CN107146649A - 一种操控低折射率介质纳米粒子的装置和方法 - Google Patents

一种操控低折射率介质纳米粒子的装置和方法 Download PDF

Info

Publication number
CN107146649A
CN107146649A CN201710416321.3A CN201710416321A CN107146649A CN 107146649 A CN107146649 A CN 107146649A CN 201710416321 A CN201710416321 A CN 201710416321A CN 107146649 A CN107146649 A CN 107146649A
Authority
CN
China
Prior art keywords
particle
light
diaphragm
refractive index
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710416321.3A
Other languages
English (en)
Other versions
CN107146649B (zh
Inventor
芮光浩
王玉松
王晓雁
顾兵
崔平
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710416321.3A priority Critical patent/CN107146649B/zh
Publication of CN107146649A publication Critical patent/CN107146649A/zh
Application granted granted Critical
Publication of CN107146649B publication Critical patent/CN107146649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开了一种操控低折射率介质纳米粒子的装置和方法,属于光学捕获和光学微操控技术领域。该装置由激光器、扩束镜组、偏振转换器、反射镜、分束器、空间光调制器、光阑、油浸物镜和位移台组成。该方法通过偏振转换器和空间光调制器生成空间位相复杂分布的径向偏振涡旋光场,在油浸透镜的聚焦下利用两列相向传输的光场干涉生成中空的球形焦斑,能够将处于焦场范围内的低折射率介质粒子稳定地三维捕获在焦场的中心。通过改变聚焦条件和空间光调制器的加载位相,能够实现多粒子操控和粒子运动轨迹的灵活调控。该方法克服了传统光镊技术中无法三维捕获低折射率介质粒子的难题,在一系列涉及光学操控的领域都有着重大的应用前景。

Description

一种操控低折射率介质纳米粒子的装置和方法
技术领域
本发明涉及一种光镊技术,尤其是涉及一种操控低折射率介质纳米粒子的装置和方法,属于光学捕获和光学微操控技术领域。
背景技术
1986年,Ashkin成功的利用可见激光的辐射压力加速和捕获微米尺寸的中性粒子,这种技术被形象地称为光镊。光镊的出现使得人们对微小粒子的研究行为从被动观察转为主动操控,为化学、物理和生物等多个领域带来革命性的创新。例如在生物领域中,科研人员利用光镊技术对生物细胞、细菌和病毒等实现了非破坏性的无损捕获和操控。由于此类基于激光的光学微操控通常是在溶液中进行,待捕获粒子与环境媒介之间的相对折射率对粒子的行为起到了至关重要的作用。当粒子的折射率高于环境媒介时,聚焦的实心激光光斑会将粒子稳定地捕获在光斑中心的峰值强度位置。此外,折射率低于环境媒介的低折射率例子也在物理、化学、医药技术等多个领域起着举足轻重的作用。例如,捕获位于声学共振腔内的空气泡已经引发大量关于声致光学、光化学等方面的研究,并且促进了生物和医药方面的新研究。除了空气泡,低折射率粒子还可以应用于石油的油包水乳剂,食物和药物的生产过程,并有助于药物定向输送和基因转染的开发研究。然而,操控低折射率粒子依旧面临巨大的挑战,这主要归因于捕获光斑的形状。通常的光镊系统采用紧聚焦的线/圆偏振光场作用于粒子,这种实心的聚焦光斑会将低折射率粒子弹开。通过给光源施加位相/偏振的空间调控,可以生成强度为中空型分布的涡旋/角向偏振焦场,理论和实验工作都证实此类焦场能够在横平面内将低折射率粒子控制在中心暗斑的位置。然而此类光场在光轴方向无法为粒子提供必要的平衡位置,这也是阻碍实现低折射率纳米粒子在无衬底条件下三维操控的根本障碍。
发明内容
本发明的目的在于克服上述不足,提出了一种操控低折射率介质纳米粒子的装置和方法,用于解决现存光镊技术中无法在三维空间内捕获折射率低于环境媒介的质纳米粒子这一难题,并对粒子运动轨迹控制和多粒子操控提供了有效的解决方案。
为了实现上述的目的,本发明采用了如下的设计方案:
一种操控低折射率介质纳米粒子的装置,其包括激光器、扩束镜组、偏振转换器、反射镜Ⅰ、分束器、空间光调制器Ⅰ、光阑Ⅰ、油浸物镜Ⅰ、位移台、油浸物镜Ⅱ、光阑Ⅱ、空间光调制器Ⅱ和反射镜Ⅱ,上述各元器件均沿激光器所发出的平行的入射光所在的光路上分布。所述扩束镜组由两块焦距不同的透镜组成,能够将入射光扩束为特定束腰宽度的平行光。这里透镜的焦距取值需根据激光器的出射光斑尺寸和油浸物镜Ⅰ与油浸物镜Ⅱ的入光孔径大小而定;所述偏振转换器的输出偏振态为径向偏振;所述分束器为偏振非敏感型分束器,能够将一束光分为两束传播方向垂直的光束,并且不改变光场的偏振态分布。所述空间光调制器Ⅰ和空间光调制器Ⅱ均为反射型空间光调制器。所述光阑Ⅰ和光阑Ⅱ均用于调整透射光场的外径和内径。
径向偏振光在油浸物镜聚焦下的焦场分布可以根据理查德-沃尔夫矢量衍射理论计算(参考文献:Q.Zhan,Adv.Opt.Photon.1,1–57(2009).)。处于焦场内的低折射率介质纳米粒子所受光力可用偶极近似的方法计算。粒子的力稳定性是用势阱深度来衡量。所涉及的光力分布和势阱深度的计算可参考文献(G.Rui and Q.Zhan,Nanophotonics 3,351–361(2014))。
本发明一种操控低折射率介质纳米粒子的方法,顺序执行以下步骤实现改变低折射率介质纳米粒子的三维运动轨迹,具体包括以下步骤:
步骤一、将激光器出射的激光通过扩束镜组,对光束进行准直扩束,扩束后的光束束腰半径与油浸物镜Ⅰ和油浸物镜Ⅱ的入光孔径相同;
步骤二、将步骤一中准直扩束后的激光通过偏振转换器,生成径向偏振的光场;
步骤三、利用反射镜Ⅰ将步骤二中生成的径向偏振光场反射并垂直照射分束器。光束经过分束器后将变成两束径向偏振光,且传播方向彼此垂直;
步骤四、将步骤三中生成的两束光场中传播方向与步骤二中光场传播方向相反的光场照射空间光调制器Ⅰ,并对空间光调制器加载位相其中为方位角,生成拓扑荷数为1的径向偏振涡旋光场;
步骤五、利用油浸物镜Ⅰ将步骤五中生成的径向偏振涡旋光场聚焦,同时通过改变光阑Ⅰ去调整光场的最大聚焦角度,所述光阑Ⅰ为孔径光阑;
步骤六、针对步骤三中生成的两束光场中传播方向与步骤二中光场传播方向垂直的光场,利用反射镜Ⅱ将其反射至另一空间光调制器Ⅱ,并对该空间光调制器加载位相产生拓扑荷数为1的径向偏振涡旋光场,且与步骤四中生成的光场之间的相对位相差为π;
步骤七、利用油浸物镜Ⅱ将步骤六中生成的径向偏振涡旋光场聚焦,同时通过改变光阑Ⅱ去调整光场的最大聚焦角度,所述光阑Ⅱ为孔径光阑;
步骤八、将装有低折射率介质纳米粒子的样品室放在位移台上,调整位移台使粒子处于焦场范围内。步骤五和步骤七中生成的光场相向传输且彼此干涉相长,合成为中空的球形焦斑。在该焦场作用下,低折射率介质粒子将被稳固地三维捕获在中空球形焦斑的中心。
据此,本发明一方面提供了一种动态操控低折射率介质纳米粒子的方法,顺序执行以下步骤实现改变低折射率介质纳米粒子的三维运动轨迹,具体包括以下步骤:
步骤1、重复上述方法的步骤一、二、三,将步骤四中空间光调制器Ⅰ的加载位相调整为其中X0、Y0和Z0为中空球形焦斑中心所在位置的笛卡尔坐标;
步骤2、重复上述方法的步骤五,并将上述方法的步骤六中的空间光调制器Ⅱ的加载位相调整为其中X0、Y0和Z0为中空球形焦斑中心所在位置的笛卡尔坐标;
步骤3、重复上述方法的步骤七、八,实现对低折射率纳米粒子位置的改变。通过按照此方式改变空间光调制器的加载位相,中空球形焦斑将被移动到设定的坐标,而原本被捕获在焦斑中心的低折射率介质纳米粒子也将移动到新的位置;
步骤4、考虑光学捕获的稳定性,粒子单次移动的最大距离由势阱宽度决定。因此可将粒子的运动路径拆分为一系列分立的坐标点,通过相应的连续改变步骤1和步骤2中空间光调制器Ⅰ和空间光调制器Ⅱ的加载位相,可实现粒子按照复杂轨迹运动。
本发明另一方面还提供一种同时三维捕获轴上多个低折射率介质纳米粒子的方法,包括以下步骤:
步骤i、重复权2中的步骤一、二、三、四,并将权2中的步骤五中的光阑Ⅰ由孔径光阑更换为环形光阑,调整入射光场的最大和最小会聚角度;
步骤ii、重复权2中的步骤五、六,并将权2中的步骤七的光阑Ⅱ由孔径光阑更换为环形光阑,调整入射光场的最大和最小会聚角度。步骤一和步骤二中生成的光场相向传输并发生干涉相长,在轴上生成多个连续的中空球形焦斑;
步骤iii、重复上述方法的步骤八,实现多个低折射率介质粒子的同时三维稳定捕获。
有益效果:
(1)本发明的功能性强。不同于传统的实心焦斑或甜甜圈型焦斑,利用两列相向传输的径向偏振涡旋焦场在光轴上生成数量可控的中空球形焦斑。由于入射能量被高度局域在轴对称的中空球形焦斑,梯度力在大幅提升的同时,粒子在光轴上所受的两束光产生的散射力也会相互抵消,可在溶液中实现对单个/多个低折射率粒子的稳定三维捕获;
(2)本发明的扩展性强。虽然本专利具体实施方式中以浸没在水中的半径为50纳米的空气泡为例,但对于其他不同材料和尺寸的介质纳米颗粒,基于本专利提出的方法都可实现稳定的光学操控,本领域技术人员只需根据现有技术针对不同的情况对聚焦条件进行优化设计。此外,通过改变聚焦条件,还可以实现多个低折射率介质粒子的同时捕获;
(3)本方法所提出的光学操控方法操作简便,灵活高效。通过改变空间光调制器的加载位相,可以在不引入机械扰动的情况下改变目标粒子的运动方式和运动轨迹。
附图说明
图1为本发明装置的结构示意图;
图2为中空球形焦斑在XZ平面内的强度分布图;
图3为中空球形焦斑在XY平面内的强度分布图;
图4为低折射率粒子沿轴向所受的光力分布;
图5为低折射率粒子在纵向平衡位置处沿径向所受的光力分布;
图6为处于平衡位置的低折射率粒子沿轴向的势阱分布;
图7为处于平衡位置的低折射率粒子沿径向的势阱分布;
图8为中空球形焦斑移动到预设位置后在XZ平面内的强度分布图;
图9为中空球形焦斑移动到预设位置后在XY平面内的强度分布图;
图10为多个中空球形焦斑在XZ平面内的强度分布图;
图11为多个低折射率粒子沿轴向所受的光力分布;
图12为多个低折射率粒子沿轴向的势阱分布。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示,一种操控低折射率介质纳米粒子的装置,可分为包括激光器1、扩束镜组2、偏振转换器3、反射镜Ⅰ4、分束器5、空间光调制器Ⅰ6、光阑Ⅰ7、油浸物镜Ⅰ8、位移台9、油浸物镜Ⅱ10、光阑Ⅱ11、空间光调制器Ⅱ12和反射镜Ⅱ13等多个元器件,上述各元器件均沿激光器所发出的平行的入射光所在的光路上分布。其中,扩束镜组2由两块焦距不同的透镜组成,能够将入射光扩束为特定束腰宽度的平行光。这里透镜的焦距取值需根据激光器的出射光斑尺寸和油浸物镜Ⅰ8和油浸物镜Ⅱ10的入光孔径大小而定。偏振转换器3的输出偏振态为径向偏振。分束器5为偏振非敏感型分束器,能够将一束光分为两束传播方向垂直的光束,并且不改变光场的偏振态分布。空间光调制器Ⅰ6和空间光调制器Ⅱ12均为反射型空间光调制器。光阑Ⅰ7和光阑Ⅱ11均用于调整透射光场的外径和内径。
本发明提供了一种操控低折射率介质纳米粒子的方法,用于三维捕获低折射率介质纳米粒子,具体如下:
从激光器1发出一束波长为532纳米的激光,经过扩束镜组2后,光束被准直扩束,且束腰半径与油浸物镜Ⅰ8和油浸物镜Ⅱ10的入光孔径相同。继而光场经过偏振转换器3,透射光束的偏振态为径向偏振。利用反射镜Ⅰ4将生成的径向偏振光场反射并垂直照射分束器5。光束经过分束器5后,将变成两束径向偏振光,且传播方向彼此垂直。将生成的两束光场中传播方向与偏振转换器3产生的光场传播方向相反的光场照射空间光调制器Ⅰ6,且空间光调制器Ⅰ6加载位相其中为方位角。利用油浸物镜Ⅰ8将空间光调制器Ⅰ6生成的径向偏振涡旋光场聚焦,同时通过改变孔径光阑Ⅰ7将光场的最大聚焦角度调整为67.5度。将分束器5生成的两束光场中传播方向与偏振转换器3产生的光场传播方向垂直的光场,利用反射镜Ⅱ13将其反射至空间光调制器Ⅱ12,并对空间光调制器Ⅱ12加载位相产生与空间光调制器Ⅰ6生成的光场有π相对位相差,且拓扑荷为1的径向偏振涡旋光场。利用油浸物镜Ⅱ10将空间光调制器Ⅱ12生成的径向偏振涡旋光场聚焦,同时通过改变孔径光阑Ⅱ11将光场的最大聚焦角度调整为67.5度。将装有低折射率介质纳米粒子的样品室放在位移台9上,调整位移台9使得粒子处于焦场范围内。油浸物镜Ⅰ8和油浸物镜Ⅱ10聚焦的光场相向传输并发生干涉相长,合成中空的球形焦斑。在该焦场作用下,低折射率介质粒子将被稳固地三维捕获在中空球形焦斑的中心。
使用本发明提供的上述方法,还可动态操控低折射率介质纳米粒子,具体如下:
从激光器1发出一束波长为532纳米的激光,经过扩束镜组2后,光束被准直扩束,且束腰半径与油浸物镜Ⅰ8和油浸物镜Ⅱ10的入光孔径相同。继而光场经过偏振转换器3,透射光束的偏振态为径向偏振。利用反射镜Ⅰ4将生成的径向偏振光场反射并垂直照射分束器5。光束经过分束器5后,将变成两束径向偏振光,且传播方向彼此垂直。将生成的两束光场中传播方向与偏振转换器3产生的光场传播方向相反的光场照射空间光调制器Ⅰ6,且将反射型空间光调制器Ⅰ6的加载位相调整为其中为方位角,X0、Y0和Z0为中空球形焦斑中心所在位置的笛卡尔坐标。假设要将粒子移动到(5λ,2λ,10λ)处,则X0=5λ,Y0=2λ,Z0=10λ,代入上述公式,空间光调制器Ⅰ6的加载位相变为生成拓扑荷数为1的径向偏振涡旋光场。利用油浸物镜Ⅰ8将空间光调制器Ⅰ6生成的径向偏振涡旋光场聚焦,同时通过改变孔径光阑Ⅰ7将光场的最大聚焦角度调整为67.5度。将分束器5生成的两束光场中传播方向与偏振转换器3产生的光场传播方向垂直的光场,利用反射镜Ⅱ13将其反射至空间光调制器Ⅱ12,并将反射型空间光调制器Ⅱ12的加载位相调整为 其中为方位角,X0、Y0和Z0为中空球形焦斑中心所在位置的笛卡尔坐标。假设仍要将粒子移动到(5λ,2λ,10λ)处,则X0=5λ,Y0=2λ,Z0=10λ,代入上述公式,空间光调制器Ⅱ12的加载相位变为产生与空间光调制器Ⅰ6生成的光场有π相对位相差,且拓扑荷为1的径向偏振涡旋光场。利用油浸物镜Ⅱ10将空间光调制器Ⅱ12生成的径向偏振涡旋光场聚焦,同时通过改变孔径光阑Ⅱ11将光场的最大聚焦角度调整为67.5度。将装有低折射率介质纳米粒子的样品室放在位移台9上,调整位移台9使得粒子处于焦场范围内。油浸物镜Ⅰ8和油浸物镜Ⅱ10聚焦的光场相向传输并发生干涉相长,合成中空的球形焦斑。由于其他的光学元件不发生变化,粒子将伴随着中空球形焦斑被移动到(5λ,2λ,10λ)处。
通过按照此方式改变空间光调制器的加载位相,中空球形焦斑将被移动到设定的坐标,而原本被捕获在焦斑中心的低折射率介质纳米粒子也将移动到新的位置,实现了动态操控低折射率介质纳米粒子的目的。另外,考虑光学捕获的稳定性,粒子单次移动的最大距离由势阱宽度决定。因此可将粒子的运动路径拆分为一系列分立的坐标点,通过相应的连续改变空间光调制器Ⅰ6和空间光调制器Ⅱ12的加载位相,还可实现粒子按照复杂轨迹运动的灵活调控。
使用本发明提供的上述方法,还可同时三维捕获轴上多个低折射率介质纳米粒子,具体如下:
从激光器1发出一束波长为532纳米的激光,经过扩束镜组2后,光束被准直扩束,且束腰半径与油浸物镜Ⅰ8和油浸物镜Ⅱ10的入光孔径相同。继而光场经过偏振转换器3,透射光束的偏振态为径向偏振。利用反射镜Ⅰ4将生成的径向偏振光场反射并垂直照射分束器5。光束经过分束器5后,将变成两束径向偏振光,且传播方向彼此垂直。将生成的两束光场中传播方向与偏振转换器3产生的光场传播方向相反的光场照射空间光调制器Ⅰ6,且空间光调制器Ⅰ6加载位相其中为方位角。利用油浸物镜Ⅰ8将空间光调制器Ⅰ6生成的径向偏振涡旋光场聚焦,同时通过将光阑Ⅰ7由孔径光阑更换为环形光阑,并将光场最大和最小会聚角分别限制为61.64度和36.87度,将分束器5生成的两束光场中传播方向与偏振转换器3产生的光场传播方向垂直的光场,利用反射镜Ⅱ13将其反射至空间光调制器Ⅱ12,并对空间光调制器Ⅱ12加载位相产生与空间光调制器Ⅰ6生成的光场有π相对位相差,且拓扑荷为1的径向偏振涡旋光场。利用油浸物镜Ⅱ10将空间光调制器Ⅱ12生成的径向偏振涡旋光场聚焦,同时通过将光阑Ⅱ11由孔径光阑更换为环形光阑,并将光场最大和最小会聚角分别限制为61.64度和36.87度,将装有低折射率介质纳米粒子的样品室放在位移台9上,调整位移台9使得粒子处于焦场范围内。油浸物镜Ⅰ8和油浸物镜Ⅱ10聚焦的光场相向传输并发生干涉相长,在轴上生成多个连续的中空球形焦斑。
通过按照此方式改变光阑Ⅰ7和光阑Ⅱ11,实现了多个低折射率介质粒子的同时稳定三维捕获。
实施例
以下,以半径为50纳米的浸没在水中的空气泡为例,结合附图来具体说明本专利中提出的方法能够实现稳定的三维捕获。
对于浸没在水(折射率为1.33)中的空气泡(折射率为1),激光器的入射功率为100毫瓦,所产生的光力即足以支持稳定的光学操控。
图2展示的是生成的焦斑在XZ平面的强度的分布图,可见中央为圆形暗斑。
图3展示的是生成的焦斑在XY平面的强度的分布图,可见中央为圆形暗斑。
结合图2和图3,可见在焦场范围内生成了中空的球形焦斑。
图4展示的是空气泡在光轴方向所受的光力分布。可见气泡在光轴方向上存在平衡点,位置为z=0。
图5展示了空气泡在z=0处沿径向所受的光力分布,可见气泡在径向方向上存在平衡点,位置为r=0。
图6展示的是处于平衡位置的空气泡在光轴方向的势阱分布,可见平衡点的势阱深度可达15KBT。
图7展示的是处于平衡位置的空气泡在径向方向的势阱分布,可见平衡点的势阱深度可达15KBT。
结合图4到图7,可见中空球形焦斑可在三维空间内稳定地将浸没在水中的空气泡捕获在焦斑的中心。
图8为将中空球形焦斑移动到(5λ,2λ,10λ)后在XZ平面内的强度分布图。
图9为将中空球形焦斑移动到(5λ,2λ,10λ)后在XY平面内的强度分布图。
结合图8和图9,可见在焦斑移动的过程中其形状和强度的分布都维持不变,因此粒子将稳定地在三维空间内移动。
图10为多个焦斑在XZ平面内的强度分布图,可见在焦场范围内生成了三个中空的球形焦斑。
图11为多个低折射率粒子沿轴向所受的光力分布,可见气泡在光轴方向上存在3个平衡点,位置分别是z=-0.81λ,0,0.81λ。
图12为处于平衡位置的多个低折射率粒子沿轴向的势阱分布,可见平衡点的势阱深度约为20KBT。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种操控低折射率介质纳米粒子的装置,其特征在于:其包括激光器(1)、扩束镜组(2)、偏振转换器(3)、反射镜Ⅰ(4)、分束器(5)、空间光调制器Ⅰ(6)、光阑Ⅰ(7)、油浸物镜Ⅰ(8)、位移台(9)、油浸物镜Ⅱ(10)、光阑Ⅱ(11)、空间光调制器Ⅱ(12)和反射镜Ⅱ(13),上述各元器件均沿激光器所发出的平行的入射光所在的光路上分布;所述扩束镜组(2)由两块焦距不同的透镜组成,能够将入射光扩束为特定束腰宽度的平行光;所述偏振转换器(3)的输出偏振态为径向偏振;所述分束器(5)为偏振非敏感型分束器,能够将一束光分为两束传播方向垂直的光束,并且不改变光场的偏振态分布;所述空间光调制器Ⅰ(6)和空间光调制器Ⅱ(12)均为反射型空间光调制器;所述光阑Ⅰ(7)和光阑Ⅱ(11)均用于调整透射光场的外径和内径。
2.根据权利要求1所述的操控低折射率介质纳米粒子的装置,其特征在于:所述扩束镜组(2)的透镜的焦距取值需根据激光器的出射光斑尺寸和油浸物镜Ⅰ(8)与油浸物镜Ⅱ(10)的入光孔径大小而定。
3.一种操控低折射率介质纳米粒子的方法,其特征在于:顺序执行以下步骤实现将低折射率介质纳米粒子三维捕获在焦斑中心:
步骤一、将激光器(1)出射的激光通过扩束镜组(2),对光束进行准直扩束,扩束后的光束束腰半径与油浸物镜Ⅰ(8)和油浸物镜Ⅱ(10)的入光孔径相同;
步骤二、将步骤一中准直扩束后的激光通过偏振转换器(3),生成径向偏振的光场;
步骤三、利用反射镜Ⅰ(4)将步骤二中生成的径向偏振光场反射并垂直照射分束器(5),光束经过分束器(5)后将变成两束径向偏振光,且传播方向彼此垂直;
步骤四、将步骤三中生成的两束光场中传播方向与步骤二中光场传播方向相反的光场照射空间光调制器Ⅰ(6),并对空间光调制器加载位相其中为方位角,生成拓扑荷数为1的径向偏振涡旋光场;
步骤五、利用油浸物镜Ⅰ(8)将步骤五中生成的径向偏振涡旋光场聚焦,同时通过改变光阑Ⅰ(7)去调整光场的最大聚焦角度,所述光阑Ⅰ(7)为孔径光阑;
步骤六、针对步骤三中生成的两束光场中传播方向与步骤二中光场传播方向垂直的光场,利用反射镜Ⅱ(13)将其反射至另一空间光调制器Ⅱ(12),并对该空间光调制器加载位相 产生拓扑荷数为1的径向偏振涡旋光场,且与步骤四中生成的光场之间的相对位相差为π;
步骤七、利用油浸物镜Ⅱ(10)将步骤六中生成的径向偏振涡旋光场聚焦,同时通过改变光阑Ⅱ(11)去调整光场的最大聚焦角度,所述光阑Ⅱ(11)为孔径光阑;
步骤八、将装有低折射率介质纳米粒子的样品室放在位移台(9)上,调整位移台(9)使粒子处于焦场范围内。
4.一种可操控低折射率介质纳米粒子运动方式的方法,其特征在于:顺序执行以下步骤实现改变低折射率介质纳米粒子的三维运动轨迹:
步骤1、重复权2中的步骤一、二、三,并将权2中的步骤四中的空间光调制器Ⅰ(6)的加载位相调整为其中X0、Y0和Z0为中空球形焦斑中心所在位置的笛卡尔坐标;
步骤2、重复权2中的步骤五,并将权2中的步骤六中的空间光调制器Ⅱ(12)的加载位相调整为其中X0、Y0和Z0为中空球形焦斑中心所在位置的笛卡尔坐标;
步骤3、重复权2中的步骤七、八,实现对低折射率纳米粒子位置的改变;
步骤4、将粒子的运动路径拆分为一系列分立的坐标点,通过相应的连续改变步骤1和步骤2中空间光调制器Ⅰ(6)和空间光调制器Ⅱ(12)的加载位相,可实现粒子按照复杂轨迹运动。
5.一种可操控低折射率介质纳米粒子运动方式的方法,其特征在于:顺序执行以下步骤实现轴上多个低折射率介质纳米粒子的同时三维捕获:
步骤i、重复权2中的步骤一、二、三、四,并将权2中的步骤五中的光阑Ⅰ(7)由孔径光阑更换为环形光阑,调整入射光场的最大和最小会聚角度;
步骤ii、重复权2中的步骤五、六,并将权2中的步骤七的光阑Ⅱ(11)由孔径光阑更换为环形光阑,调整入射光场的最大和最小会聚角度;
步骤iii、重复权2中的步骤八,实现光轴上多个低折射率介质粒子的同时稳定捕获。
CN201710416321.3A 2017-06-06 2017-06-06 一种操控低折射率介质纳米粒子的装置和方法 Active CN107146649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710416321.3A CN107146649B (zh) 2017-06-06 2017-06-06 一种操控低折射率介质纳米粒子的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710416321.3A CN107146649B (zh) 2017-06-06 2017-06-06 一种操控低折射率介质纳米粒子的装置和方法

Publications (2)

Publication Number Publication Date
CN107146649A true CN107146649A (zh) 2017-09-08
CN107146649B CN107146649B (zh) 2019-04-12

Family

ID=59779582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710416321.3A Active CN107146649B (zh) 2017-06-06 2017-06-06 一种操控低折射率介质纳米粒子的装置和方法

Country Status (1)

Country Link
CN (1) CN107146649B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116539A (zh) * 2018-09-11 2019-01-01 鲁东大学 一种光镊实时移动操控系统
CN109188673A (zh) * 2018-09-14 2019-01-11 上海电力学院 一种可调的光镊装置
CN110899144A (zh) * 2019-11-07 2020-03-24 东南大学 一种手性粒子光学检测和分选的装置及方法
CN111175969A (zh) * 2020-01-03 2020-05-19 浙江大学 一种基于涡旋对光束的光镊系统
CN111899907A (zh) * 2020-08-10 2020-11-06 上海大学 一种输运装置
CN113053556A (zh) * 2021-03-10 2021-06-29 暨南大学 具有可重构性的生物微马达阵列及其应用
CN113223744A (zh) * 2021-04-21 2021-08-06 太原理工大学 一种超快调控矢量涡旋光场的光学微操纵装置和方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521712A (ja) * 2005-12-21 2009-06-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 小さな粒状物質を分離又は捕捉する流体焦点レンズ
CN102519862A (zh) * 2011-12-06 2012-06-27 中国科学技术大学 基于新型杂化光镊的软物质综合测量装置
CN203465207U (zh) * 2013-08-22 2014-03-05 杭州电子科技大学 一种基于数字全息光镊的微颗粒群燃料微燃烧系统
CN103926686A (zh) * 2014-04-21 2014-07-16 黑龙江大学 一种基于柱矢量光束的飞秒激光模式可调光镊操控装置
CN104090386A (zh) * 2014-07-30 2014-10-08 东南大学 一种调控光场偏振态分布的方法
CN104482880A (zh) * 2014-12-17 2015-04-01 北京理工大学 激光受激发射损耗三维超分辨分光瞳差动共焦成像方法与装置
CN204359713U (zh) * 2014-12-22 2015-05-27 北京师范大学 X射线纳米成像设备及成像分析系统
CN105511069A (zh) * 2016-02-16 2016-04-20 东南大学 一种操控共振金属纳米粒子运动方式的装置和方法
CN105589203A (zh) * 2016-03-13 2016-05-18 南京理工大学 产生径向偏振阵列光束的方法及装置
JP2017003694A (ja) * 2015-06-08 2017-01-05 株式会社ジェイテクト 光ピンセット装置及び液体中の微粒子捕捉方法
CN106569341A (zh) * 2016-10-28 2017-04-19 东南大学 一种合成并保持焦场任意偏振态的装置和方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521712A (ja) * 2005-12-21 2009-06-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 小さな粒状物質を分離又は捕捉する流体焦点レンズ
CN102519862A (zh) * 2011-12-06 2012-06-27 中国科学技术大学 基于新型杂化光镊的软物质综合测量装置
CN203465207U (zh) * 2013-08-22 2014-03-05 杭州电子科技大学 一种基于数字全息光镊的微颗粒群燃料微燃烧系统
CN103926686A (zh) * 2014-04-21 2014-07-16 黑龙江大学 一种基于柱矢量光束的飞秒激光模式可调光镊操控装置
CN104090386A (zh) * 2014-07-30 2014-10-08 东南大学 一种调控光场偏振态分布的方法
CN104482880A (zh) * 2014-12-17 2015-04-01 北京理工大学 激光受激发射损耗三维超分辨分光瞳差动共焦成像方法与装置
CN204359713U (zh) * 2014-12-22 2015-05-27 北京师范大学 X射线纳米成像设备及成像分析系统
JP2017003694A (ja) * 2015-06-08 2017-01-05 株式会社ジェイテクト 光ピンセット装置及び液体中の微粒子捕捉方法
CN105511069A (zh) * 2016-02-16 2016-04-20 东南大学 一种操控共振金属纳米粒子运动方式的装置和方法
CN105589203A (zh) * 2016-03-13 2016-05-18 南京理工大学 产生径向偏振阵列光束的方法及装置
CN106569341A (zh) * 2016-10-28 2017-04-19 东南大学 一种合成并保持焦场任意偏振态的装置和方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116539A (zh) * 2018-09-11 2019-01-01 鲁东大学 一种光镊实时移动操控系统
CN109188673A (zh) * 2018-09-14 2019-01-11 上海电力学院 一种可调的光镊装置
CN109188673B (zh) * 2018-09-14 2021-04-30 上海电力学院 一种可调的光镊装置
CN110899144A (zh) * 2019-11-07 2020-03-24 东南大学 一种手性粒子光学检测和分选的装置及方法
CN110899144B (zh) * 2019-11-07 2021-06-25 东南大学 一种手性粒子光学检测和分选的装置及方法
CN111175969A (zh) * 2020-01-03 2020-05-19 浙江大学 一种基于涡旋对光束的光镊系统
CN111175969B (zh) * 2020-01-03 2020-12-11 浙江大学 一种基于涡旋对光束的光镊系统
CN111899907A (zh) * 2020-08-10 2020-11-06 上海大学 一种输运装置
CN111899907B (zh) * 2020-08-10 2022-12-27 上海大学 一种输运装置
CN113053556A (zh) * 2021-03-10 2021-06-29 暨南大学 具有可重构性的生物微马达阵列及其应用
CN113223744A (zh) * 2021-04-21 2021-08-06 太原理工大学 一种超快调控矢量涡旋光场的光学微操纵装置和方法
CN113223744B (zh) * 2021-04-21 2022-10-25 太原理工大学 一种超快调控矢量涡旋光场的光学微操纵装置和方法

Also Published As

Publication number Publication date
CN107146649B (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN107146649B (zh) 一种操控低折射率介质纳米粒子的装置和方法
CN105870604B (zh) 一种基于相位梯度超表面产生微波轨道角动量的阵列天线
Zhang et al. Binary wavefront optimization using a genetic algorithm
CN103048791B (zh) 一种产生部分相干艾里光束的方法
CN111816344B (zh) 同时操纵多个瑞利区低折射率微粒且高捕获效率的装置
CN105629454A (zh) 一种基于空间光调制器的双光束光镊系统
CN109870890B (zh) 一种具有分数阶涡旋轮廓的整数阶涡旋光束相位掩模板及光路系统
Abramochkin et al. Microobject manipulations using laser beams with nonzero orbital angular momentum
Kovalev et al. Auto-focusing accelerating hyper-geometric laser beams
Xu et al. Guiding particles along arbitrary trajectories by circular Pearcey-like vortex beams
CN102967928B (zh) 一种柱偏振矢量光束紧聚焦光斑的产生方法及装置
CN109188673B (zh) 一种可调的光镊装置
CN105511069B (zh) 一种操控共振金属纳米粒子运动方式的方法
CN114019690B (zh) 产生任意阶光学涡旋阵列和带缺陷有限光晶格的光学系统
Mohammadnezhad et al. Theoretical simulation of Gaussian beam interferometric optical tweezers with symmetrical construction
Lee et al. Optical steering of high and low index microparticles by manipulating an off-axis optical vortex
CN106526837B (zh) 利用柱状矢量光束实现多焦点三维任意移动的装置及方法
Liu et al. Optical transportation of micro-particles by non-diffracting Weber beams
Liu et al. Optical transportation and accumulation of microparticles by self-accelerating cusp beams
CN115308917A (zh) 一种矢量光场模间相位旋转角度随距离可调系统
CN101382663A (zh) 旋转矢量偏振光束产生系统
Wang et al. Generation of ultralong anti-diffraction optical cages in free space
Han Scattering of a high-order Bessel beam by a spheroidal particle
Firuzi et al. Long-range optical pulling force device based on vortex beams and transformation optics
CN116661134B (zh) 基于超透镜产生聚焦杂化偏振矢量光束的光链生成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant