CN107146817A - 一种低压工艺中的高压nmos晶体管 - Google Patents

一种低压工艺中的高压nmos晶体管 Download PDF

Info

Publication number
CN107146817A
CN107146817A CN201710567225.9A CN201710567225A CN107146817A CN 107146817 A CN107146817 A CN 107146817A CN 201710567225 A CN201710567225 A CN 201710567225A CN 107146817 A CN107146817 A CN 107146817A
Authority
CN
China
Prior art keywords
type
doping
type doping
substrate psub
nmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710567225.9A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Party Xingteng Electronic Technology Co Ltd
Original Assignee
Changsha Party Xingteng Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Party Xingteng Electronic Technology Co Ltd filed Critical Changsha Party Xingteng Electronic Technology Co Ltd
Priority to CN201710567225.9A priority Critical patent/CN107146817A/zh
Publication of CN107146817A publication Critical patent/CN107146817A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种低压工艺中的高压NMOS晶体管,属于半导体集成电路技术领域。该晶体管包括:P型衬底PSUB、N型阱NWELL、第一N型掺杂N+1、第二N型掺杂N+2和多晶硅POLY;本发明在传统的低压NMOS晶体管的基础上,在第二N型掺杂N+2的外围增加了N型阱NWELL,使得第二N型掺杂N+2不直接与P型衬底PSUB接触。由于二极管的掺杂特性,第二N型掺杂N+2与P型衬底PSUB形成的寄生PN结二极管的反向击穿电压远低于N型阱NWELL与P型衬底PSUB形成的寄生PN结二极管的反向击穿电压,这样就使得器件的漏极D比低压器件的漏极能够承受更高的电压,符合很多高压场合的应用要求。

Description

一种低压工艺中的高压NMOS晶体管
技术领域
本发明属于半导体集成电路技术领域,具体涉及一种低压工艺中的高压NMOS晶体管。
背景技术
目前在电源管理芯片等产品中,为了节约面积,数字电路部分常常需要用到低压器件,而为了更好的耐压,模拟电路部分则需要用到高压器件。所以,在很多芯片上,需要同时集成高压器件和低压器件。
为了应对这种趋势,目前传统的做法是在低压工艺的基础上,引入了高压工艺。高压工艺,需要在低压工艺的基础上,增加高压的P型注入层、N型注入层、高压的P阱、高压N阱等多层掩模板,这大大提高了芯片的成本,增加了芯片的制作流程,延长了芯片的产出时间。
发明内容
为解决现有高压工艺导致芯片成本过高、产出时间过长的技术问题,本发明提供了一种低压工艺中的高压NMOS晶体管。
一种低压工艺中的高压NMOS晶体管,包括:P型衬底PSUB、N型阱NWELL、第一N型掺杂N+1、第二N型掺杂N+2和多晶硅POLY;P型衬底PSUB位于最下方;N型阱NWELL、第一N型掺杂N+1和第二N型掺杂N+2都做在P型衬底PSUB上;第一N型掺杂N+1位于P型衬底PSUB的左上方;第二N型掺杂N+2位于P型衬底PSUB的右上方,与第一N型掺杂N+1左右对称;N型阱NWELL将第二N型掺杂N+2包围,使其不与P型衬底PSUB直接接触;在第一N型掺杂N+1和第二N型掺杂N+2的间隙的正上方,是层多晶硅POLY,它是器件的栅极G;第一N型掺杂N+1是器件的源极S;第二N型掺杂N+2是器件的漏极D。
本发明提供的低压工艺中的高压NMOS晶体管,在传统的低压NMOS晶体管的基础上,在第二N型掺杂N+2的外围增加了N型阱NWELL,使得第二N型掺杂N+2不直接与P型衬底PSUB接触。由于二极管的掺杂特性,第二N型掺杂N+2与P型衬底PSUB形成的寄生PN结二极管的反向击穿电压远低于N型阱NWELL与P型衬底PSUB形成的寄生PN结二极管的反向击穿电压,这样就使得器件的漏极D比低压器件的漏极能够承受更高的电压,符合很多高压场合的应用要求。
附图说明
图1是本发明实施方式提供的低压工艺中的高压NMOS晶体管的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
为解决现有高压工艺导致芯片成本过高、产出时间过长的技术问题,本发明提供了一种低压工艺中的高压NMOS晶体管。如图1所示,低压工艺中的高压NMOS晶体管包括:P型衬底PSUB、N型阱NWELL、第一N型掺杂N+1、第二N型掺杂N+2和多晶硅POLY;P型衬底PSUB位于最下方;N型阱NWELL、第一N型掺杂N+1和第二N型掺杂N+2都做在P型衬底PSUB上;第一N型掺杂N+1位于P型衬底PSUB的左上方;第二N型掺杂N+2位于P型衬底PSUB的右上方,与第一N型掺杂N+1左右对称;N型阱NWELL将第二N型掺杂N+2包围,使其不与P型衬底PSUB直接接触;在第一N型掺杂N+1和第二N型掺杂N+2的间隙的正上方,是层多晶硅POLY,它是器件的栅极G;第一N型掺杂N+1是器件的源极S;第二N型掺杂N+2是器件的漏极D。
本发明提供的低压工艺中的高压NMOS晶体管,在传统的低压NMOS晶体管的基础上,在第二N型掺杂N+2的外围增加了N型阱NWELL,使得第二N型掺杂N+2不直接与P型衬底PSUB接触。由于二极管的掺杂特性,第二N型掺杂N+2与P型衬底PSUB形成的寄生PN结二极管的反向击穿电压远低于N型阱NWELL与P型衬底PSUB形成的寄生PN结二极管的反向击穿电压,这样就使得器件的漏极D比低压器件的漏极能够承受更高的电压,符合很多高压场合的应用要求。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (1)

1.一种低压工艺中的高压NMOS晶体管,其特征在于,包括:
P型衬底PSUB、N型阱NWELL、第一N型掺杂N+1、第二N型掺杂N+2和多晶硅POLY;P型衬底PSUB位于最下方;N型阱NWELL、第一N型掺杂N+1和第二N型掺杂N+2都做在P型衬底PSUB上;第一N型掺杂N+1位于P型衬底PSUB的左上方;第二N型掺杂N+2位于P型衬底PSUB的右上方,与第一N型掺杂N+1左右对称;N型阱NWELL将第二N型掺杂N+2包围,使其不与P型衬底PSUB直接接触;在第一N型掺杂N+1和第二N型掺杂N+2的间隙的正上方,是层多晶硅POLY,它是器件的栅极G;第一N型掺杂N+1是器件的源极S;第二N型掺杂N+2是器件的漏极D。
CN201710567225.9A 2017-07-12 2017-07-12 一种低压工艺中的高压nmos晶体管 Withdrawn CN107146817A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710567225.9A CN107146817A (zh) 2017-07-12 2017-07-12 一种低压工艺中的高压nmos晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710567225.9A CN107146817A (zh) 2017-07-12 2017-07-12 一种低压工艺中的高压nmos晶体管

Publications (1)

Publication Number Publication Date
CN107146817A true CN107146817A (zh) 2017-09-08

Family

ID=59776057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710567225.9A Withdrawn CN107146817A (zh) 2017-07-12 2017-07-12 一种低压工艺中的高压nmos晶体管

Country Status (1)

Country Link
CN (1) CN107146817A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992895A (zh) * 2021-01-27 2021-06-18 复旦大学 GaN基开关集成单元与GaN基开关管的晶圆结构的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907048A (en) * 1987-11-23 1990-03-06 Xerox Corporation Double implanted LDD transistor self-aligned with gate
CN1375879A (zh) * 2001-02-16 2002-10-23 佳能株式会社 半导体器件及其制造方法和喷液设备
US6624487B1 (en) * 2002-05-07 2003-09-23 Texas Instruments Incorporated Drain-extended MOS ESD protection structure
CN1866541A (zh) * 2005-05-12 2006-11-22 英飞凌科技股份公司 场效应晶体管和制造场效应晶体管的方法
CN102376574A (zh) * 2010-08-09 2012-03-14 上海宏力半导体制造有限公司 半导体器件及其制造方法
CN104505399A (zh) * 2014-12-18 2015-04-08 杭州捷茂微电子有限公司 一种用于栅极接地nmos结构esd保护器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907048A (en) * 1987-11-23 1990-03-06 Xerox Corporation Double implanted LDD transistor self-aligned with gate
CN1375879A (zh) * 2001-02-16 2002-10-23 佳能株式会社 半导体器件及其制造方法和喷液设备
US6624487B1 (en) * 2002-05-07 2003-09-23 Texas Instruments Incorporated Drain-extended MOS ESD protection structure
CN1866541A (zh) * 2005-05-12 2006-11-22 英飞凌科技股份公司 场效应晶体管和制造场效应晶体管的方法
CN102376574A (zh) * 2010-08-09 2012-03-14 上海宏力半导体制造有限公司 半导体器件及其制造方法
CN104505399A (zh) * 2014-12-18 2015-04-08 杭州捷茂微电子有限公司 一种用于栅极接地nmos结构esd保护器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992895A (zh) * 2021-01-27 2021-06-18 复旦大学 GaN基开关集成单元与GaN基开关管的晶圆结构的制备方法

Similar Documents

Publication Publication Date Title
US11127734B2 (en) Vertical nanowire transistor for input/output structure
CN101593751B (zh) 集成电路结构
CN106449634B (zh) 瞬态电压抑制器及其制造方法
CN104218077B (zh) Esd晶体管
CN105304631B (zh) 半导体装置
JP2010157636A (ja) 半導体装置およびその製造方法
US9899471B2 (en) Compact CMOS device isolation
JP2008526039A (ja) 基板電圧に対する耐性を更に有するsoi装置
KR20120055139A (ko) Ldmos반도체 소자
CN103208521B (zh) Hvmos器件及其形成方法
US20090206439A1 (en) Semiconductor device
CN107146817A (zh) 一种低压工艺中的高压nmos晶体管
US20120098031A1 (en) Dual-directional silicon controlled rectifier
CN107359190A (zh) 一种低压工艺中的高压pmos晶体管
KR100928653B1 (ko) 반도체 소자 및 그 제조방법
CN106486474B (zh) 瞬时电压抑制元件及其制造方法
TW201334183A (zh) 半導體元件
CN103426879A (zh) 瞬态电压抑制器及其制造方法
CN101604690B (zh) 具有电源切断晶体管的半导体器件
CN108987391B (zh) 电源管理芯片及其形成方法
US9748221B2 (en) Electrostatic discharge protection device and manufacturing method thereof
CN110071103A (zh) 一种冷备份电路的新型esd保护结构及制备方法
CN207529939U (zh) 双向瞬态电压抑制二极管
CN202142533U (zh) Esd保护结构
CN110600465B (zh) 半导体结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170908