CN107132241B - 一种在原位电镜中对纳米材料进行焊接的方法 - Google Patents

一种在原位电镜中对纳米材料进行焊接的方法 Download PDF

Info

Publication number
CN107132241B
CN107132241B CN201710270351.8A CN201710270351A CN107132241B CN 107132241 B CN107132241 B CN 107132241B CN 201710270351 A CN201710270351 A CN 201710270351A CN 107132241 B CN107132241 B CN 107132241B
Authority
CN
China
Prior art keywords
welding
situ
electronic speculum
carbon dioxide
nano material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710270351.8A
Other languages
English (en)
Other versions
CN107132241A (zh
Inventor
张利强
黄建宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Yanshan University
Original Assignee
China University of Petroleum Beijing
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing, Yanshan University filed Critical China University of Petroleum Beijing
Priority to CN201710270351.8A priority Critical patent/CN107132241B/zh
Publication of CN107132241A publication Critical patent/CN107132241A/zh
Application granted granted Critical
Publication of CN107132241B publication Critical patent/CN107132241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Abstract

本发明公开了一种在原位电镜中对纳米材料进行焊接的方法。在电子束的辐照下,利用焊料与二氧化碳之间的化学反应实现纳米材料的焊接;所述焊料为金属氧化物;在原位电镜中进行所述焊接步骤;所述原位电镜为原位透射电镜或原位扫描电镜。与现有技术相比,本发明具有以下有益效果:本发明通过纳米陶瓷融化技术对原位电镜中纳米材料进行焊接,由于焊接产物为纳米晶,具有1GPa以上的强度。(2)本发明通过电子束辐照对纳米材料进行定点焊接,由于氧化镁或者氧化钙吸收二氧化碳后释放大量热,发生了融化,而周围有二氧化碳流动进行冷却,热量集中,焊接口接触优良。本发明提供的焊接技术操作简单,适用范围广,可用于焊接原位透射电镜中各种类型的纳米材料。

Description

一种在原位电镜中对纳米材料进行焊接的方法
技术领域
本发明涉及一种在原位电镜中对纳米材料进行焊接的方法,属于新型焊接技术领域。
背景技术
近些年来,随着原位电镜表征技术的发展,人们越来越需要开发新的焊接技术以实现对各类纳米材料进行焊接,以实现对其力学等性能的原位表征。在传统研究中,人们主要采用芯片-会聚离子束焊接法、积碳法等技术对纳米材料的力学性能进行表征,芯片-会聚离子束焊接法需先将纳米材料安装于芯片上,然后采用会聚离子束对接头位置进行焊接,整个过程工艺复杂、成本高昂、且焊接时采用的镓离子会对样品表面造成严重污染;积碳法仅适用于比较脏的样品,在焊接头位置通过电子束照射将样品表面的脏东西加热蒸发成非晶碳进行焊接,此方法焊接时间长,对样品选择性比较高,且焊接点力学性能不佳,经常在拉伸过程中发生断裂。
因此,在原位电镜表征过程中寻找一种成本低、工艺简单、焊接速度快、焊接头位置力学性能优良的焊接技术是亟待解决的重要问题。
发明内容
本发明的目的是提供一种在原位电镜中对纳米材料进行焊接的方法,在原位电镜中通过氧化镁或氧化钙与二氧化碳之间的化学反应进行焊接。
本发明所提供的纳米材料的焊接方法,是在电子束的辐照下,利用焊料与二氧化碳之间的化学反应实现纳米材料的焊接;
所述焊料为金属氧化物。
本发明焊接方法,在焊接点位置,由于所述电子束的辐照可将惰性二氧化碳气体分子激活,并与所述焊料迅速发生反应生成碳酸盐。由于此反应可释放大量热量,焊接产物处于熔融态,能够促进纳米材料与基底形成良好接触。
上述的焊接方法中,所述电子束的辐照强度可为10~1000e/nm2s,具体可为10~300e/nm2s、10~200e/nm2s、10~100e/nm2s、10~50e/nm2s、100~300e/nm2s、100~200e/nm2s、200~300e/nm2s或10e/nm2s、50e/nm2s、200e/nm2s或300e/nm2s。
上述的焊接方法中,在原位电镜中进行所述焊接步骤。
上述的焊接方法中,所述原位电镜可为原位透射电镜或原位扫描电镜。
上述的焊接方法中,所述焊料为氧化镁或氧化钙。
上述的焊接方法中,所述化学反应完成后,所述焊接方法还包括将碳酸盐置于真空环境下分解为金属氧化物纳米晶的步骤;
所述碳酸盐为所述焊料与所述二氧化碳的反应物;
所述金属氧化物纳米晶有助于加强焊接点位置的力学性能。
所述金属氧化物纳米晶的晶粒尺寸可为1~100nm,具体可为5~50nm、5~30nm、5~20nm、20~50nm、20~30nm、5nm、20nm、30nm或50nm。
上述的焊接方法中,所述真空环境的真空度可为1.0×10-7~1.0×10-3Pa,具体可为1.0×10-7~1.0×10-5Pa、1.0×10-7Pa、1.0×10-6Pa、5.0×10-6Pa或1.0×10-5Pa。
上述的焊接方法中,所述二氧化碳气氛的压强可为1~1000Pa,具体可为1~800Pa、1~100Pa、1~50Pa、50~1000Pa、50~800Pa、50~100Pa、100~1000Pa、100~800Pa、1Pa、50Pa、100Pa、800Pa或1000Pa。
上述的焊接方法中,可采用传统的水热法、磁控溅射法、脉冲激光沉积法、浸渍法或溶胶凝胶法等制备所述焊料;
若对材料具体力学指标进行表征,需将所述焊料制备于原子力探针悬臂梁上针尖表面;若对无需力学指标,则可将所述焊料制备于任意基底,如金针尖、铝针尖、钨针尖等。
在上述焊接方法中,所述焊料可采用纳米薄膜或纳米颗粒的形式,所述纳米薄膜的厚度可为10~1000nm,所述纳米颗粒的直径可为10~1000nm。
本发明焊接方法适用于对各类纳米材料进行焊接,如Si、Ag、Cu、ZnO、CuO等,具体可为纳米薄膜、纳米颗粒、纳米线、纳米球、纳米片或纳米花等;可采用传统银胶粘附于基底一侧。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过纳米陶瓷融化技术对原位电镜中纳米材料进行焊接,由于焊接产物为纳米晶,具有1GPa以上的强度。
(2)本发明通过电子束辐照对纳米材料进行定点焊接,由于氧化镁或者氧化钙吸收二氧化碳后释放大量热,发生了融化,而周围有二氧化碳流动进行冷却,热量集中,焊接口接触优良。
(3)本发明提供的焊接技术操作简单,适用范围广,可用于焊接原位透射电镜中各种类型的纳米材料。
附图说明
图1为本发明焊接方法的示意图。
图2为本发明实施例1提供的焊接点位置焊接过程的电镜照片。
图3为本发明实施例1提供的焊接后断口处的电镜照片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、在原位电镜中对Si纳米线进行焊接
(1)焊接前将氧化镁薄膜(厚度10nm)采用传统脉冲激光沉积技术制备于基底表面,将Si纳米线材料采用传统银胶粘附于另一基底的一侧。
(2)将样品装入透射电镜样品台,并将整个实验装置放入透射电镜中,如如图1所示。
(3)焊接过程中需首先将二氧化碳气体(1Pa)通入透射电镜中,在焊接点位置,由于电子束辐照(辐照强度为300e/nm2s)将惰性二氧化碳气体分子激活,并与氧化镁迅速发生反应生成碳酸镁。由于此反应可释放大量热量,焊接产物处于熔融态(如图2所示),促进纳米材料与基底形成良好接触。
(4)焊接完成时,将电镜中的二氧化碳气体抽出(真空度为1.0×10-6Pa),碳酸镁发生分解,形成氧化镁纳米晶(晶粒尺寸20nm)。
本实施例焊接的整个过程仅需5分钟,焊接口接触优良,焊接后断口的电镜照片如图3所示,焊接点位置力学性能达到1.9GPa。
实施例2、在原位电镜中对ZnO纳米线进行焊接
(1)焊接前将氧化镁纳米颗粒(直径10nm)采用溶胶凝胶技术制备于基底表面,将ZnO纳米线材料采用传统银胶粘附于另一基底的一侧。
(2)将样品装入透射电镜样品台,并将整个实验装置放入透射电镜中。
(3)焊接过程中需首先将二氧化碳气体(100Pa)通入透射电镜中,在焊接点位置,由于电子束辐照(辐照强度为200e/nm2s)将惰性二氧化碳气体分子激活,并与氧化镁迅速发生反应生成碳酸镁。由于此反应可释放大量热量,焊接产物处于熔融态,促进纳米材料于基底形成良好接触。
(4)焊接完成时,将电镜中的二氧化碳气体抽出(真空度为1.0×10-7Pa),碳酸镁发生分解,形成氧化镁纳米晶(晶粒尺寸5nm)。
本实施例焊接的整个过程仅需10分钟,焊接口接触优良,焊接点位置力学性能达到1.5GPa。
实施例3、在原位电镜中对Cu纳米线进行焊接
(1)焊接前将氧化镁纳米颗粒(直径10nm)采用溶胶凝胶技术制备于基底表面,将Cu纳米线材料采用传统银胶粘附于另一基底的一侧。
(2)将样品装入透射电镜样品台,并将整个实验装置放入透射电镜中。
(3)焊接过程中需首先将二氧化碳气体(1000Pa)通入透射电镜中,在焊接点位置,由于电子束辐照(辐照强度为100e/nm2s)将惰性二氧化碳气体分子激活,并与氧化镁迅速发生反应生成碳酸镁。由于此反应可释放大量热量,焊接产物处于熔融态,促进纳米材料于基底形成良好接触。
(4)焊接完成时,将电镜中的二氧化碳气体抽出(真空度为5.0×10-6Pa),碳酸镁发生分解,形成氧化镁纳米晶(晶粒尺寸30nm)。
本实施例焊接的整个过程仅需15分钟,焊接口接触优良,焊接点位置力学性能达到1.6GPa。
实施例4、在原位电镜中对Ag纳米线进行焊接
(1)焊接前将氧化钙纳米颗粒(直径30nm)采用浸渍法制备于基底表面,将Ag纳米线材料采用传统银胶粘附于另一基底的一侧。
(2)将样品装入透射电镜样品台,并将整个实验装置放入透射电镜中。
(3)焊接过程中需首先将二氧化碳气体(800Pa)通入透射电镜中,在焊接点位置,由于电子束辐照(辐照强度为50e/nm2s)将惰性二氧化碳气体分子激活,并与氧化镁迅速发生反应生成碳酸镁。由于此反应可释放大量热量,焊接产物处于熔融态,促进纳米材料于基底形成良好接触。
(4)焊接完成时,将电镜中的二氧化碳气体抽出(真空度为1.0×10-5Pa),碳酸镁发生分解,形成氧化镁纳米晶(晶粒尺寸50nm)。
本实施例焊接的整个过程仅需20分钟,焊接口接触优良,焊接点位置力学性能达到1.1GPa。
实施例5、在原位电镜中对Ag纳米线进行焊接
(1)焊接前将氧化钙纳米颗粒(直径100nm)采用磁控溅射法制备于基底表面,将Ag纳米线材料采用传统银胶粘附于另一基底的一侧。
(2)将样品装入透射电镜样品台,并将整个实验装置放入透射电镜中。
(3)焊接过程中需首先将二氧化碳气体(50Pa)通入透射电镜中,在焊接点位置,由于电子束辐照(辐照强度为10e/nm2s)将惰性二氧化碳气体分子激活,并与氧化镁迅速发生反应生成碳酸镁。由于此反应可释放大量热量,焊接产物处于熔融态,促进纳米材料于基底形成良好接触。
(4)焊接完成时,将电镜中的二氧化碳气体抽出(真空度为1.0×10-6Pa),碳酸镁发生分解,形成氧化镁纳米晶(晶粒尺寸50nm)。
本实施例焊接的整个过程仅需30分钟,焊接口接触优良,焊接点位置力学性能达到1.7GPa。

Claims (7)

1.一种纳米材料的焊接方法,其特征在于:在电子束的辐照下,利用焊料与二氧化碳之间的化学反应实现纳米材料的焊接;
所述焊料为金属氧化物。
2.根据权利要求1所述的焊接方法,其特征在于:在原位电镜中进行所述焊接步骤。
3.根据权利要求2所述的焊接方法,其特征在于:所述原位电镜为原位透射电镜或原位扫描电镜。
4.根据权利要求1-3中任一项所述的焊接方法,其特征在于:所述焊料为氧化镁或氧化钙。
5.根据权利要求1-3中任一项所述的焊接方法,其特征在于:所述化学反应完成后,所述焊接方法还包括将碳酸盐置于真空环境下分解为金属氧化物纳米晶的步骤;
所述碳酸盐为所述焊料与所述二氧化碳的反应物。
6.根据权利要求5所述的焊接方法,其特征在于:所述真空环境的真空度为1.0×10-7~1.0×10-3Pa。
7.根据权利要求1-3中任一项所述的焊接方法,其特征在于:所述二氧化碳气氛的压强为1~1000Pa。
CN201710270351.8A 2017-04-24 2017-04-24 一种在原位电镜中对纳米材料进行焊接的方法 Active CN107132241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710270351.8A CN107132241B (zh) 2017-04-24 2017-04-24 一种在原位电镜中对纳米材料进行焊接的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710270351.8A CN107132241B (zh) 2017-04-24 2017-04-24 一种在原位电镜中对纳米材料进行焊接的方法

Publications (2)

Publication Number Publication Date
CN107132241A CN107132241A (zh) 2017-09-05
CN107132241B true CN107132241B (zh) 2019-06-25

Family

ID=59716803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710270351.8A Active CN107132241B (zh) 2017-04-24 2017-04-24 一种在原位电镜中对纳米材料进行焊接的方法

Country Status (1)

Country Link
CN (1) CN107132241B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164121B (zh) * 2018-08-01 2020-10-16 华东师范大学 用于透射电子显微镜表征的自组装原位液体腔的制备方法
CN109192991B (zh) * 2018-08-21 2021-10-15 广州理文科技有限公司 一种石墨烯复合金属空气电池的制备方法
CN109231162B (zh) * 2018-09-07 2019-11-01 厦门大学 一种无缝焊接碳纳米管的方法
CN112198175A (zh) * 2020-09-17 2021-01-08 燕山大学 一种在原位电镜下研究液体电池电化学的方法
CN113358558B (zh) * 2021-05-31 2023-02-03 燕山大学 一种在原位电镜中对纳米材料进行粘接的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252073A (zh) * 2008-04-07 2008-08-27 北京工业大学 一种热驱动变形透射电镜载网及一维纳米材料变形方法
US8729469B1 (en) * 2013-03-15 2014-05-20 Fei Company Multiple sample attachment to nano manipulator for high throughput sample preparation
CN104867802A (zh) * 2015-05-26 2015-08-26 兰州大学 多场调控磁电功能透射电镜样品杆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493004B2 (ja) * 2009-10-20 2014-05-14 オゲノ ゲーエムベーハー 磁気要素を備える生検器具
US9349573B2 (en) * 2014-08-01 2016-05-24 Omniprobe, Inc. Total release method for sample extraction in an energetic-beam instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252073A (zh) * 2008-04-07 2008-08-27 北京工业大学 一种热驱动变形透射电镜载网及一维纳米材料变形方法
US8729469B1 (en) * 2013-03-15 2014-05-20 Fei Company Multiple sample attachment to nano manipulator for high throughput sample preparation
CN104867802A (zh) * 2015-05-26 2015-08-26 兰州大学 多场调控磁电功能透射电镜样品杆

Also Published As

Publication number Publication date
CN107132241A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
CN107132241B (zh) 一种在原位电镜中对纳米材料进行焊接的方法
Kim et al. Synthesis of nanoparticles by laser ablation: A review
Kumar et al. Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications
Zeng et al. Nanomaterials via laser ablation/irradiation in liquid: a review
Ou et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts
Zuhlke et al. Comparison of the structural and chemical composition of two unique micro/nanostructures produced by femtosecond laser interactions on nickel
Law et al. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time
Semaltianos Nanoparticles by laser ablation
Liu et al. Nanoparticle generation in ultrafast pulsed laser ablation of nickel
Brause et al. Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy
US7767272B2 (en) Method of producing compound nanorods and thin films
WO2008001658A1 (fr) Procédé de fabrication d'un fil de la taille du nanomètre et fil de la taille du nanomètre
JP7206337B2 (ja) 低仕事関数材料で修飾されたカーボンナノ材料で機能化された針先、及びその製造方法
Lei et al. One‐Step Fabrication of Nanocrystalline Nanonetwork SnO2 Gas Sensors by Integrated Multilaser Processing
Semaltianos et al. CdSe nanoparticles synthesized by laser ablation
JP5435220B2 (ja) レーザーアブレーションによる成膜方法、その方法に用いるレーザーアブレーション用ターゲット及びそのレーザーアブレーション用ターゲットの製造方法
JP4471617B2 (ja) Pd金属内包カーボンナノチューブの製造方法
Jeoung et al. Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge
Ji et al. Spontaneous self-organization of Cu2O/CuO core–shell nanowires from copper nanoparticles
Abuhassan et al. Synthesis of bright photostable red luminescent Cu nanoparticles
Riccitelli et al. Field emission from silicon nanowires: Conditioning and stability
CN114751649B (zh) 一种利用激光制备材料表面纳米颗粒的方法
CN107686729B (zh) 一种金属钨量子点的制备方法
Pasquet et al. Selective Laser Decomposition of Silver Oxalate: A New Way of Preparing and Shaping Metallic Silver Patterns
Chang et al. Modification of carbon nanotube templates using femtosecond laser pulses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant