CN107128330A - 传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法 - Google Patents

传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法 Download PDF

Info

Publication number
CN107128330A
CN107128330A CN201710266738.6A CN201710266738A CN107128330A CN 107128330 A CN107128330 A CN 107128330A CN 201710266738 A CN201710266738 A CN 201710266738A CN 107128330 A CN107128330 A CN 107128330A
Authority
CN
China
Prior art keywords
mrow
msub
wheel
laser displacement
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710266738.6A
Other languages
English (en)
Other versions
CN107128330B (zh
Inventor
韩煜霖
徐坤
尹希珂
张健雨
邢宗义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710266738.6A priority Critical patent/CN107128330B/zh
Publication of CN107128330A publication Critical patent/CN107128330A/zh
Application granted granted Critical
Publication of CN107128330B publication Critical patent/CN107128330B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/12Measuring or surveying wheel-rims
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving

Abstract

本发明公开了一种传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法。该装置包括槽型钢轨、处理中心和多个激光位移传感器,其中激光位移传感器与处理中心连接,槽型钢轨为只保留凹槽部分的钢轨;在槽型钢轨外侧依次安放激光位移传感器,感测头均匀排列在车轮下方的圆弧线上,沿着槽型钢轨向上测量,探测光束同时到达车轮且与车轮共面。方法为:激光位移传感器探测车轮得到测量点,进行数据融合,用最小二乘拟合法得到多组车轮的初始拟合圆的直径与圆心,然后设计遗传优化算法,将测量点到拟合圆的距离的和最小作为进化目标,进化得出最优拟合圆的直径和圆心,最终得到优化后的车轮直径。本发明速度快、精度高、测量范围大、非接触式测量、抗干扰性强。

Description

传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法
技术领域
本发明涉及有轨电车车轮检测领域,特别是一种传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法。
背景技术
有轨电车车轮是保障车辆行走的重要的部件,承载着有轨电车的全部静、动载荷。车轮在长期的运行中与轨道不断摩擦,会产生不同程度的磨耗,进而改变车轮的直径参数。当电车运行时,如果车轮的同轴径差、同架径差、同车径差超过一定范围,容易造成车轮擦伤、轮缘偏磨、车体振动异常等现象,甚至导致电车车轴断裂、侧翻、脱轨等事故。因此,及时有效检测出车轮径差异常情况,对保障有轨电车的安全运行具有重要意义。
首先,由于有轨电车车轮附近存在排障器、喷砂管磁轨制动器等遮挡物,其次有轨电车车轮在运行中轮缘几乎100%接地并可以承重,使得通常的直径测量方法无法完全适用于有轨电车。有轨电车车轮直径检测的方法主要可以分为静态检测和动态检测。目前,有轨电车的车轮直径测量基本采用的是静态检测方法,该方法具有精度高的优点。但需要投入大量的人力和使用专用的检测设备,具有成本高、周转时间长、劳动强度大等缺点。
常规的动态检测主要采用图像处理技术或激光传感技术。专利1(在线有轨电车车轮直径测量方法,申请号:201510657099.7,申请日:2015-10-13)公开了一种基于图像处理技术的有轨电车车轮直径检测方法,该方法采用高速相机获取图像,通过设置成像模组,直接测量有轨电车车轮直径,但该方法存在精度低、操作繁琐等缺点。目前,国内尚未公开基于激光传感技术有轨电车车轮直径检测装置或方法的专利。专利2(传感器圆弧垂直安装的城轨车辆车轮直径检测装置及方法,申请号:201310557901.6,申请日:2013-11-11)公开了一种将激光传感器设置在钢轨偏移所空出的区域与护轨之间,非接触检测地铁车轮直径的方法,但该方法由于设置护轨,若在稳定运营路线上使用该方法,需要重新设置轨道布局,几乎很难实现,该方法不适用于有轨电车的车轮直径测量。专利3(一种城轨列车轮对尺寸在线检测方法及装置,申请号:201410519742.5,申请日:2014-09-30)公开了一种基于二维激光位移传感器技术的地铁轮对参数检测方法及装置,该方法通过三点拟合轮缘顶点圆,再减去2倍轮缘高的方法,实现对地铁轮直径的检测,但由于有轨电车轮缘几乎100%接地并可以承重,无法提取出轮缘顶点这一特征点,该方法也无法适用于有轨电车。
发明内容
本发明的目的在于提供一种速度快、精度高、测量直径范围大的传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法,实现在线非接触式测量且增强抗干扰能力。
实现本发明目的的技术解决方案为:一种传感器圆弧垂直安装的有轨电车轮径在线检测装置,包括槽型钢轨、处理中心和多个激光位移传感器,其中:激光位移传感器与处理中心连接;槽型钢轨为只保留凹槽部分的钢轨;槽型钢轨外侧顺次设置多个激光位移传感器;各激光位移传感器的感测头沿槽型钢轨方向均匀排列在车轮下方的圆弧线上,且均沿着槽型钢轨向上测量,探测光束同时入射至车轮边缘,且探测光束所形成的平面与车轮直径所在的圆周共面。
一种传感器圆弧垂直安装的有轨电车轮径在线检测方法,包括槽型钢轨、处理中心和多个激光位移传感器其中:激光位移传感器与处理中心连接;槽型钢轨为只保留凹槽部分的钢轨;槽型钢轨外侧顺次设置多个激光位移传感器;各激光位移传感器的感测头沿槽型钢轨方向均匀排列在车轮下方的圆弧线上,且均沿着槽型钢轨向上测量,探测光束同时入射至车轮边缘,且探测光束所形成的平面与车轮直径所在的圆周共面,具体步骤如下:
步骤1,将激光位移传感器记为Qi,沿着钢轨方向i依次为1,2,3,…n,其中n为激光传感器的个数;
步骤2,在进行直径测量的有轨电车车轮圆周所在平面上建立二维坐标系XOY:以最外侧激光位移传感器Q1为原点,沿钢轨方向为X轴,垂直于槽型钢轨向上为Y轴,则最外侧激光位移传感器的坐标为(0,0),其他激光位移传感器的坐标为(Xi,Yi),激光位移传感器感测头相对于X轴安装倾角为90°,激光位移传感器位置坐标为:
其中,
步骤3,为每个激光位移传感器Qi建立二维坐标系xioiyi,以经过各自激光位移传感器Qi感测头为原点,沿钢轨方向为x轴,垂直于槽型钢轨向上为y轴,此时激光位移传感器Qi建立二维坐标系xioiyi为激光位移传感器自身建立的坐标系;采集所有激光位移传感器的输出值,并选出同时有10个及以上激光位移传感器输出值的有效数据组(xij,yij),(xij,yij)为第i个传感器Qi返回的第j个的有效值,在激光位移传感器Qi建立二维坐标系xioiyi下坐标;其中,i=1,2…n,j=1,2,…m,且m≥10;
步骤4,数据融合:根据激光位移传感器Qi的测量点在各自二维坐标系xioiyi下坐标(xij,yij)、激光位移传感器Qi位置坐标值(Xi,0),确定车轮上对应激光位移传感器Qi的测量点在融合坐标系XOY下坐标(Xij,Yij):
(Xij,Yij)=(Xi,0)+(xij,yij)
其中,i=1,2…n,j=1,2,…m且m≥10;
步骤5,根据车轮上所有有效测量点坐标(Xij,Yij),利用最小二乘法进行拟合圆,得到该测量位置的车轮初始直径D0和初始圆心坐标(Xa,Ya);
步骤6,将步骤5得到的车轮初始直径D0和初始圆心坐标(Xa,Ya),在[Xa-0.1,Xa+0.1]、[Ya-0.1,Ya+0.1]范围中取w组组合值作为初始种群,以所有的有效测量点到拟合圆的距离和最小为进化目标,使用遗传优化算法,对初始的车轮轮径参数进行优化,得到优化后的最终车轮直径D1和圆心坐标(Xb,Yb);
步骤7,选取步骤3时刻t的前一刻和后一刻的探测数据,重复第3~6步,计算出两组轮径值D2、D3,将三组轮径求平均值,得到最终车轮的轮径Df
本发明与现有技术相比,其显著优点在于:(1)基于二维激光位移传感器的检测系统,实现了有轨电车轮对非接触式测量,具有速度快、有效测量点多、传感器标记容易、测量直径范围大的优点;(2)采用了基于遗传优化算法的检测数据处理方法,避免了单纯的最小二乘法因干扰点对拟合圆产生偏差的缺点,具有测量精度高、抗干扰强的优点;(3)采用槽型钢轨,便于激光位移传感器的安装和测量;
附图说明
图1为有轨电车车轮踏面示意图。
图2为槽型钢轨的结构示意图,其中(a)为60R槽型钢轨结构图,(b)为经过处理的槽型钢轨结构图。
图3为本发明的有轨电车车轮直径在线检测的装置整体结构图。
图4为本发明的有轨电车车轮直径在线检测的装置俯视图。
图5为本发明的有轨电车车轮直径在线检测的装置主视图。
图6为本发明的有轨电车车轮直径在线检测的装置侧视图。
图7为本发明传感器圆弧垂直安装的有轨电车轮径在线检测方法的流程图。
图8为实施例中随机生成的各传感器测量点在拟合圆上分布情况示意图。
图9为实施例中随机生成的各传感器测量点在遗传优化后的拟合圆上分布情况示意图。
图10为实施例中遗传优化算法过程中每代的最优个体分布图。
图11为实施例中遗传优化算法过程中最后一代的种群分布图。
图12为实施例中遗传优化算法过程中每代最优解变换趋势图。
图13为实施例中遗传优化算法过程中最优直径变换趋势图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
图1中表示出了有轨电车车轮踏面示意图,可以看出距离轮缘内测基准线57mm处踏面上的点为磨耗集中处,该处为工程中常用的衡量直径所在位置,而车轮直径往往控制在520-600mm之间,故激光位移传感器进行探测时选取该处的圆周来计算车轮直径。
本发明传感器圆弧垂直安装的有轨电车轮径在线检测装置包括槽型钢轨、处理中心和多个激光位移传感器,其中:激光位移传感器与处理中心连接;在检测区间段的轨道为经过特殊处理的槽型钢轨,只保留凹槽部分;在沿列车前进方向的槽型钢轨的外侧,顺次设置多个激光位移传感器;各激光位移传感器的感测头沿槽型钢轨方向均匀排列在车轮下方的圆弧线上,且均沿着槽型钢轨向上测量,探测光束同时入射至车轮边缘,且探测光束所形成的平面与车轮直径所在的圆周共面。
如图2(a),图2(b)所示,检测区间段轨道为经过特殊处理的槽型钢轨,槽型钢轨的型号为60R,且只保留凹槽部分。
如图3-6所示,进行直径测量的车轮圆周距离车轮轮缘内侧面的距离为57mm。所述的激光位移传感器为二维激光位移传感器,激光位移传感器的数量为n,且2≤n≤10;检测区间段的水平线长度为L,且n×50mm≤L≤1200mm。所述激光位移传感器安装在槽型钢轨外侧,并均匀排列在同一圆弧线上;激光位移传感器安装点距离槽型钢轨上沿平面的垂直距离为h,且160mm≤h≤290mm;激光位移传感器安装圆弧半径为R,且所述激光位移传感器感测头沿槽型钢轨圆弧垂直安装,所发出的探测光束与车轮直径所在圆周,即距轮缘内测基准面57mm处踏面上的点所在的圆周共面,且所有激光位移传感器的感测头均通过激光位移传感器夹具固定于车轮下方。
结合图7,本发明传感器圆弧垂直安装的有轨电车轮径在线检测方法,具体步骤如下:
步骤1,将各传感器安装于经过特殊处理的槽型钢轨的外侧,使各个传感器的感测头沿钢轨方向排列,所有的传感器与进行直径测量的有轨电车的车轮圆周共面,将激光位移传感器记为Qi,沿着钢轨方向i依次为1,2,3,...n,其中n为激光传感器的个数;
步骤2,在进行直径测量的有轨电车车轮圆周所在平面上建立二维坐标系XOY:以最外侧激光位移传感器Q1为原点,沿钢轨方向为X轴,垂直于槽型钢轨向上为Y轴,则最外侧激光位移传感器的坐标为(0,0),其他激光位移传感器的坐标为(Xi,Yi),各个激光位移传感器探头沿钢轨方向垂直方向测量,故其探头相对于X轴安装倾角为90°,激光位移传感器位置坐标为:
其中,
步骤3,为每个激光位移传感器Qi建立二维坐标系xioiyi,以经过各自激光位移传感器Qi感测头为原点,沿钢轨方向为x轴,垂直于槽型钢轨向上为y轴,此时激光位移传感器Qi建立二维坐标系xioiyi为激光位移传感器自身建立的坐标系;采集所有激光位移传感器的输出值,并选出同时有10个及以上激光位移传感器输出值的有效数据组(xij,yij),(xij,yij)为第i个传感器Qi返回的第j个的有效值,在激光位移传感器Qi建立二维坐标系xioiyi下坐标;其中,i=1,2…n,j=1,2,…m,且m≥10;
步骤4,数据融合:根据激光位移传感器Qi的测量点在各自二维坐标系xioiyi下坐标(xij,yij)、激光位移传感器Qi位置坐标值(Xi,0),确定车轮上对应激光位移传感器Qi的测量点在融合坐标系XOY下坐标(Xij,Yij):
(Xij,Yij)=(Xi,0)+(xij,yij)
其中,i=1,2…n,j=1,2,…m且m≥10;
步骤5,根据车轮上所有有效测量点坐标(Xij,Yij),利用最小二乘法进行拟合圆,得到该测量位置的车轮初始直径D0和初始圆心坐标(Xa,Ya),利用最小二乘法进行拟合圆,公式如下:
其中,i=1,2…n,j=1,2…m且m≥10,a=-2Xa,Xa为拟合后的圆心横坐标,b=-2Yb,Yb为拟合后的圆心纵坐标;
其中C、D、E、G、H为中间参数,分别如下:
D=λ∑XijYij-∑Xij∑Yij
其中,λ为所有传感器有效测量点的个数,i=1,2…n,j=1,2,…m且m≥10。
步骤6,将步骤5得到的车轮初始直径D0和初始圆心坐标(Xa,Ya),在[Xa-0.1,Xa+0.1]、[Ya-0.1,Ya+0.1]范围中取w组组合值作为初始种群,以所有的有效测量点到拟合圆的距离和最小为进化目标,使用遗传优化算法,对初始的车轮轮径参数进行优化,得到优化后的最终车轮直径D1和圆心坐标(Xb,Yb);。
所述遗传优化算法,以所有的有效测量点到拟合圆距离之和F最小为进化目标,公式如下:
其中i=1,2…n,j=1,2,…m且m≥10,k=1,2,…w,w为种群大小,|XkYkDk|为种群个体,采用二进制编码,|XkYkDk|的值在车轮初始直径D0和初始圆心坐标(X0,Y0)所在[X0-0.1,X0+0.1]、[Ya-0.1,Ya+0.1]范围中取值;
遗传算法的参数设置如下:种群大小为w;最大遗产代数为MaxGen;个体长度为ILength;代沟为Pg;交叉概率为Px;变异概率为Pm
步骤7,选取步骤3时刻t的前一刻和后一刻的探测数据,重复第3~6步,计算出两组轮径值D2、D3,将三组轮径求平均值,得到最终车轮的轮径Df
实施例
本实施例为一种传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法。
如图3所示,n个激光传感器的探头沿钢轨方向排列且均布在圆弧上,激光位移传感器的安装参数满足以下条件:各个激光位移传感器探头相对于X轴圆弧垂直安装。本例中,安装倾角为α=90°,激光传感器的个数n为3,相邻激光传感器间隔200mm,激光传感器的安装点至钢轨的垂直距离为h为200mm,圆弧半径R为3000mm。从而得到各传感器的坐标(Xi,Yi)(单位:mm):
X=[0 200 400],Y=[0 -6.67 0]
设激光传感器的采样周期为0.5kHz,由计算机模拟随机产生直径为540的被测车轮测量数据(Xij,Yij)。
最终传感器Q1的测量点在融合坐标系XOY下坐标如下:横坐标矩阵:X1=[155.2073148.3402 138.5274 131.7682 122.0546 115.4354 107.79 99.23989 93.1359 86.5406679.09708 72.36764 66.26774 60.62364 53.80808 48.61586];纵坐标矩阵:Y1=[224.6944 228.8 232.9332 237.953 243.1011 248.5163 254.2092 259.8335 265.6068271.7815 278.6085 285.0884 292.0164 299.3494 307.2262 315.1067]。
传感器Q2的测量点在融合坐标系下坐标如下:横坐标矩阵:X2=[361.7389350.961 338.082 327.506 314.6073 303.0464 289.5298 276.9383 265.6696 251.6842239.4173 228.6282 216.3006 203.6337 191.2003 179.3208 169.3048 157.648146.864 134.548];纵坐标矩阵:Y2=[216.231 212.2786 208.0719 205.407 203.4445201.0929 200.4901 199.6469 199.3578 200.4245 201.2967 202.3063 204.5193208.082 211.2203 215.3759 218.8626 224.5699 230.1775 235.2166]。
传感器Q3的测量点在融合坐标系下坐标如下:横坐标矩阵:X3=[460.9403453.7728 448.2901 440.8929 435.3542 427.4127 419.7635 412.4316 405.4846396.9741 390.2497 381.6515 373.2446 364.5642 356.0884 348.9885 340.2462];纵坐标矩阵:Y3=[278.9205 272.7438 266.5037 261.2321 255.0213 250.2465 244.7908240.6617 235.3237 231.1251 227.7701 223.756 220.0529 217.0287 213.6901210.7888 208.61]。
使用最小二乘法对上述所有测量点进行拟合,得到拟合圆参数:初始直径D0=539.588和初始圆心坐标(X0,Y0)=(269.92,469.289),其中所有测量点到拟合圆的距离和F0=16.0501,随机生成的各传感器测量点在拟合圆上分布情况如图8所示。
下面使用遗传优化算法对轮对参数进行优化,遗传算法的参数设置如下:种群大小为m=40;最大遗产代数为MaxGen=200;个体长度为ILength=60(3个自变量,每个长20);代沟为Pg=0.95;交叉概率为Px=0.7;变异概率为Pm=0.01。
|XkYkDk|为种群个体,采用二进制编码,其取值范围为:D0±1.0、(X0±0.5,Y0±0.5),进化的目标为所有测量点到拟合圆上距离和最小:
优化后的拟合圆参数为:
直径D1=539.45、圆心坐标(X1,Y1)=(269.959,469.244),其中所有测量点到拟合圆的距离和F0=15.965,随机生成的各传感器测量点在遗传算法优化拟合圆上分布情况如图9所示。
其中优化的仿真结果见图10-13。
最后另取两组数据进行拟合并优化,可得D2=539.389、D3=539.512,对三组直径求平均值得Df=544.45。
综上所述,本发明传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法,通过最小二乘拟合的算法,并利用遗传优化算法对车轮轮径参数进行优化,具有速度快、精度高、测量直径范围大、在线非接触式测量、抗干扰强的优点。

Claims (9)

1.一种传感器圆弧垂直安装的有轨电车轮径在线检测装置,其特征在于,包括槽型钢轨、处理中心和多个激光位移传感器,其中:激光位移传感器与处理中心连接;槽型钢轨为只保留凹槽部分的钢轨;槽型钢轨外侧顺次设置多个激光位移传感器;各激光位移传感器的感测头沿槽型钢轨方向均匀排列在车轮下方的圆弧线上,且均沿着槽型钢轨向上测量,探测光束同时入射至车轮边缘,且探测光束所形成的平面与车轮直径所在的圆周共面。
2.根据权利要求1所述的传感器圆弧垂直安装的有轨电车轮径在线检测装置,其特征在于,所述槽型钢轨的型号为60R,且只保留凹槽部分。
3.根据权利要求1所述的传感器圆弧垂直安装的有轨电车轮径在线检测装置,其特征在于,进行直径测量的车轮圆周距离车轮轮缘内侧面的距离为57mm。
4.根据权利要求1所述的传感器圆弧垂直安装的有轨电车轮径在线检测装置,其特征在于,所述的激光位移传感器为二维激光位移传感器,激光位移传感器的数量为n,且2≤n≤10;检测区间段的水平线长度为L,且n×50mm≤L≤1200mm。
5.根据权利要求1所述的移传感器圆弧垂直安装的有轨电车轮径在线检测装置,其特征在于,所述激光位移传感器安装在槽型钢轨外侧,并均匀排列在同一圆弧线上;激光位移传感器安装点距离槽型钢轨上沿平面的垂直距离为h,且160mm≤h≤290mm;激光位移传感器安装圆弧半径为R,且
6.根据权利要求1所述的传感器圆弧垂直安装的有轨电车轮径在线检测装置,其特征在于,所述激光位移传感器感测头沿槽型钢轨圆弧垂直安装,所发出的探测光束与车轮直径所在圆周,即距轮缘内测基准面57mm处踏面上的点所在的圆周共面,且所有激光位移传感器的感测头均通过激光位移传感器夹具固定于车轮下方。
7.一种传感器圆弧垂直安装的有轨电车轮径在线检测方法,其特征在于,包括槽型钢轨、处理中心和多个激光位移传感器其中:激光位移传感器与处理中心连接;槽型钢轨为只保留凹槽部分的钢轨;槽型钢轨外侧顺次设置多个激光位移传感器;各激光位移传感器的感测头沿槽型钢轨方向均匀排列在车轮下方的圆弧线上,且均沿着槽型钢轨向上测量,探测光束同时入射至车轮边缘,且探测光束所形成的平面与车轮直径所在的圆周共面,具体步骤如下:
步骤1,将激光位移传感器记为Qi,沿着钢轨方向i依次为1,2,3,…n,其中n为激光传感器的个数;
步骤2,在进行直径测量的有轨电车车轮圆周所在平面上建立二维坐标系XOY:以最外侧激光位移传感器Q1为原点,沿钢轨方向为X轴,垂直于槽型钢轨向上为Y轴,则最外侧激光位移传感器的坐标为(0,0),其他激光位移传感器的坐标为(Xi,Yi),激光位移传感器感测头相对于X轴安装倾角为90°,激光位移传感器位置坐标为:
<mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mfrac> <mi>L</mi> <mn>2</mn> </mfrac> <mo>-</mo> <mi>R</mi> <mo>&amp;times;</mo> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>,</mo> <mo>-</mo> <mi>R</mi> <mo>&amp;times;</mo> <msub> <mi>sin&amp;alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <msqrt> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>-</mo> <mfrac> <msup> <mi>L</mi> <mn>2</mn> </msup> <mn>4</mn> </mfrac> </mrow> </msqrt> <mo>)</mo> </mrow>
其中,
步骤3,为每个激光位移传感器Qi建立二维坐标系xioiyi,以经过各自激光位移传感器Qi感测头为原点,沿钢轨方向为x轴,垂直于槽型钢轨向上为y轴,此时激光位移传感器Qi建立二维坐标系xioiyi为激光位移传感器自身建立的坐标系;采集所有激光位移传感器的输出值,并选出同时有10个及以上激光位移传感器输出值的有效数据组(xij,yij),(xij,yij)为第i个传感器Qi返回的第j个的有效值,在激光位移传感器Qi建立二维坐标系xioiyi下坐标;其中,i=1,2…n,j=1,2,…m,且m≥10;
步骤4,数据融合:根据激光位移传感器Qi的测量点在各自二维坐标系xioiyi下坐标(xij,yij)、激光位移传感器Qi位置坐标值(Xi,0),确定车轮上对应激光位移传感器Qi的测量点在融合坐标系XOY下坐标(Xij,Yij):
(Xij,Yij)=(Xi,0)+(xij,yij)
其中,i=1,2…n,j=1,2,…m且m≥10;
步骤5,根据车轮上所有有效测量点坐标(Xij,Yij),利用最小二乘法进行拟合圆,得到该测量位置的车轮初始直径D0和初始圆心坐标(Xa,Ya);
步骤6,将步骤5得到的车轮初始直径D0和初始圆心坐标(Xa,Ya),在[Xa-0.1,Xa+0.1]、[Ya-0.1,Ya+0.1]范围中取w组组合值作为初始种群,以所有的有效测量点到拟合圆的距离和最小为进化目标,使用遗传优化算法,对初始的车轮轮径参数进行优化,得到优化后的最终车轮直径D1和圆心坐标(Xb,Yb);
步骤7,选取步骤3时刻t的前一刻和后一刻的探测数据,重复第3~6步,计算出两组轮径值D2、D3,将三组轮径求平均值,得到最终车轮的轮径Df
<mrow> <msub> <mi>D</mi> <mi>f</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>3</mn> </msub> </mrow> <mn>3</mn> </mfrac> <mo>.</mo> </mrow>
8.根据权利要求7所述的传感器圆弧垂直安装的有轨电车轮径在线检测方法,其特征在于,步骤5所述根据车轮上所有有效测量点坐标(Xij,Yij),利用最小二乘法进行拟合圆,公式如下:
<mrow> <msub> <mi>D</mi> <mn>0</mn> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>4</mn> <mfrac> <mrow> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b&amp;Sigma;Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </msqrt> </mrow>
其中,i=1,2…n,j=1,2…m且m≥10,a=-2Xa,Xa为拟合后的圆心横坐标,b=-2Yb,Yb为拟合后的圆心纵坐标;
<mrow> <mi>a</mi> <mo>=</mo> <mfrac> <mrow> <mi>H</mi> <mi>D</mi> <mo>-</mo> <mi>E</mi> <mi>G</mi> </mrow> <mrow> <mi>C</mi> <mi>G</mi> <mo>-</mo> <msup> <mi>D</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow>
<mrow> <mi>b</mi> <mo>=</mo> <mfrac> <mrow> <mi>H</mi> <mi>C</mi> <mo>-</mo> <mi>E</mi> <mi>D</mi> </mrow> <mrow> <msup> <mi>D</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>G</mi> <mi>C</mi> </mrow> </mfrac> </mrow>
其中C、D、E、G、H为中间参数,分别如下:
<mrow> <mi>C</mi> <mo>=</mo> <msubsup> <mi>&amp;lambda;&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow>
<mrow> <mi>D</mi> <mo>=</mo> <msub> <mi>&amp;lambda;&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>&amp;Sigma;Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow>
<mrow> <mi>E</mi> <mo>=</mo> <msubsup> <mi>&amp;lambda;&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <mo>+</mo> <msub> <mi>&amp;lambda;&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msub> <mi>&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow>
<mrow> <mi>G</mi> <mo>=</mo> <msubsup> <mi>&amp;lambda;&amp;Sigma;Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>&amp;Sigma;Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>&amp;Sigma;Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow>
<mrow> <mi>H</mi> <mo>=</mo> <msubsup> <mi>&amp;lambda;&amp;Sigma;X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <msub> <mi>Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&amp;lambda;&amp;Sigma;Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <mo>-</mo> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msub> <mi>&amp;Sigma;Y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> 2
其中,λ为所有传感器有效测量点的个数,i=1,2…n,j=1,2,…m且m≥10。
9.根据权利要求7所述的传感器圆弧垂直安装的有轨电车轮径在线检测方法,其特征在于,步骤6所述遗传优化算法,以所有的有效测量点到拟合圆距离之和F最小为进化目标,公式如下:
<mrow> <mi>F</mi> <mo>=</mo> <mi>&amp;Sigma;</mi> <mrow> <mo>|</mo> <mrow> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mfrac> <msub> <mi>D</mi> <mi>k</mi> </msub> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> </mrow> </mrow>
其中i=1,2…n,j=1,2,…m且m≥10,k=1,2,…w,w为种群大小,|XkYkDk|为种群个体,采用二进制编码,|XkYkDk|的值在车轮初始直径D0和初始圆心坐标(X0,Y0)所在[X0-0.1,X0+0.1]、[Ya-0.1,Ya+0.1]范围中取值;
遗传算法的参数设置如下:种群大小为w;最大遗产代数为MaxGen;个体长度为ILength;代沟为Pg;交叉概率为Px;变异概率为Pm
CN201710266738.6A 2017-04-21 2017-04-21 传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法 Expired - Fee Related CN107128330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710266738.6A CN107128330B (zh) 2017-04-21 2017-04-21 传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710266738.6A CN107128330B (zh) 2017-04-21 2017-04-21 传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法

Publications (2)

Publication Number Publication Date
CN107128330A true CN107128330A (zh) 2017-09-05
CN107128330B CN107128330B (zh) 2019-03-05

Family

ID=59715025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710266738.6A Expired - Fee Related CN107128330B (zh) 2017-04-21 2017-04-21 传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法

Country Status (1)

Country Link
CN (1) CN107128330B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990748A (zh) * 2019-04-23 2019-07-09 辽宁科技大学 一种用于在线检测钢卷位置的装置及检测方法
CN110155004A (zh) * 2019-06-21 2019-08-23 西华大学 带有圆弧槽的制动踏板机构的最优参数确定方法
CN110849280A (zh) * 2019-12-02 2020-02-28 中国科学院长春光学精密机械与物理研究所 一种车轮测量设备
CN113237424A (zh) * 2021-04-28 2021-08-10 中车长春轨道客车股份有限公司 一种用于城轨车辆转向架的车轮位置测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098769A1 (de) * 2000-06-20 2001-12-27 Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. Vorrichtung und verfahren zur prüfung eines eisenbahnrades
DE4312876B4 (de) * 1993-04-20 2004-04-08 IBEG Maschinen- und Gerätebau GmbH Vorrichtung zum Messen und Bestimmen der Veränderung an der Lauffläche eines Rades von Schienenfahrzeugen
CN202016485U (zh) * 2011-04-13 2011-10-26 北京城建设计研究总院有限责任公司 U型钢轨轮轴探测装置
CN103587552A (zh) * 2013-11-11 2014-02-19 南京理工大学 传感器直线倾斜安装的城轨车辆车轮直径检测装置及方法
CN103587550A (zh) * 2013-11-11 2014-02-19 南京理工大学 传感器圆弧垂直安装的城轨车辆车轮直径检测装置及方法
CN103591899B (zh) * 2013-11-11 2016-02-24 南京理工大学 传感器圆弧法线安装的城轨车辆车轮直径检测装置及方法
CN103587551B (zh) * 2013-11-11 2016-03-02 南京理工大学 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法
CN103587548B (zh) * 2013-11-11 2016-04-20 南京理工大学 传感器直接测量的城轨车辆车轮不圆度检测方法
CN103591902B (zh) * 2013-11-11 2016-07-27 南京理工大学 一种基于激光传感器的城轨车辆车轮直径检测装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4312876B4 (de) * 1993-04-20 2004-04-08 IBEG Maschinen- und Gerätebau GmbH Vorrichtung zum Messen und Bestimmen der Veränderung an der Lauffläche eines Rades von Schienenfahrzeugen
WO2001098769A1 (de) * 2000-06-20 2001-12-27 Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. Vorrichtung und verfahren zur prüfung eines eisenbahnrades
CN202016485U (zh) * 2011-04-13 2011-10-26 北京城建设计研究总院有限责任公司 U型钢轨轮轴探测装置
CN103587552A (zh) * 2013-11-11 2014-02-19 南京理工大学 传感器直线倾斜安装的城轨车辆车轮直径检测装置及方法
CN103587550A (zh) * 2013-11-11 2014-02-19 南京理工大学 传感器圆弧垂直安装的城轨车辆车轮直径检测装置及方法
CN103591899B (zh) * 2013-11-11 2016-02-24 南京理工大学 传感器圆弧法线安装的城轨车辆车轮直径检测装置及方法
CN103587551B (zh) * 2013-11-11 2016-03-02 南京理工大学 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法
CN103587548B (zh) * 2013-11-11 2016-04-20 南京理工大学 传感器直接测量的城轨车辆车轮不圆度检测方法
CN103591902B (zh) * 2013-11-11 2016-07-27 南京理工大学 一种基于激光传感器的城轨车辆车轮直径检测装置及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990748A (zh) * 2019-04-23 2019-07-09 辽宁科技大学 一种用于在线检测钢卷位置的装置及检测方法
CN109990748B (zh) * 2019-04-23 2023-12-29 辽宁科技大学 一种用于在线检测钢卷位置的装置及检测方法
CN110155004A (zh) * 2019-06-21 2019-08-23 西华大学 带有圆弧槽的制动踏板机构的最优参数确定方法
CN110155004B (zh) * 2019-06-21 2024-01-26 西华大学 带有圆弧槽的制动踏板机构的最优参数确定方法
CN110849280A (zh) * 2019-12-02 2020-02-28 中国科学院长春光学精密机械与物理研究所 一种车轮测量设备
CN113237424A (zh) * 2021-04-28 2021-08-10 中车长春轨道客车股份有限公司 一种用于城轨车辆转向架的车轮位置测量方法

Also Published As

Publication number Publication date
CN107128330B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN107128330B (zh) 传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法
CN106091951B (zh) 一种城轨列车轮缘参数在线检测系统及方法
CN107200041B (zh) 基于列阵激光的有轨电车车轮不圆度在线检测装置及方法
CN107117188B (zh) 传感器直线垂直安装的有轨电车轮径在线检测方法
CN107607044B (zh) 一种基于激光位移传感器的车轮踏面磨耗检测方法
CN107200042B (zh) 一种列车车轮直径与圆度磨耗高精度在线检测方法及其检测装置
CN103591899B (zh) 传感器圆弧法线安装的城轨车辆车轮直径检测装置及方法
CN107139968A (zh) 基于激光位移传感器的车轮不圆度检测装置及方法
CN105946898B (zh) 一种基于激光测距的城轨列车车轮直径检测方法及系统
CN103587551B (zh) 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法
CN103587548B (zh) 传感器直接测量的城轨车辆车轮不圆度检测方法
CN105292181B (zh) 一种基于两种传感器的轮对尺寸在线检测方法及装置
CN103693073B (zh) 一种非接触式车轮直径动态测量装置及其测量方法
CN103591902B (zh) 一种基于激光传感器的城轨车辆车轮直径检测装置及方法
CN103587549A (zh) 基于激光传感器的城轨车辆车轮不圆度检测装置及方法
CN104947555A (zh) 一种基于四点弦测法的轨道不平顺检测方法及系统
CN107685748A (zh) 基于激光位移传感器的列车车轮尺寸参数在线检测方法
CN108819980B (zh) 一种列车车轮几何参数在线动态测量的装置和方法
CN104590314B (zh) 一种基于多种传感器的城轨车辆车轮直径测量装置及方法
CN107084670B (zh) 传感器圆弧法线安装的有轨电车轮径在线检测装置及方法
CN109668515B (zh) 列车轮对尺寸动态检测系统及检测方法
CN106052589A (zh) 列车轮对踏面标准滚动圆廓形自动化测量方法和系统
CN103587550B (zh) 传感器圆弧垂直安装的城轨车辆车轮直径检测装置及方法
CN109353372A (zh) 一种有轨电车轮对尺寸在线监测系统及方法
CN105835902A (zh) 一种基于激光位移传感器的车轮直径的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190305

CF01 Termination of patent right due to non-payment of annual fee