CN107151313B - 一种含氮的共轭有机微孔聚合物、制备方法及应用 - Google Patents

一种含氮的共轭有机微孔聚合物、制备方法及应用 Download PDF

Info

Publication number
CN107151313B
CN107151313B CN201710426916.7A CN201710426916A CN107151313B CN 107151313 B CN107151313 B CN 107151313B CN 201710426916 A CN201710426916 A CN 201710426916A CN 107151313 B CN107151313 B CN 107151313B
Authority
CN
China
Prior art keywords
conjugation
nitrogenous
microporous polymer
polymer
organic microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710426916.7A
Other languages
English (en)
Other versions
CN107151313A (zh
Inventor
许彦红
崔迪
刘洺含
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN201710426916.7A priority Critical patent/CN107151313B/zh
Publication of CN107151313A publication Critical patent/CN107151313A/zh
Application granted granted Critical
Publication of CN107151313B publication Critical patent/CN107151313B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/415Sonogashira / Hagihara reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/598Chemical stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种含氮的共轭有机微孔聚合物,属于吸附材料制备技术领域。具体是以N2,N4,N6‑三(4‑溴苯基)‑1,3,5‑三嗪‑2,4,6‑三胺和炔苯作为共聚单体,在Pd(0)催化下,通过Sonogashira进行偶联,然后在700~820℃高温热解制得。本发明制得的含氮的共轭有机微孔聚合物拥有大的比表面积、窄的孔径分布、高的物理化学稳定性和低的骨架密度等特性,对于二氧化碳和碘展现出优越的吸附能力。

Description

一种含氮的共轭有机微孔聚合物、制备方法及应用
技术领域
本发明属于吸附材料制备技术领域,特别是涉及一种含氮共轭微孔聚合物、制备方法及应用。
背景技术
长期以来,由于人类生活和工业生产不断消耗化石燃料,二氧化碳的排放量不断增长,这使人类的生存环境和生态系统遭受了极大污染。目前,全球气候变暖成为人类亟需解决的重要环境问题,其中二氧化碳的浓度过高是主要的原因。同其他环境问题相比,二氧化碳的排放影响空间大且作用时间长,因此解决起来非常困难。人类迫切寻求新的清洁能源来代替化石燃料,从而减少二氧化碳在大气中的浓度。在能源结构转变之前,人类主要通过限制二氧化碳排放量及研究能将二氧化碳捕获和存储的新型材料等方法来解决此问题。随着研究的不断深入,有机多孔聚合物随之产生,它是一类具有较大比表面积和永久孔结构的新型多孔材料。有机多孔聚合物具有合成方法多样、尺寸可调控、表面可修饰、化学及物理性质稳定等特点,并且它在气体存储、分离及非均相催化等方面表现出巨大的潜能,逐渐成为近年来发展较快的研究热点之一。根据结构特点的不同,有机多孔聚合物主要可分为自具微孔聚合物(polymers of intrinsic microporosity,PIMs)、超交联聚合物(hypercross-linked polymers,HCPs)、共轭微孔聚合物(conjugated microporouspolymers,CMPs)和共价有机骨架聚合物(covalent organic frameworks,COFs)。与无机微孔材料和金属有机网络相比,微孔有机聚合物的合成才刚刚起步。但有机合成化学和聚合物化学却已为此类材料的合成提供了多样性和广阔的发展空间。因此,无论从科研探索还是从实际应用的方面,设计合成具有良好CO2吸附性能的微孔有机材料均具有重要的意义。
为了满足人类生活和工业生产的发展,人类对无温室气体释放、清洁且安全的能源需求正在快速增长,核能则具有这些优势。虽然,核能被认为是一种高效和非碳排放的能源,但在核能优点的背后出现了不可忽略的环境问题,就是由铀的核裂变产生的危害人类健康的放射性核废料。129I,131I,3H和85Kr等都是核废料中含有的挥发性放射性核素。特别是在发生反应堆泄漏事故的时候,针对的主要就是放射性碘。因为在核燃料中,放射性碘的毒性大,产额高,还拥有长达1.57×107年的放射性半衰期,所以对于放射性碘的相应问题引起了能源界的广泛关注。因此,为了促进未来核能的进一步发展,人类非常需要能够有效捕获和储存放射性碘的材料及方法。
现实生活中,CO2可以从工厂的排烟道中及酸性天然气中被捕获和分离。这些环境条件对于捕获CO2材料的要求很高。目前,人们普遍使用胺净化器对二氧化碳进行收集,该方法需要消耗大量的能源,且成本较高,限制了它的应用。所以,科学家们需要寻找成本低、消耗少的材料来代替现有材料。
另外,现在普遍捕获碘技术是用天然或合成的金属交换沸石作为碘吸附剂,这些材料具有化学性质稳定和水热稳定的特点。然而,它们有限的吸附能力导致低的碘吸附量,这极大限制了该材料在碘吸附方面的应用。
发明内容
针对现有技术中存在的问题,本发明提供了一种含氮的共轭有机微孔聚合物,该聚合物可作为吸附剂对二氧化碳气体和碘进行高效吸附,实现二氧化碳气体和碘的高效捕获和存储。
具体的,本发明提供的含氮的共轭有机微孔聚合物,以N2,N4,N6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺和炔苯作为共聚单体,在Pd(0)催化下,通过Sonogashira进行偶联,然后在700~820℃高温热解制得。
优选地,所述炔苯选自1,3-二乙炔苯、1,4-二乙炔苯、1,3,5-三乙炔苯中任意一种。
优选地,所述聚合物比表面积为630~736m2/g,孔径分布0~1nm。
本发明还提供了该含氮的共轭有机微孔聚合物作为气体吸附剂或放射性碘吸附剂的应用。
本发明还提供了该含氮的共轭有机微孔聚合物在碘或二氧化碳捕获中的应用。
优选地,在273K,1.05bar条件下,所述含氮的共轭有机微孔聚合物对CO2的吸附量为3.37~3.96mmol/g;在常压,350K条件下,所述含氮的共轭有机微孔聚合物对I2的吸附值为1.49~1.92g/g。
本发明还提供了该含氮的共轭有机微孔聚合物的制备方法,具体制备过程如下:
S1:以N2,N4,N6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺和炔苯作为共聚单体,在Pd(0)催化下,通过Sonogashira偶联反应制备含有N的共轭微孔聚合物材料;
S2:将S1制备得到的N的共轭微孔聚合物材料在氮气保护下,经700~820℃直接热解2h,得到所述含氮的共轭有机微孔聚合物。
更优选地,S2中,热解温度为800℃。
本发明制得的含氮的共轭有机微孔聚合物拥有大的比表面积、良好的多孔性质、较好的热稳定性及化学稳定性,在气体分离、气体吸附等领域具有广阔的应用前景。与传统化学吸附过程相比,本发明提供的聚合物使用物理吸附更方便的施行捕获并释放二氧化碳的可逆过程,不仅需要的能量更少而且有利于二氧化碳的再利用。在碘吸附方面,我们制得的聚合物对碘分子展现出了非常优越的吸附能力。而且该聚合物材料吸附的碘可以通过简单的洗脱操作把碘从聚合物骨架中洗脱出来,有效的回收碘。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1~3所得聚合物的X射线粉末衍射谱图;
图2为本发明实施例1~3所得聚合物的的氮气吸脱附分析和孔径分布图,其中:图(a)为氮气吸脱附分析图,图(b)为氮气吸脱附分析图;
图3本发明实施例1~3所得聚合物的扫描电镜图;
图4本发明实施例1~3所得聚合物的透射电镜图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例对本发明作进一步说明,但所举实施例不作为对本发明的限定。
除非另有定义,下文中所用是的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明以下各实施例中用到的各种原料、试剂、仪器和设备均可通过市场购买得到或者通过现有方法制备得到。
实施例1
本实施例一种含氮的共轭有机微孔聚合物,具体制备过程为:以N2,N4,N6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺(147.8mg,0.25mmol)和1,4-二乙炔苯(70.6mg,0.56mmol)作为共聚单体,在Pd(0)作为催化剂和氮气保护下,无水DMF和三乙胺作为溶剂,120℃条件下反应48h,制备了含有N的共轭微孔聚合物材料,记为NT-POP-1;将制备得到的聚合物材料,在氮气保护下,经800℃直接热解2h,得到含氮的共轭有机微孔聚合物,记为NT-POPs@800-1。
实施例2
本实施例一种含氮的共轭有机微孔聚合物,具体制备过程为:以以N2,N4,N6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺(147.8mg,0.25mmol)和1,4-二乙炔苯(70.6mg,0.56mmol)作为共聚单体,在Pd(0)作为催化剂和氮气保护下,无水DMF和三乙胺作为溶剂,120℃条件下反应48h,记为NT-POP-2;将制备得到的聚合物材料,在氮气保护下,经800℃直接热解2h,得到含氮的共轭有机微孔聚合物,记为NT-POPs@800-2。
实施例3
本实施例一种含氮的共轭有机微孔聚合物,具体制备过程为:以N2,N4,N6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺(147.8mg,0.25mmol)和1,3,5-三乙炔苯(56.6mg,0.375mmol)作为共聚单体,在Pd(0)作为催化剂和氮气保护下,无水DMF和三乙胺作为溶剂,120℃条件下反应48h,记为NT-POP-3;将制备得到的聚合物材料,在氮气保护下,经800℃直接热解2h,得到含氮的共轭有机微孔聚合物,记为NT-POPs@800-3。
上述实施例1~3提供的聚合物的合成过程如式1所示:
针对实施例1~3所提供的聚合物,我们进行了性能测试,具体的,实施例1~3提供的聚合物的结构通过X射线粉末衍射数据确认,其X射线粉末衍射谱如图1所示,由图1可以看出:该材料不同于结晶性的共轭有机骨架,其结构是无定型的。
图2为实施例1~3提供的聚合物的氮气吸脱附分析和孔径分布,由图2(a)可以看出:在相对压力P/P0<0.01的区域,等温吸附曲线有一个比较尖锐的增长,表明该材料含有大量微孔结构。等温吸附曲线的磁滞回线的产生应该是聚合物骨架在高浓度氮气条件下发生膨胀而导致的。在相对压力0.9~1.0的区域,等温曲线呈现的尖锐增长是由于材料中存在打孔道结构。比表面积结果是由相对压力范围0.015~0.1区间的数据计算而来的,计算结果表明NT-POPs@800-1,NT-POPs@800-2和NT-POPs@800-3的BET比表面积分别为630m2/g,736m2/g,643m2/g。该材料的孔分布主要集中在0~1nm,计算结果由Saito-Flory方法得来(如图2(b)所示)。此外,NT-POPs@800-1,NT-POPs@800-2和NT-POPs@800-3的总孔体积分别为0.4328,0.4634和0.6021cm3/g,由相对压力P/P0=0.99处的氮气吸附数据计算而来。
图3为实施例1~3提供的聚合物的扫描电镜图(SEM),由图3可以看出:该材料形貌呈块状,直径范围分布在300-500nm之间。图4为实施例1~3提供的聚合物的透射电镜图(TEM),由图4可以看出:该材料拥有清晰的多孔无定型结构纹理。
由上可见,本发明实施例1~3所提供的聚合物具有大的比表面积、窄的孔径分布,且经常规分析发现还具有物理化学稳定性高和骨架密度低的特点,可作为吸附材料来使用,特别是用于吸附二氧化碳和碘。这对于捕获和存储二氧化碳和放射性核废料特别是放射性碘具有非常重要的意义。
下面对本发明实施例1~3所提供的聚合物对二氧化碳和碘的吸附性能进行考察,具体过程如下:
(1)吸附CO2
模拟烟道气:选用由体积比为85:15的氮气和二氧化碳组成的混合气模拟烟道主要气体成分,将聚合物在真空干燥箱120℃下干燥10小时进行活化,脱除聚合物孔道内存留的水分和小分子气体等。在273K,1.05bar条件下,使用BEL-SORP-max仪器测得在模拟烟道气中聚合物对CO2的吸附值,应用理想吸附溶液理论算出二氧化碳对氮气在273K条件下的选择性。
(2)吸附I2
上述聚合物对I2的吸附分固态吸附和液态吸附两种情况进行,其中,
液态吸附过程具体是,制备浓度为4mg/mL的碘的正己烷溶液,取,再称取30mg的活化的聚合物于5mL螺口小瓶中,加入3mL碘的正己烷溶液,密封小瓶,室温下静置,分别于1h、4h、8h、18h、24h、48h的时间点取出100微升溶液,稀释一百倍,测定其紫外吸收曲线。根据标准紫外吸收曲线计算每个时间点聚合物吸附I2的质量和吸附I2质量占溶液I2质量的百分比,得到最终聚合物对I2的吸附值。
固态吸附过程具体是,将上述聚合物与单质碘装在一个密闭容器中,在常压350K条件下,每隔一定时间取出药品进行称重,待称重示数保持不变,则得到最终药品对I2的饱和吸附值。
经上述方法测定,实施例1提供的聚合物NT-POPs@800-1,在273K 1.05bar条件下,对CO2的吸附量为3.68mmol/g;在常压,350K条件下,聚合物NT-POPs@800-1对I2的吸附值为1.92g/g。实施例2提供的聚合物NT-POPs@800-2,在273K 1.05bar条件下,对CO2的吸附量为3.96mmol/g;在常压,350K条件下,聚合物NT-POPs@800-2对I2的吸附值为1.49g/g;实施例3提供的聚合物NT-POPs@800-3,在273K 1.05bar条件下,对CO2的吸附量为3.37mmol/g;在常压,350K条件下,聚合物NT-POPs@800-3对I2的吸附值为1.52g/g。
需要说明的是,本发明权利要求书中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,由于采用的步骤方法与实施例1~3相同,为了防止赘述,本发明的描述了优选的实施例,但是本发明并不局限于此,而是还能以处于所附权利要求中定义的技术方案的范围内的其他方式来具体实现。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,其保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内,本发明的保护范围以权利要求书为准。

Claims (6)

1.一种含氮的共轭有机微孔聚合物,其特征在于,以N2,N4,N6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺和炔苯作为共聚单体,在Pd(0)催化下,通过Sonogashira进行偶联,然后在700~820℃高温热解制得;
所述炔苯选自1,3-二乙炔苯、1,4-二乙炔苯、1,3,5-三乙炔苯中任意一种;所述聚合物比表面积为630~736m2/g,孔径分布0~1nm。
2.根据权利要求1所述的含氮的共轭有机微孔聚合物作为二氧化碳气体吸附剂或放射性碘吸附剂的应用。
3.根据权利要求1所述的含氮的共轭有机微孔聚合物在碘或二氧化碳捕获中的应用。
4.根据权利要求3所述的应用,其特征在于,在273K,1.05bar条件下,所述含氮的共轭有机微孔聚合物对CO2的吸附量为3.37~3.96mmol/g;在常压,350K条件下,所述含氮的共轭有机微孔聚合物对I2的吸附值为1.49~1.92g/g。
5.根据权利要求1所述的含氮的共轭有机微孔聚合物的制备方法,其特征在于,具体制备过程如下:
S1:以N2,N4,N6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺和炔苯作为共聚单体,在Pd(0)催化下,通过Sonogashira偶联反应制备含有N的共轭微孔聚合物材料;
S2:将S1制备得到的N的共轭微孔聚合物材料在氮气保护下,经700~820℃直接热解2h,得到所述含氮的共轭有机微孔聚合物。
6.根据权利要求5所述的含氮的共轭有机微孔聚合物的制备方法,其特征在于,S2中,热解温度为800℃。
CN201710426916.7A 2017-06-08 2017-06-08 一种含氮的共轭有机微孔聚合物、制备方法及应用 Expired - Fee Related CN107151313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710426916.7A CN107151313B (zh) 2017-06-08 2017-06-08 一种含氮的共轭有机微孔聚合物、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710426916.7A CN107151313B (zh) 2017-06-08 2017-06-08 一种含氮的共轭有机微孔聚合物、制备方法及应用

Publications (2)

Publication Number Publication Date
CN107151313A CN107151313A (zh) 2017-09-12
CN107151313B true CN107151313B (zh) 2019-03-26

Family

ID=59796702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710426916.7A Expired - Fee Related CN107151313B (zh) 2017-06-08 2017-06-08 一种含氮的共轭有机微孔聚合物、制备方法及应用

Country Status (1)

Country Link
CN (1) CN107151313B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459657B (zh) * 2017-07-27 2020-08-11 苏州大学 含配体的共轭微孔聚合物及其应用
CN107814933A (zh) * 2017-11-22 2018-03-20 兰州理工大学 具有抑菌活性的共轭微孔聚合物的制备方法及用途
CN108408715B (zh) * 2018-03-05 2019-11-15 四川大学 原位氮掺杂石墨炔类材料及其合成方法和应用
CN109535393B (zh) * 2018-11-15 2021-03-23 上海纳米技术及应用国家工程研究中心有限公司 微孔有机聚合物纳米微球的制备方法及其产品
CN109762142B (zh) * 2019-01-25 2021-05-11 河北工业大学 一种基于光热效应调控二氧化碳吸附的共轭高分子材料
CN110016126B (zh) * 2019-03-04 2020-05-22 华南理工大学 一种共轭微孔聚合物及其制备方法与应用
CN111634909B (zh) * 2020-05-22 2021-09-24 上海应用技术大学 基于三氯代氮杂并苯稠环芳烃的氮掺杂多孔碳材料的制备方法及其应用
CN112023890B (zh) * 2020-08-31 2021-12-28 江南大学 一种由共价有机框架衍生的纳米空心管材料及其制备方法
CN113150249B (zh) * 2021-04-23 2022-08-05 华中科技大学 一种二炔类共轭微孔聚合物、制备方法及其应用
CN113831512B (zh) * 2021-09-22 2023-03-24 中山大学 一种多氮共轭微孔聚合物及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501901A (zh) * 2011-02-08 2014-01-08 国家科学研究学院 使用热可分解的多孔载体制成的催化剂

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501901A (zh) * 2011-02-08 2014-01-08 国家科学研究学院 使用热可分解的多孔载体制成的催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine";Shijie Ren,et al;《Polym. Chem.》;20120130;第3卷;第928-934页
"Microporous La–Metal–Organic Framework (MOF) with Large Surface Area";Souvik Pal,et al;《Chem. Eur. J.》;20141217;第21卷;第2789-2792页

Also Published As

Publication number Publication date
CN107151313A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
CN107151313B (zh) 一种含氮的共轭有机微孔聚合物、制备方法及应用
Li et al. Biochar as a renewable source for high-performance CO2 sorbent
He et al. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture
Yang et al. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application
González-García et al. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons
Wang et al. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: a combined experimental and DFT calculation study
Pang et al. Highly efficient nitrogen-doped porous carbonaceous CO2 adsorbents derived from biomass
Sun et al. Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption
Ma et al. Heteroatom-doped porous carbons exhibit superior CO2 capture and CO2/N2 selectivity: Understanding the contribution of functional groups and pore structure
Park et al. Efficient synthetic approach for nanoporous adsorbents capable of pre-and post-combustion CO2 capture and selective gas separation
Feng et al. Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity
Huang et al. Two-dimensional graphitic C 3 N 5 materials: Promising metal-free catalysts and CO 2 adsorbents
Liu et al. High-pressure hydrogen storage and optimizing fabrication of corncob-derived activated carbon
Wang et al. Molecular simulation study of the adsorption and diffusion of a mixture of CO2/CH4 in activated carbon: effect of textural properties and surface chemistry
Carruthers et al. Molecular sieve carbons for CO2 capture
CN107297196A (zh) 一种含氟多孔碳材料及其制备方法和应用
Huang et al. Revealing contribution of pore size to high hydrogen storage capacity
Shi et al. Enhanced elemental mercury removal via chlorine-based hierarchically porous biochar with CaCO3 as template
Liu et al. Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent
Chen et al. Porous carbon derived from metal organic framework for gas storage and separation: the size effect
Bahamon et al. Performance of activated carbons derived from date seeds in CO2 swing adsorption determined by combining experimental and molecular simulation data
Chen et al. Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading low-quality natural gas
Caldwell et al. Carbon dioxide separation from nitrogen/hydrogen mixtures over activated carbon beads: adsorption isotherms and breakthrough studies
Montazerolghaem et al. A comparative investigation of CO2 adsorption on powder and pellet forms of MIL-101
Yang et al. Preparation and gases storage capacities of N-doped porous activated carbon materials derived from mesoporous polymer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190326

Termination date: 20200608