放电过程中,在冷凝壁套筒和阳极铜锅夹层中通入循环冷却水是制备氮化钒的必要条件。一方面,由于冷却水的作用,使反应腔内各处与极间区域产生反应环境所需的温度梯度场。另一方面,当切断高压电源后,石墨锅仍具有很高的温度,保持循环冷却水开路,降温的同时也起到淬火的作用。伴随氮气气氛中的钝化,最终可得到纯净无杂质的三维海参状氮化钒微晶。
所述的在氮气气氛中冷却,是在氮气气氛中冷却钝化6小时。
与现有技术相比,本发明的积极进步效果在于:本发明采用制备工艺简单高效、稳定经济的直流电弧等离子体放电法,首次成功地一步制备出三维海参状氮化钒微晶,得到的样品纯度高,形貌新颖。
附图说明
图1直流电弧等离子体放电装置结构示意图。
图2三维海参状氮化钒微晶的X射线衍射(XRD)谱图。
图3三维海参状氮化钒微晶的扫描式电子显微镜(SEM)图。图中长方形区域为电子能谱的选区。
图4三维海参状氮化钒微晶的选区电子能谱分析(EDS)图。
具体实施方式
为使本发明的实质特点更易于理解,下面结合附图及较佳实施例对本发明的技术方案作进一步的详尽阐述。但以下关于实施例的描述及说明对本发明保护范围不构成任何限制。
实施例1
称量3.2g高纯金属钒粉末,用压片机压成高7mm,直径12mm的圆柱形金属钒片;把金属钒片放入和自身形状大小完全契合的石墨锅内,再把石墨锅放入直流电弧反应腔室的阳极铜锅中,阴极钨棒固定悬于石墨锅正中间上方1.5cm处,将反应腔室处于真空状态;循环冷却水保护状态下,通入反应气氮气40kPa,进行起弧放电,保持电流75A,反应15~30分钟后切断电源,在氮气气氛中冷却钝化6小时(基本冷却到室温),在石墨锅处收集样品,可获得纯净的三维海参状氮化钒微晶。
图2是本实施例制得的三维海参状氮化钒微晶的X射线衍射(XRD)谱图,所有衍射峰位置与JCPDS标准卡片比对可知,没有发现杂相峰,获得的产物纯净无杂质,为面心立方结构的氮化钒。三维海参状氮化钒微晶的扫描式电子显微镜(SEM)谱图见图3所示,产物微结构及其结构单元单分散性较好、形貌均一、表面清洁无杂质、形状似海参,海参状结构颗粒主体长约1~3μm,直径约1~2μm,表面海参状结构由粒径100nm的纳米晶和分布于表面的针状晶须聚集而成,晶须长度为200nm。图4和表1为三维海参状氮化钒微晶的选区电子能谱分析(EDS)谱图和测试分析结果列表,由图表可知,三维海参状氮化钒微晶只由V和N两种元素组成,且原子比例接近1:1,与XRD获得的数据很好的吻合。
表1三维海参状氮化钒微晶的选区电子能谱分析(EDS)参数及结果。
在氮气气压40kPa条件下,放电电流在比75A高5A和低5A的范围内,也能够得到表面清洁无杂质的三维海参状氮化钒微晶。
以上所述的实施例仅对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (3)

1.一种三维海参状氮化钒微晶的制备方法,在直流电弧放电装置中进行制备;首先将金属钒粉末压成形状大小与石墨锅契合的金属钒片,把金属钒片放入石墨锅,再把石墨锅放入直流电弧反应腔室的阳极铜锅中,阴极钨棒固定悬于石墨锅上方,并将反应腔室处于真空状态;其次,在冷凝壁套筒和阳极铜锅夹层中通入循环冷却水,向反应腔室通入氮气,再进行起弧放电,保持电流70~80A,反应15~30分钟后切断电源;最后继续通循环冷却水,并在氮气气氛中冷却至室温,在石墨锅处收集样品,获得纯净的三维海参状氮化钒微晶。
2.根据权利要求1所述的三维海参状氮化钒微晶的制备方法,其特征在于,所述的反应腔室通入氮气,是使反应腔室内氮气气压升至40kPa并保持不变。
3.根据权利要求1或2所述的三维海参状氮化钒微晶的制备方法,其特征在于,所述的在氮气气氛中冷却,是在氮气气氛中冷却钝化6小时。
CN201710328498.8A 2017-05-11 2017-05-11 一种三维海参状氮化钒微晶的制备方法 Expired - Fee Related CN107151820B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710328498.8A CN107151820B (zh) 2017-05-11 2017-05-11 一种三维海参状氮化钒微晶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710328498.8A CN107151820B (zh) 2017-05-11 2017-05-11 一种三维海参状氮化钒微晶的制备方法

Publications (2)

Publication Number Publication Date
CN107151820A true CN107151820A (zh) 2017-09-12
CN107151820B CN107151820B (zh) 2019-04-05

Family

ID=59793895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710328498.8A Expired - Fee Related CN107151820B (zh) 2017-05-11 2017-05-11 一种三维海参状氮化钒微晶的制备方法

Country Status (1)

Country Link
CN (1) CN107151820B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368645A (zh) * 2018-12-26 2019-02-22 吉林大学 一种阵列式z字型碳化铌微晶的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102828A (ja) * 1985-10-28 1987-05-13 Daido Steel Co Ltd 化合物微粒子の製造方法
CN1562769A (zh) * 2004-03-30 2005-01-12 上海大学 氮化钒的制备方法及其装置
CN102120567A (zh) * 2011-03-17 2011-07-13 上海师范大学 一种制备氮化钒的工艺
CN102874775A (zh) * 2012-10-31 2013-01-16 吉林大学 一种氮化钪立方晶体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102828A (ja) * 1985-10-28 1987-05-13 Daido Steel Co Ltd 化合物微粒子の製造方法
CN1562769A (zh) * 2004-03-30 2005-01-12 上海大学 氮化钒的制备方法及其装置
CN102120567A (zh) * 2011-03-17 2011-07-13 上海师范大学 一种制备氮化钒的工艺
CN102874775A (zh) * 2012-10-31 2013-01-16 吉林大学 一种氮化钪立方晶体的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAIWON CHOI ET AL.: "Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors", 《ADV. MATER.》 *
P. RONSHEIM ET AL.: "Thermal Plasma Synthesis of Transition Metal Nitrides and Alloys", 《PLASMA CHEMISTRY AND PLASMA PROCESSING》 *
高丽莹等: "Mo2N 纳米材料的直流电弧法制备与研究", 《第十八届中国高压科学学术会议文集》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368645A (zh) * 2018-12-26 2019-02-22 吉林大学 一种阵列式z字型碳化铌微晶的制备方法
CN109368645B (zh) * 2018-12-26 2021-11-23 吉林大学 一种阵列式z字型碳化铌微晶的制备方法

Also Published As

Publication number Publication date
CN107151820B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN106915732B (zh) 一种三维海胆状纳米氮化钒的制备方法
Zhang et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma
Wei et al. Efficient preparation for Ni nanopowders by anodic arc plasma
Wu et al. Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol–gel technique
KR20070066545A (ko) 알에프 플라즈마 연소기술에 의한 나노 엠피피 분말 제조방법
Wu et al. Preparation and purification of titanium carbide via vacuum carbothermic reduction of ilmenite
Zhu et al. Plasma-assisted preparation and characterization of spherical stainless steel powders
CN104671245A (zh) 一种碳化铪纳米粉体的制备方法
Liu et al. Spheroidization of molybdenum powder by radio frequency thermal plasma
CN106904582B (zh) 一种三维树叶锥状氮化钒微晶的制备方法
Wan et al. Synthesis and characterization of W–Cu nanopowders by a wet-chemical method
Kiesler et al. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium
CN107055490A (zh) 一种多孔纳米氮化钒微晶的制备方法
Zeng et al. Fabricating ultrathin plate-Like WC grains in WC–8Co hardmetals by increasing discharge intensity during plasma-assisted ball milling
Shen et al. A simple route to prepare nanocrystalline titanium carbonitride
CN106995208A (zh) 一种无定形氮化钒纳米颗粒的制备方法
Kan et al. Synthesis, electrochemical and photoluminescence properties of titanium nitride nanoparticles
Zeng et al. Effect of central gas velocity and plasma power on the spheroidizing copper powders of radio frequency plasma
CN107151820A (zh) 一种三维海参状氮化钒微晶的制备方法
Murai et al. Particle size distribution of copper nanosized powders prepared by pulsed wire discharge
Messing The advantages of spark discharge generation for manufacturing of nanoparticles with tailored properties
Liu et al. Study on characteristics of nanopowders synthesized by nanosecond electrical explosion of thin aluminum wire in the argon gas
Qiao et al. Preparation and particle size characterization of Cu nanoparticles prepared by anodic arc plasma
Tokoi et al. Synthesis of TiO2 nanosized powder by pulsed wire discharge
KR101566942B1 (ko) 열플라즈마를 이용한 산화갈륨 분말의 제조방법 및 이에 따라 제조되는 산화갈륨

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190405

Termination date: 20200511