CN107134142A - 一种基于多源数据融合的城市道路流量预测方法 - Google Patents
一种基于多源数据融合的城市道路流量预测方法 Download PDFInfo
- Publication number
- CN107134142A CN107134142A CN201710557082.3A CN201710557082A CN107134142A CN 107134142 A CN107134142 A CN 107134142A CN 201710557082 A CN201710557082 A CN 201710557082A CN 107134142 A CN107134142 A CN 107134142A
- Authority
- CN
- China
- Prior art keywords
- section
- flow
- observed volume
- region
- bayonet socket
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000004927 fusion Effects 0.000 title claims abstract description 16
- 230000011664 signaling Effects 0.000 claims abstract description 26
- 238000012417 linear regression Methods 0.000 claims abstract description 13
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 4
- 241001269238 Data Species 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000007781 signaling event Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013450 outlier detection Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/012—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from other sources than vehicle or roadside beacons, e.g. mobile networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Quality & Reliability (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- Game Theory and Decision Science (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Mobile Radio Communication Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明提供了一种基于多源数据融合的城市道路流量预测方法,包括以下步骤:步骤一:基于手机信令数据提取常驻居民的出行OD;将出行OD分配至城市路网上,得到路段的分配流量;步骤二:基于卡口记录得到卡口对应路段的总观测流量与常用车观测流量;步骤三:选取区域内具有观测流量的路段,根据其分配流量与观测流量数据,建立表征路段的分配流量与观测流量的时变相关关系的线性回归方程;步骤四:根据线性回归方程及区域内常用车占比建立该区域内路段流量的动态预测模型;步骤五:对该区域内不具有观测流量的路段,将其分配流量输入动态预测模型,预测其时变的流量。数据获取便利,成本低,实施简单,便于在多个城市开展流量预测工作。
Description
技术领域
本发明涉及一种基于多源数据融合的城市道路流量预测方法。
背景技术
道路交叉路口和道路断面流量是城市交通状况的重要组成部分,准确、合理地进行交通状况预测是进行交通控制和交通流诱导的基础。传统的城市道路交通断面流量获取方法有三种,第一也是通常的做法是通过人口调查方法获取,这不仅耗费大量的人力物力资源,而且调查周期长,这些原因导致人群分布感知的结果缺少时效性。第二是利用环形线圈检测器、视频车辆检测器等硬件设备,采用识别视频或圧感检测道路断面流量。第三是通过城市短时交通流量预测来获取城市交通流量;现行的预测方法有卡尔曼滤波预测、时间序列预测等,通过建立道路交通流模型进行预测,其中不乏一些模型应用到了城市道路的实时预测。众所周知,一份全面、准确、合理、实时的交通流量是实际应用智能交通的基础,但经分析,上述获取道路段断面流量的方法仍然存在下列缺点:
1)大面积覆盖仍然仍需投入较大的成本;
2)受限于检测地的实际状况以及硬件设置问题,检测中存在异常信息;
3)方法和模型涉及到大量的向量计算,算法复杂,计算量过大。
综上所述,目前的道路流量预测方法仍然存在不足,或调查覆盖面过少,难以获得实时信息;或预测方法技术较复杂,实施难度较高,模型计算量大,难以大面积应用到实际交通。由此可见,提供一种高效、经济的方法对交通流量进行科学合理地预测,对于智能交通系统中交通规划、交通诱导、交通管理、交通控制与安全都具有重要意义。
发明内容
本发明所解决的技术问题是,针对现有技术的不足,提出一种基于多源数据融合的城市道路流量预测方法,通过融合手机信令数据和卡口数据建立动态预测模型,预测城市道路断面流量,数据获取便利,成本低,实施简单,便于在多个城市开展流量预测工作。
一种基于多源数据融合的城市道路流量预测方法,包括以下步骤:
步骤一:基于手机信令数据提取常驻居民的出行OD,每个出行OD为一个二维向量,其第1个分量为出行的起始节点,第2个分量为出行的终止节点;将出行OD分配至城市路网上,得到路段的分配流量;
步骤二:基于卡口记录区分常用车与非常用车,提取常用车与非常用车流量,得到卡口对应路段的总观测流量与常用车观测流量;
步骤三:选取区域内具有观测流量的路段,根据其分配流量与观测流量,建立表征该区域内路段的分配流量与观测流量的时变相关关系的线性回归方程;
步骤四:根据线性回归方程及区域内常用车占比建立该区域内路段流量的动态预测模型,用于预测该区域内不具有观测流量的路段的流量;所述常用车占比为区域内被卡口记录的常用车观测流量占总观测流量的比例;
步骤五:对该区域内不具有观测流量的路段,将其分配流量输入动态预测模型,预测其时变的流量。
进一步地,在所述的步骤一中,对手机信令数据进行基于稳定点的住址小区判断,进而判断用户是否为常驻居民;具体步骤如下:
1.1)对手机信令数据进行处理,统计用户各个时段在各个位置的累计停留时间;
1.2)获取用户夜晚时段累计停留时间t最长的位置,判断t是否超过最低阈值,若超过,则判定该位置所处小区为用户的住址小区,该用户为常驻居民;否则,判定该用户不是常驻居民。
本发明将用户累计停留时间超过一定阈值的位置作为稳定点;将用户夜晚时段累计停留时间t最长且超过最低阈值的稳定点作为住址小区;最后以用户是否具有住址小区为依据判断用户是否为常驻居民。
进一步地,在所述的步骤1.1)中,对手机信令数据进行处理包括清洗掉其中包含的异常数据;异常数据包括两种,一种是缺少了基站编号的手机信令数据;另一种是缺少了时间记录或其记录的时间与实际时间不符的手机信令数据。
进一步地,在所述的步骤一中,基于手机信令数据提取常驻居民的出行OD,得到路段的分配流量,具体包括以下步骤:
2.1)根据基站记录的常驻居民的手机信令数据确定常驻居民的出行轨迹,并判断其停留位置,基于停留位置将其出行轨迹将划分成连续的OD,得到基站OD;
2.2)根据基站和城市路网中路段节点的对应关系,将基站OD转化成路段节点OD,生成代表出行需求的OD矩阵表;
2.3)使用增量分配法将生成的OD矩阵表分配至城市路网上,得到路段的分配流量。
进一步地,所述步骤2.1)中,设连续记录6次记录一个用户数据的基站所在的位置为该用户的停留位置,设用户第i和i+1个停留位置分别为和若和之间的距离则将和划分成一次出行,即形成一个OD对;否则认为和是“乒乓现象”引起位置移动,不能划分为一次出行。通过设立的原则来排除由于为用户的手机提供服务的基站位置变化造成的“乒乓现象”。
进一步地,在所述的步骤二中,将卡口在多天同一个时段记录的流量用DBSCAN聚类算法进行聚类,以剔除流量中的异常值;聚类后得到的最大团簇中包含的点,即流量视为正常值,其余团簇内包含的点视为异常值;此外,若最大团簇中包含的点的个数小于记录流量的天数的50%,则认为卡口设备出现问题,去除该卡口设备记录的流量。
进一步地,在所述的步骤二中,根据多天的卡口记录数据将车辆分为常用车和非常用车,统计卡口记录的流量,根据卡口位置匹配各卡口对应的路段,卡口记录的流量即为其对应路段的总观测流量。
进一步地,在所述的步骤三中,线性回归方程为:
其中,UI及分别表示区域内路段I的分配流量和路段I的常用车观测流量,β0和β1为根据最小二乘法标定的最优参数值,ε为随机干扰项,用于防止模型得到的预测流量小于0(在路段I的分配流量很小的情况下,路段I的预测流量可能为一负值。这明显是不符合实际情况的,故用一个随机干扰项对其进行修正);ε服从数学期望为μ、方差为σ2的正态分布,即ε~N(μ,σ2),μ等于路段I在所有时段的观测流量中的最小值,σ=1;
由线性回归方程确定区域内路段的分配流量与该路段的常用车观测流量之间的时变关系。
进一步地,在所述的步骤四中,区域内路段流量的动态预测模型为:
FJ=(β0+β1U′J+ε)/λo
其中,FJ表示该区域内不具有观测流量的路段J的预测流量,U′J表示路段J的分配流量;表示该区域内常用车流占全体车流的比例;和分别表示该区域内具有观测流量的路段I的总观测流量和常用车观测流量,和分别表示该区域内所有具有观测流量的路段的总观测流量和常用车观测流量之和。
有益效果:
近年来,手机在全球范围已经得到迅速且相当程度的普及,覆盖范围的迅速增长,带来了海量的手机信令数据信息。各地对于基础建设的投入,也能产生一定数量的卡口数据。这两种数据在大多数城市都很容易获得。同时随着数据越来越在决策中发挥重要的作用,计算机技术也在迅速发展,使储存与计算成本下降,快速处理大量的信息数据也成为了可能。这些均给数据应用在智能交通系统(ITS)中提供了新方法新思路。手机一直伴随用户移动,其信令数据完整的记录了用户的出行轨迹,成为分析城市人口活动规律,进行路段状态检测的最理想的数据。然而手机信令事件随机发生,且移动网络的扫描周期通常为半小时,用户的出行位置与其手机信令事件之间没有必然关系,这种情况导致手机信令数据只能在一定程度上代表路段状况变化,而卡口观测流量作为路段流量的高精度采样能够校核分配流量。本发明通过融合这两种数据特征,获取了动态的预测模型。相比于直接检测与短时交通流量预测,基于数据融合的预测方法不仅数据获取便利,实施简单,成本低,更有覆盖面广,计算复杂度低的优点。而且随着这两种数据的获取越来越便利,该方法更能大面积地应用于多个城市;且手机数据量大,能够模型城市内部的出行需求,卡口记录的实效性强,能够动态的预测城市道路断面流量,这对智能交通系统中的交通控制、交通流诱导、交通管理、交通控制与安全都具有重要意义。
附图说明
图1为本发明流程示意图;
图2为本发明实施例中,龙华地区不同时段的分配流量与常用车观测流量的对应关系;图2(a)为早高峰时段(8:30)区域内不同路段(检查点)分配流量与常用车观测流量对比;图2(b)为晚高峰时段(20:30),区域内不同路段分配流量与常用车观测流量对比;
图3为本发明实施例中,龙华地区不同时段的分配流量与常用车观测流量的拟合关系;图3(a)为早高峰时段(8:30)分配流量U与观测流量Lu之间的关系;图3(b)为晚高峰时段(20:30)分配流量U与观测流量Lu之间的关系;
图3为本发明实施例中,龙华地区路段的不同时段的预测流量分布;图4(a)为早高峰时段(8:30)的预测流量分布图;图4(b)为晚高峰时段(20:30)的预测流量分布图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
下文使用的手机信令数据和卡口数据来自中国深圳2012年某日00:05至23:35,共587,286,499条信令数据;卡口数据的时间为2016.08.15-.08.28,共14天数据。本发明具体实施包括以下步骤。
步骤一:处理手机信令数据,清洗其中的异常数据,其中数据的有效率为95.319%,共记录了16,300,083个用户在5952个基站的手机记录。
步骤1:考虑绝大多数用户的生活习性,选取夜晚时段(00:00-6:00)与白天时段(7:00-22:00)各取一个累计停留时间最长且超过最低阈值(2h)的稳定点作为夜间稳定点与白天稳定点。以稳定点为主要依据,综合判断用户的居住地与工作地。其中拥有居住地的用户作为深圳常住人口,根据深圳市2013年人口普查:常驻人口1062.89万,从手机中挖掘的居民用户为879.94,与人口普查结果一致。
步骤2:将出行轨迹划分成连续的出行,由于为用户提供服务的基站位置可能不断变化,产生所谓的“乒乓效应”(在用户的位置不发生变化时,由于基站负载均衡等问题,其为用户提供服务的基站位置来回变化;或者用户在距离两个基站的位置距离相差不大的情况下,为用户提供服务的基站位置来回变化)。若直接采用为用户提供服务的基站位置变化作为用户位置的变化,容易受到乒乓现象的干扰从而产生大量的错误OD数据,因此需要对这种情况进行排除,避免产生额外的出行。通过设立以下原则,排除乒乓现象产生的错误OD数据:设连续记录6次记录一个用户数据的基站所在的位置为该用户的停留位置,设用户第i个停留位置为设立的原则;根据上述原则,对用户被基站记录的一系列数据进行分割,得到每次出行起讫点的基站位置。同时根据基站的覆盖区域将平面划分为泰森多边形,标记泰森多边形中的主要路口,建立基站和路段节点的对应关系(将基站对应到其所在的泰森多边形所覆盖到的路段节点),将基站记录的用户随机分配多边形中的路口,将手机提取的出行转化成为路段节点间的OD数据。
步骤3:从手机信令数据中提取的OD数据分成4份,循环分配每一份OD数据到深圳路网中;每次循环时,首先按最新的路阻重新计算最短路径,然后分配一份OD数据到相应的最短路径上;再按BPR路阻函数更新路阻,即各路段的行驶时间,其中ta为更新后的路阻,t0为更新前的路阻,qa为路段a的交通流量,ca为路段a的交通容量,α和β为两个参数值;下一循环中,按更新后的路阻重新计算最短路径,然后分配下一份OD数据。最终得到路段的分配流量。
步骤二:对卡口记录数据进行统计,14天内,一共检测到528,7649辆(2015年深圳市机动车保有量320万)。统计528万辆车的出现天数,记出现2天及其以上车辆为常用车辆,共287万,2015年深圳市机动车保有量320万。手动匹配卡口与其记录的路段,统计与路段相对应的卡口记录,作为该路段断面的总观测流量
将各卡口在多天同一个时段记录的流量分别用DBSCAN聚类算法进行聚类,以去除异常值;聚类后得到的最大团簇中包含的点,即流量视为正常值,其余团簇内包含的点视为异常值;此外,若最大团簇中包含的点的个数小于记录数据的天数的50%,则认为卡口设备出现问题,去除该卡口设备记录的流量数据。
DBSCAN聚类算法所需主要的主要参数有两个:一个参数是半径(Eps),表示以给定点P(在本发明中,P表示流量)为中心的圆形邻域的范围;另一个参数是以点P为中心的圆形邻域内最少点的数量(MinPts)。如果满足:以点P为中心、半径为Eps的邻域内的点的个数不少于MinPts,则称点P为核心点。
将卡口在多天同一个时段记录的流量数据记为数据集P={p(i);i=1,…n},其中p(i)表示该卡口在第i天该时段的流量;对于每一个点P(i),计算点P(i)到集合P的子集S={p(1),p(2),…,p(i-1),p(i+1),…,p(n)}中所有点之间的距离,距离按照从小到大的顺序排序,得到排序后的距离集合为D={d(1),d(2),…,d(k-1),d(k),d(k+1),…,d(n)},其中d(k)称为k-距离(k-距离是点p(i)到除了p(i)点以外的所有点之间距离第k近的距离);
根据经验确定k-距离中k的值,从而确定最少点的数量MinPts;本实施例中取k=4,则MinPts=4;
对待聚类集合中每个点p(i)都计算k-距离,最后得到所有点的k-距离集合E={e(1),e(2),…,e(n)}。
根据得到的所有点的k-距离集合E,对集合E进行升序排序后得到k-距离集合E’,拟合一条E’集合中k-距离的变化曲线图,变化曲线图中,x轴坐标点直接使用递增的自然数序列,每个点对应一个自然数,y轴坐标点为E’集合中k-距离;选用变化曲线图中的最速递增点作为流量半径Eps,斜率最大的两点的对应的k-距离的平均即为最速递增点;
根据给定MinPts的值,以及半径Eps的值,计算所有核心点;
根据得到的核心点集合,以及半径Eps的值,计算能够连通的核心点;
将能够连通的每一组核心点,以及到核心点距离小于半径Eps的点,都放到一起,形成一个簇;由此聚类得到一组簇;
本发明利用该种基于密度的异常值检测方法,能够有效的抵抗异常值(“噪声”)的干扰。本实施例中,得到卡口记录数据的有效率为72%。
步骤三:对同一区域内路段估计流量与观测流量的动态关系进行计算。根据上述步骤对手机信令数据和卡口记录数据的处理,可以由常驻居民的手机信令数据得到深圳市路段分配流量,以及深圳市卡口记录的对应路段的总观测流量以及其中的常用车观测流量,设表征区域内路段的分配流量及常用车观测流量间的时变关系的线性回归方程为:
其中,UI及分别表示区域内路段I的分配流量和路段I的常用车观测流量,β0和β1为根据最小二乘法标定的最优参数值,ε为随机干扰项,用于防止模型得到的预测流量小于0(在路段I的分配流量很小的情况下,路段I的预测流量可能为一负值。这明显是不符合实际情况的,故用一个随机干扰项对其进行修正);ε服从数学期望为μ、方差为σ2的正态分布,即ε~N(μ,σ2),μ等于路段I在所有时段的观测流量中的最小值,σ=1;
选取了深圳龙华地区进行说明,区域内包含了5个卡口。图2显示了该区域内的分配流量与常用车观测流量的对应关系。图2(a)的时间为8:30,图2(b)的时间为20:30,表征不同路段状态下(早高峰与晚高峰)两种流量的对应关系。可以看到,尽管两个时间段的具有不同的路段特征,但对于相同时段,不同路段的分配流量与常用车观测流量均表现出相同的变化趋势。在此基础上对两种流量做拟合,其常用车观测流量与分配流量的一致性很高,图3表示了同一时段龙华地区二者的拟合关系。
步骤四:根据上一步骤得到的线性回归方程,对不具有观测流量的城市道路路段,利用分配流量进行估计,同时考虑区域内常用车占比对结果造成的影响。使用表示在该区中常用车流占全体车流的比例,其中和分别表示该区域内所有具有观测流量的路段的总观测流量和常用车观测流量之和,FJ为路段的预测流量,则有:
FJ=(β0+β1U′J+ε)/λo
采用线性回归的拟合最优参数。以上步骤选取区域得为例,其最优参数分别为,图2(a),即8:30的最优拟合值为β0=0.211,β1=61.221,λo=0.983;图2(b),即20:30的最优拟合值为β0=0.383,β1=-66.076,λo=0.971,计算了区域内的路段断面流量。最终的路段断面预测流量分布如下图4所示,其中图4(a)为早高峰时段(8:30),图4(b)为晚高峰时段(20:30)。其中龙华区的几条快速路在早晚高峰的预测流量明显大于其他路段。同时,以留仙大道为例(放大部分),发现早高峰流量的主要趋势为由东向西,而晚高峰的流量趋势于早高峰相反,说明本发明的预测方法的预测流量能够明显的体现出早晚高峰交通流的通勤特性。
不同于传统的调查方式及短时交通流量方式,尽管分配流量难以代表真实流量,但同一时间段内的用户出行量是一个区域内实际出行的无偏估计。而进行异常点检测后的卡口数据是区域路段实际流量的抽样。通过提取常用人口和常用车辆,采用线性回归的拟合最优参数,得到区域性的动态预测模型,准确、合理的对城市交通流量对进行预测,这对智能交通中交通规划、交通诱导、交通管理、交通控制与安全等都具有非常重要的意义。
Claims (9)
1.一种基于多源数据融合的城市道路流量预测方法,包括以下步骤:
步骤一:基于手机信令数据提取常驻居民的出行OD,每个出行OD为一个二维向量,其第1个分量为出行的起始节点,第2个分量为出行的终止节点;将出行OD分配至城市路网上,得到路段的分配流量;
步骤二:基于卡口记录区分常用车与非常用车,提取常用车与非常用车流量,得到卡口对应路段的总观测流量与常用车观测流量;
步骤三:选取区域内具有观测流量的路段,根据其分配流量与观测流量,建立表征该区域内路段的分配流量与观测流量的时变相关关系的线性回归方程;
步骤四:根据线性回归方程及区域内常用车占比建立该区域内路段流量的动态预测模型,用于预测该区域内不具有观测流量的路段的流量;所述常用车占比为区域内被卡口记录的常用车观测流量占总观测流量的比例;
步骤五:对该区域内不具有观测流量的路段,将其分配流量输入动态预测模型,预测其时变的流量。
2.根据权利要求1所述的基于多源数据融合的城市道路流量预测方法,其特征在于,在所述步骤一中,对手机信令数据进行基于稳定点的住址小区判断,进而判断用户是否为常驻居民;具体步骤如下:
1.1)对手机信令数据进行处理,统计用户各个时段在各个位置的累计停留时间;
1.2)获取用户夜晚时段累计停留时间t最长的位置,判断t是否超过最低阈值,若超过,则判定该位置所处小区为用户的住址小区,该用户为常驻居民;否则,判定该用户不是常驻居民。
3.根据权利要求1所述的基于多源数据融合的城市道路流量预测方法,其特征在于,在所述步骤1.1)中,对手机信令数据进行处理包括清洗掉其中包含的异常数据;异常数据包括两种,一种是缺少了基站编号的手机信令数据;另一种是缺少了时间记录或其记录的时间与实际时间不符的手机信令数据。
4.根据权利要求1所述的基于多源数据融合的城市道路流量预测方法,其特征在于,所述步骤一中,基于手机信令数据提取常驻居民的出行OD,得到路段的分配流量,具体包括以下步骤:
2.1)根据基站记录的常驻居民的手机信令数据确定常驻居民的出行轨迹,并判断其停留位置,基于停留位置将其出行轨迹将划分成连续的OD,得到基站OD;
2.2)根据基站和城市路网中路段节点的对应关系,将基站OD转化成路段节点OD,生成代表出行需求的OD矩阵表;
2.3)使用增量分配法将生成的OD矩阵表分配至城市路网上,得到路段的分配流量。
5.根据权利要求4所述的基于多源数据融合的城市道路流量预测方法,其特征在于,所述步骤2.1)中,设连续记录6次记录一个用户数据的基站所在的位置为该用户的停留位置,设用户第i和i+1个停留位置分别为和若和之间的距离 则将和划分成一次出行,即形成一个OD对;否则认为和是“乒乓现象”引起位置移动,不能划分为一次出行。
6.根据权利要求1所述的基于多源数据融合的城市道路流量预测方法,其特征在于,所述步骤二中,将卡口在多天同一个时段记录的流量用DBSCAN聚类算法进行聚类,以剔除流量中的异常值;聚类后得到的最大团簇中包含的点,即流量视为正常值,其余团簇内包含的点视为异常值;此外,若最大团簇中包含的点的个数小于记录流量的天数的50%,则认为卡口设备出现问题,去除该卡口设备记录的流量。
7.根据权利要求1所述的基于多源数据融合的城市道路流量预测方法,其特征在于,所述步骤二中,根据多天的卡口记录数据将车辆分为常用车和非常用车,统计卡口记录的流量,根据卡口位置匹配各卡口对应的路段,卡口记录的流量即为其对应路段的总观测流量。
8.根据权利要求1所述的基于多源数据融合的城市道路流量预测方法,其特征在于,所述的步骤三中,线性回归方程为:
<mrow>
<msubsup>
<mi>L</mi>
<mi>I</mi>
<mi>u</mi>
</msubsup>
<mo>=</mo>
<msub>
<mi>&beta;</mi>
<mn>0</mn>
</msub>
<mo>+</mo>
<msub>
<mi>&beta;</mi>
<mn>1</mn>
</msub>
<msub>
<mi>U</mi>
<mi>I</mi>
</msub>
<mo>+</mo>
<mi>&epsiv;</mi>
</mrow>
其中,UI及分别表示区域内路段I的分配流量和路段I的常用车观测流量,β0和β1为根据最小二乘法标定的最优参数值,ε为随机干扰项,用于防止模型得到的预测流量小于0;ε服从数学期望为μ、方差为σ2的正态分布,即ε~N(μ,σ2),μ等于路段I在所有时段的常用车观测流量中的最小值,σ=1。
9.根据权利要求1所述的基于多源数据融合的城市道路流量预测方法,其特征在于,在所述的步骤四中,区域内路段流量的动态预测模型为:
FJ=(β0+β1U′J+ε)/λo
其中,FJ表示该区域内不具有观测流量的路段J的预测流量,U′J表示路段J的分配流量;表示该区域内常用车流占全体车流的比例;和分别表示该区域内所有具有观测流量的路段的总观测流量和常用车观测流量之和。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710557082.3A CN107134142B (zh) | 2017-07-10 | 2017-07-10 | 一种基于多源数据融合的城市道路流量预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710557082.3A CN107134142B (zh) | 2017-07-10 | 2017-07-10 | 一种基于多源数据融合的城市道路流量预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107134142A true CN107134142A (zh) | 2017-09-05 |
CN107134142B CN107134142B (zh) | 2018-06-12 |
Family
ID=59738045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710557082.3A Expired - Fee Related CN107134142B (zh) | 2017-07-10 | 2017-07-10 | 一种基于多源数据融合的城市道路流量预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107134142B (zh) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107644533A (zh) * | 2017-10-27 | 2018-01-30 | 上海云砥信息科技有限公司 | 基于移动网络数据的高速公路虚拟断面车流量监测方法 |
CN108009972A (zh) * | 2017-10-24 | 2018-05-08 | 北京交通大学 | 一种基于多源数据校核的多方式出行o-d需求估计方法 |
CN108198416A (zh) * | 2017-12-28 | 2018-06-22 | 金交恒通有限公司 | 一种手机信令与路网大数据的融合方法及其应用与系统 |
CN108320504A (zh) * | 2018-01-22 | 2018-07-24 | 北京工业大学 | 基于监测数据的动态od矩阵估计方法 |
CN108364463A (zh) * | 2018-01-30 | 2018-08-03 | 重庆交通大学 | 一种交通流量的预测方法和系统 |
CN108615360A (zh) * | 2018-05-08 | 2018-10-02 | 东南大学 | 基于神经网络的交通需求逐日演变预测方法 |
CN109559544A (zh) * | 2018-11-20 | 2019-04-02 | 上海海事大学 | 一种车载智能导航在突发交通事故下的交通快速选择方法 |
CN109636639A (zh) * | 2018-12-13 | 2019-04-16 | 平安医疗健康管理股份有限公司 | 基于大数据分析的用药检测方法、装置、设备和存储介质 |
CN109686091A (zh) * | 2019-01-17 | 2019-04-26 | 中南大学 | 一种基于多源数据融合的交通流量填补算法 |
CN109887294A (zh) * | 2019-04-08 | 2019-06-14 | 东南大学 | 一种多源数据融合的道路平面交叉口交通量分析方法 |
CN109903561A (zh) * | 2019-03-14 | 2019-06-18 | 智慧足迹数据科技有限公司 | 路段间人流量计算方法、装置以及电子设备 |
CN109918459A (zh) * | 2019-01-28 | 2019-06-21 | 同济大学 | 一种基于手机信令的城市中观层面实有人口统计方法 |
CN110097756A (zh) * | 2019-05-07 | 2019-08-06 | 四川咖范网络科技有限公司 | 基于多源数据融合技术的智能交通管理方法 |
CN110164127A (zh) * | 2019-04-04 | 2019-08-23 | 中兴飞流信息科技有限公司 | 一种车流量预测的方法、装置及服务器 |
CN110164138A (zh) * | 2019-05-17 | 2019-08-23 | 湖南科创信息技术股份有限公司 | 基于卡口对流向概率的套牌车辆的识别方法及系统、介质 |
CN110264719A (zh) * | 2019-06-27 | 2019-09-20 | 武汉理工大学 | 一种基于多源数据的机动车动态od矩阵估计方法 |
CN110276947A (zh) * | 2019-06-05 | 2019-09-24 | 中国科学院深圳先进技术研究院 | 一种交通融合分析预测方法、系统及电子设备 |
CN110415546A (zh) * | 2018-04-26 | 2019-11-05 | 中移(苏州)软件技术有限公司 | 泊车诱导方法、装置和介质 |
CN110569181A (zh) * | 2019-08-27 | 2019-12-13 | 神华包神铁路集团有限责任公司 | 系统能力评估方法及装置、计算机设备 |
CN111063189A (zh) * | 2019-11-05 | 2020-04-24 | 阿里巴巴集团控股有限公司 | 一种车流量的处理方法、装置、及电子设备 |
CN111815942A (zh) * | 2019-04-10 | 2020-10-23 | 阿里巴巴集团控股有限公司 | 一种轨迹的处理方法、装置、及电子设备 |
CN112000755A (zh) * | 2020-08-14 | 2020-11-27 | 青岛市城市规划设计研究院 | 一种基于手机信令数据的区域出行廊道识别方法 |
CN112396827A (zh) * | 2019-08-16 | 2021-02-23 | 网帅科技(北京)有限公司 | 一种利用手机信令和卡口数据获取交叉口交通流量、流向信息的模型 |
CN112512020A (zh) * | 2020-11-20 | 2021-03-16 | 北京中交国通智能交通系统技术有限公司 | 一种基于多源数据融合的交通状态弱信号感知研判方法 |
CN112561114A (zh) * | 2019-09-26 | 2021-03-26 | 杭州海康威视数字技术股份有限公司 | 卡口流量的预测方法、装置、电子设备及存储介质 |
CN113256968A (zh) * | 2021-04-30 | 2021-08-13 | 济南金宇公路产业发展有限公司 | 一种基于手机活动数据的交通状态预测方法、设备及介质 |
CN115662144A (zh) * | 2022-12-23 | 2023-01-31 | 深圳市城市交通规划设计研究中心股份有限公司 | 一种动态od交通流推算补全方法、电子设备及存储介质 |
CN116798233A (zh) * | 2023-08-25 | 2023-09-22 | 湖南天宇汽车制造有限公司 | 一种救护车快速通行引导系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105389996A (zh) * | 2015-12-17 | 2016-03-09 | 北京亚信蓝涛科技有限公司 | 一种基于大数据的交通运行状态特征参数提取方法 |
CN106060776A (zh) * | 2016-05-31 | 2016-10-26 | 中南大学 | 一种基于手机数据的城市人群分布动态感知方法 |
JP2017010225A (ja) * | 2015-06-19 | 2017-01-12 | 株式会社福山コンサルタント | Od交通量の実数推定方法、od交通量の実数推定装置、od交通量の実数推定プログラム、並びに情報記録媒体 |
CN106571032A (zh) * | 2016-11-01 | 2017-04-19 | 浙江大学 | 一种利用手机信令大数据和动态交通分配的od标定方法 |
-
2017
- 2017-07-10 CN CN201710557082.3A patent/CN107134142B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017010225A (ja) * | 2015-06-19 | 2017-01-12 | 株式会社福山コンサルタント | Od交通量の実数推定方法、od交通量の実数推定装置、od交通量の実数推定プログラム、並びに情報記録媒体 |
CN105389996A (zh) * | 2015-12-17 | 2016-03-09 | 北京亚信蓝涛科技有限公司 | 一种基于大数据的交通运行状态特征参数提取方法 |
CN106060776A (zh) * | 2016-05-31 | 2016-10-26 | 中南大学 | 一种基于手机数据的城市人群分布动态感知方法 |
CN106571032A (zh) * | 2016-11-01 | 2017-04-19 | 浙江大学 | 一种利用手机信令大数据和动态交通分配的od标定方法 |
Non-Patent Citations (2)
Title |
---|
YINGCHUN QU.ETC: "Transportation Mode Split With Mobile Phone Data", 《IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS 》 * |
詹益旺等: "基于手机信令的城市道路交通状态实时预测", 《电讯技术》 * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108009972A (zh) * | 2017-10-24 | 2018-05-08 | 北京交通大学 | 一种基于多源数据校核的多方式出行o-d需求估计方法 |
CN108009972B (zh) * | 2017-10-24 | 2021-09-28 | 北京交通大学 | 一种基于多源数据校核的多方式出行o-d需求估计方法 |
CN107644533A (zh) * | 2017-10-27 | 2018-01-30 | 上海云砥信息科技有限公司 | 基于移动网络数据的高速公路虚拟断面车流量监测方法 |
CN108198416A (zh) * | 2017-12-28 | 2018-06-22 | 金交恒通有限公司 | 一种手机信令与路网大数据的融合方法及其应用与系统 |
CN108320504B (zh) * | 2018-01-22 | 2020-06-16 | 北京工业大学 | 基于监测数据的动态od矩阵估计方法 |
CN108320504A (zh) * | 2018-01-22 | 2018-07-24 | 北京工业大学 | 基于监测数据的动态od矩阵估计方法 |
CN108364463B (zh) * | 2018-01-30 | 2020-07-31 | 重庆交通大学 | 一种交通流量的预测方法和系统 |
CN108364463A (zh) * | 2018-01-30 | 2018-08-03 | 重庆交通大学 | 一种交通流量的预测方法和系统 |
CN110415546A (zh) * | 2018-04-26 | 2019-11-05 | 中移(苏州)软件技术有限公司 | 泊车诱导方法、装置和介质 |
CN108615360A (zh) * | 2018-05-08 | 2018-10-02 | 东南大学 | 基于神经网络的交通需求逐日演变预测方法 |
CN109559544A (zh) * | 2018-11-20 | 2019-04-02 | 上海海事大学 | 一种车载智能导航在突发交通事故下的交通快速选择方法 |
CN109559544B (zh) * | 2018-11-20 | 2021-03-05 | 上海海事大学 | 一种车载智能导航在突发交通事故下的交通快速选择方法 |
CN109636639B (zh) * | 2018-12-13 | 2023-02-03 | 深圳平安医疗健康科技服务有限公司 | 基于大数据分析的用药检测方法、装置、设备和存储介质 |
CN109636639A (zh) * | 2018-12-13 | 2019-04-16 | 平安医疗健康管理股份有限公司 | 基于大数据分析的用药检测方法、装置、设备和存储介质 |
CN109686091A (zh) * | 2019-01-17 | 2019-04-26 | 中南大学 | 一种基于多源数据融合的交通流量填补算法 |
CN109918459A (zh) * | 2019-01-28 | 2019-06-21 | 同济大学 | 一种基于手机信令的城市中观层面实有人口统计方法 |
CN109903561A (zh) * | 2019-03-14 | 2019-06-18 | 智慧足迹数据科技有限公司 | 路段间人流量计算方法、装置以及电子设备 |
CN110164127B (zh) * | 2019-04-04 | 2021-06-25 | 中兴飞流信息科技有限公司 | 一种车流量预测的方法、装置及服务器 |
CN110164127A (zh) * | 2019-04-04 | 2019-08-23 | 中兴飞流信息科技有限公司 | 一种车流量预测的方法、装置及服务器 |
CN109887294A (zh) * | 2019-04-08 | 2019-06-14 | 东南大学 | 一种多源数据融合的道路平面交叉口交通量分析方法 |
CN111815942A (zh) * | 2019-04-10 | 2020-10-23 | 阿里巴巴集团控股有限公司 | 一种轨迹的处理方法、装置、及电子设备 |
CN110097756A (zh) * | 2019-05-07 | 2019-08-06 | 四川咖范网络科技有限公司 | 基于多源数据融合技术的智能交通管理方法 |
CN110097756B (zh) * | 2019-05-07 | 2021-10-15 | 四川咖范网络科技有限公司 | 基于多源数据融合技术的智能交通管理方法 |
CN110164138A (zh) * | 2019-05-17 | 2019-08-23 | 湖南科创信息技术股份有限公司 | 基于卡口对流向概率的套牌车辆的识别方法及系统、介质 |
CN110276947A (zh) * | 2019-06-05 | 2019-09-24 | 中国科学院深圳先进技术研究院 | 一种交通融合分析预测方法、系统及电子设备 |
CN110264719A (zh) * | 2019-06-27 | 2019-09-20 | 武汉理工大学 | 一种基于多源数据的机动车动态od矩阵估计方法 |
CN112396827A (zh) * | 2019-08-16 | 2021-02-23 | 网帅科技(北京)有限公司 | 一种利用手机信令和卡口数据获取交叉口交通流量、流向信息的模型 |
CN110569181A (zh) * | 2019-08-27 | 2019-12-13 | 神华包神铁路集团有限责任公司 | 系统能力评估方法及装置、计算机设备 |
CN112561114B (zh) * | 2019-09-26 | 2023-03-14 | 杭州海康威视数字技术股份有限公司 | 卡口流量的预测方法、装置、电子设备及存储介质 |
CN112561114A (zh) * | 2019-09-26 | 2021-03-26 | 杭州海康威视数字技术股份有限公司 | 卡口流量的预测方法、装置、电子设备及存储介质 |
CN111063189B (zh) * | 2019-11-05 | 2022-05-03 | 阿里巴巴集团控股有限公司 | 一种车流量的处理方法、装置、及电子设备 |
CN111063189A (zh) * | 2019-11-05 | 2020-04-24 | 阿里巴巴集团控股有限公司 | 一种车流量的处理方法、装置、及电子设备 |
CN112000755A (zh) * | 2020-08-14 | 2020-11-27 | 青岛市城市规划设计研究院 | 一种基于手机信令数据的区域出行廊道识别方法 |
CN112000755B (zh) * | 2020-08-14 | 2024-03-12 | 青岛市城市规划设计研究院 | 一种基于手机信令数据的区域出行廊道识别方法 |
CN112512020A (zh) * | 2020-11-20 | 2021-03-16 | 北京中交国通智能交通系统技术有限公司 | 一种基于多源数据融合的交通状态弱信号感知研判方法 |
CN112512020B (zh) * | 2020-11-20 | 2022-10-11 | 北京中交国通智能交通系统技术有限公司 | 一种基于多源数据融合的交通状态弱信号感知研判方法 |
CN113256968A (zh) * | 2021-04-30 | 2021-08-13 | 济南金宇公路产业发展有限公司 | 一种基于手机活动数据的交通状态预测方法、设备及介质 |
CN113256968B (zh) * | 2021-04-30 | 2023-02-17 | 山东金宇信息科技集团有限公司 | 一种基于手机活动数据的交通状态预测方法、设备及介质 |
CN115662144A (zh) * | 2022-12-23 | 2023-01-31 | 深圳市城市交通规划设计研究中心股份有限公司 | 一种动态od交通流推算补全方法、电子设备及存储介质 |
CN116798233B (zh) * | 2023-08-25 | 2024-01-09 | 湖南天宇汽车制造有限公司 | 一种救护车快速通行引导系统 |
CN116798233A (zh) * | 2023-08-25 | 2023-09-22 | 湖南天宇汽车制造有限公司 | 一种救护车快速通行引导系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107134142B (zh) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107134142B (zh) | 一种基于多源数据融合的城市道路流量预测方法 | |
Cui et al. | Identifying mismatch between urban travel demand and transport network services using GPS data: A case study in the fast growing Chinese city of Harbin | |
CN109448370B (zh) | 一种基于车辆轨迹数据的交通控制子区划分方法 | |
CN102521965B (zh) | 基于车牌识别数据的交通需求管理措施效果评价方法 | |
Laharotte et al. | Spatiotemporal analysis of bluetooth data: Application to a large urban network | |
CN104484993B (zh) | 用于交通小区划分的手机信令信息的处理方法 | |
CN110111574B (zh) | 一种基于流量树分析的城市交通不平衡评价方法 | |
CN109686091B (zh) | 一种基于多源数据融合的交通流量填补算法 | |
EP2590151A1 (en) | A framework for the systematic study of vehicular mobility and the analysis of city dynamics using public web cameras | |
CN115062873B (zh) | 交通出行方式预测方法和装置、存储介质及电子设备 | |
CN111275965A (zh) | 一种基于互联网大数据的实时交通仿真分析系统与方法 | |
Gao et al. | Analysis of travel time patterns in urban using taxi GPS data | |
Namiot et al. | A Survey of Smart Cards Data Mining. | |
CN110413855A (zh) | 一种基于出租车下客点的区域出入口动态提取方法 | |
Zhu et al. | Development of destination choice model with pairwise district-level constants using taxi GPS data | |
CN110021161B (zh) | 一种交通流向的预测方法及系统 | |
Ji et al. | Non-linear effects of street patterns and land use on the bike-share usage | |
Wang et al. | STLoyal: A spatio-temporal loyalty-based model for subway passenger flow prediction | |
Tian et al. | Identifying residential and workplace locations from transit smart card data | |
CN111008730B (zh) | 基于城市空间结构的人群聚集度预测模型构建方法及装置 | |
Guo et al. | An algorithm for analyzing the city residents' activity information through mobile big data mining | |
CN111177294B (zh) | 基于车辆轨迹数据求解交叉口中介中心性的方法 | |
Weerasinghe et al. | A GIS based methodology to demarcate modified traffic analysis zones in urban areas | |
Gawali et al. | Survey on spatio-temporal transportation using deep convolution network for traffic flow | |
CN111640303A (zh) | 城市通勤路径识别方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180612 |