CN107123348A - 一种高精度中压配电线路真型等效模型及其参数计算方法 - Google Patents

一种高精度中压配电线路真型等效模型及其参数计算方法 Download PDF

Info

Publication number
CN107123348A
CN107123348A CN201710402687.5A CN201710402687A CN107123348A CN 107123348 A CN107123348 A CN 107123348A CN 201710402687 A CN201710402687 A CN 201710402687A CN 107123348 A CN107123348 A CN 107123348A
Authority
CN
China
Prior art keywords
electric capacity
impedance
phase
msub
mrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710402687.5A
Other languages
English (en)
Other versions
CN107123348B (zh
Inventor
杨帆
沈煜
周志强
杨志淳
邱凌
李自怀
周先平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan New Electrical Ltd By Share Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Wuhan New Electrical Ltd By Share Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan New Electrical Ltd By Share Ltd, State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Wuhan New Electrical Ltd By Share Ltd
Priority to CN201710402687.5A priority Critical patent/CN107123348B/zh
Publication of CN107123348A publication Critical patent/CN107123348A/zh
Application granted granted Critical
Publication of CN107123348B publication Critical patent/CN107123348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/18Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for electricity or magnetism
    • G09B23/188Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for electricity or magnetism for motors; for generators; for power supplies; for power distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明提供一种高精度中压配电线路真型等效模型及其参数计算方法,包括用于模拟A相导线自阻抗与互阻抗的A相阻抗;用于模拟B相导线自阻抗与互阻抗的B相阻抗;用于模拟C相导线自阻抗与互阻抗的C相阻抗;以及用于模拟大地回路和相间参数的G阻抗;本发明基于电力系统分析理论,根据配网线路的工程实际,综合考虑输电导线本身、导线之间、导线与大地以及地回路的影响等因素,创造性提出倒π型的四电容G阻抗模型结构来高精度模拟导线之间、导线与大地之间以及地回路的电磁耦合作用,实现线路正序及零序参数的精确模拟,采用多组集中参数元件级联结构,以满足高频范围内幅频与相频响应精度的配电线路等效模拟。

Description

一种高精度中压配电线路真型等效模型及其参数计算方法
技术领域
本发明专利属于配电设备技术领域,具体涉及一种考虑高频传输特性的高精度配电线路真型等效模型及其参数计算方法。
技术背景
随着智能电网的迅速发展,配电自动化系统的覆盖范围与应用规模日益扩大,为提升配电系统供电可靠性提供了有效技术手段。配电自动化系统通过快速隔离故障区域使健全区域恢复供电,这对提高供电可靠性具有非常重要的意义。其技术关键依赖于分布式FTU、DTU 及故障指示器等智能配电终端对配电线路运行状态进行实时监测,根据所获取电压电流信号,在发生故障时,结合主站实现集中或就地方式隔离故障区段以实现健全配电线路快速自愈。这一技术的实现有赖于对配网线路稳态与暂态故障特征信息的深入研究,通过获取配电线路在各种运行状态下的典型电压及电流信号,提取暂稳态特征,并结合算法进行有效辨识。
目前众多高校、科研及企业针对配网真型模拟技术已经进行了探索和研究,并取得了一定的成果。其中最具代表性的如国网浙江省电力公司金华供电公司(专利申请号201610606842.0)提出了一种模拟针对开关故障形式的配网真型模拟平台;华北电力大学(专利申请号201020593458.X)提出了一种10kV配电网线路故障模拟试验平台的总体架构;广东电网有限责任公司电力科学研究院(专利申请号 201510018639.7)提出了一种电力系统1:1电压等级配网单相接地故障模拟试验平台;这三家单位的成果中,其应用场景各有侧重,适用范围差异较大。但都未提及专门针对精确计及导线自阻抗、互阻抗、对地电容及相间耦合电容等线路参数的等值方法,更未考虑采用集中参数的π型结构的分段数设置,对于电流电压的高频相频特性和幅频特性与被等效实际线路存在的显著差异,无法从实质上反映真实配电线路在各类运行工况下的电流电压信号特征。因此,研究搭建可在宽频带范围内模拟电网真实运行状态的等效试验模型,对于在实景环境下开展基于配电线路暂稳态特征信息的故障辨识、选线及定位研究,产品性能测试与功能实证以及技术培训,支撑配电自动化系统的进一步深化应用,其需求十分迫切。
发明内容
为解决以上问题,本发明提供了一种高精度中压配电线路真型等效模型及其参数计算方法。该等效模型基于电力系统分析理论建立,具有体积小、重量轻,高频带范围内等效精度高,模块化设计便于级联和扩展等特点,适用于对配电线路的运行状态进行真型等效,为开展针对性的研究、测试与技术培训提供物理载体。
本发明采用的技术方案是:一种高精度中压配电线路真型等效模型,包括用于模拟A相导线自阻抗与互阻抗的A相阻抗;用于模拟B 相导线自阻抗与互阻抗的B相阻抗;用于模拟C相导线自阻抗与互阻抗的C相阻抗;以及用于模拟大地回路和相间参数的G阻抗;
所述A相阻抗采用多模块分段级联组合的方式模拟,A相线路阻抗采用第一中间电阻和第一电感串联、第一前端下拉电容和第一后端下拉电容并联的π型结构,用于等效A相导线分布阻抗参数;
所述B相阻抗采用多模块分段级联组合的方式模拟,B相线路阻抗采用第二中间电阻和第二电感串联,第二前端下拉电容和第二后端下拉电容并联的π型结构,用于等效B相导线分布阻抗参数;
所述C相阻抗采用多模块分段级联组合的方式模拟,C相线路阻抗采用第三中间电阻和第三电感串联,第三前端下拉电容和第三后端下拉电容并联的π型结构,用于等效C相导线分布阻抗参数;
所述G阻抗采用多模块分段级联组合的方式模拟,包括顺序连接的入线端G、第四线路阻抗以及出线端G’;其中入线端G用于与前一个模型的出线端G’相连或接地;出线端G’用于接后一个模型的进线端G或悬空,靠近电源测第一个入线端G接地;第四线路阻抗采用第四中间电阻和第四电感串联,第四前端上拉电容和第四后端上拉电容并联的倒π型结构,用于等效模拟大地回路和相间分布阻抗参数;
所述A相阻抗、B相阻抗、C相阻抗和G阻抗通过A相线路阻抗的第一前端下拉电容、B相线路阻抗的第二前端下拉电容和C相线路阻抗的第三前端下拉电容的下端与第四线路阻抗的第四前端上拉电容的上端相连;以及通过A相线路阻抗的第一后端下拉电容、B相线路阻抗的第二后端下拉电容和C相线路阻抗的第三后端下拉电容的下端与第四线路阻抗的第四后端上拉电容的上端相连;构成一个完整的A、B、C三相配电线路等效模型。
作为优选,一种高精度中压配电线路真型等效模型所采用的第一中间电阻、第二中间电阻、第三中间电阻和第四中间电阻采用无感电阻。
作为优选,一种高精度中压配电线路真型等效模型所采用的第一电感、第二电感、第三电感和第四电感采用空心低阻电感。
作为优选,一种高精度中压配电线路真型等效模型所采用的第一前端下拉电容、第二前端下拉电容、第三前端下拉电容,第一后端下拉电容、第二后端下拉电容、第三后端下拉电容,第四前端上拉电容以及第四后端上拉电容等所有电容皆采用无局放电容器。
一种高精度中压配电线路真型等效模型参数计算方法包括以下步骤:
第一步,确定被等效模拟的配电线路电压等级、线路型号和架设安装方式;
第二步,根据第一步确定的信息,采用数值仿真软件或一般线路计算方法获得等效模拟的配电线路的单位长度分布参数:正序电阻 RP,零序电阻R0;正序电感LP,零序电感L0,正序电容CP,零序电容 C0
第三步,根据被等效模拟的配电线路长度Len,计算被等效模拟的配电线路的总参数:
RPz=Len×RP;LPz=Len×LP;CPz=Len×CP
R0z=Len×R0;L0z=Len×L0;C0z=Len×C0
其中,RPz为被等效模拟的配电线路正序总电阻,LPz为被等效模拟的配电线路正序总电感,CPz为被等效模拟的配电线路正序总电容, R0z为被等效模拟的配电线路零序总电阻,L0z为被等效模拟的配电线路零序总电感,C0z为被等效模拟的配电线路零序总电容。
第四步,根据所要求频率范围内的幅频与相频响应精度,结合数值仿真计算,采用人工步进式分段校核的方式确定被等效模拟的配电线路的π型级联数,并对应将该线路分成N段,每段参数:
其中,RP1为被等效模拟的配电线路分成N段后的每段正序电阻, LP1为被等效模拟的配电线路分成N段后的每段正序电感,CP1为被等效模拟的配电线路分成N段后的每段正序电容,R01为被等效模拟的配电线路分成N段后的每段零序电阻,L01为被等效模拟的配电线路分成N 段后的每段零序电感,C01为被等效模拟的配电线路分成N段后的每段零序电容。
第五步,根据CP1和C01计算G阻抗附加等效电容C’:
第六步,计算各元件参数:
第一前端下拉电容(11)、第二前端下拉电容(21)、第三前端下拉电容(31):CP1/2
第一后端下拉电容(14)、第二后端下拉电容(24)、第三后端下拉电容(34):CP1/2
第一中间电阻(12)、第二中间电阻(22)、第三中间电阻(32): RP1
第一电感(13)、第二电感(23)、第三电感(33):LP1
第四前端上拉电容(41)以及第四后端上拉电容(44):C'/2
第四中间电阻(42):(R01-RP1)/3
第四电感(43):(L01-LP1)/3。
作为优选,一种高精度中压配电线路真型等效模型参数计算方法中G阻抗附加等效电容C’的公式由以下方法获得:
设正序电容为Cp1,零序电压为C01,附加等效电容为C’,系统中性点位移电压为U′,三相电压分别为UA、UB、UC,则根据基尔霍夫电压定律可列如下方程:
解方程可得:
本发明取得的有益效果是:
1、该等效模型基于电力系统分析理论,根据配网线路的工程实际,考虑高频传输特性,全面考虑导线自身、导线之间、导线与大地以及地回路的影响等因素构建,因此模型理论基础可靠、综合因素全面,贴近现场实际;
2、创造性提出倒π结构形式的四电容G阻抗模型结构来模拟导线之间、导线与大地之间以及地回路的电磁耦合作用;
3、创造性地根据基尔霍夫电压定律推导出G阻抗附加等效电容 C’计算公式,以准确模拟线路正序阻抗与零序阻抗。
4、创造性提出了多个集中参数等效元件组分段级联的方式,以在宽频带范围内满足被等效线路幅频与相频响应精度。
附图说明
图1是本发明一种高精度中压配电线路真型等效模型结构示意图;
图2是本发明一种高精度中压配电线路真型等效模型参数计算流程图;
图3是本发明G阻抗中附加等效电容C’计算原理图;
图4是本发明幅频特性对比图;
图5是本发明相频特性对比图;
具体实施方式
以下结合附图和实施例对本发明作进一步的详细说明,但本发明的实施方式不限于此。
如图1所示,本发明一种高精度中压配电线路真型等效模型结构示意图,包括用于模拟A相导线自阻抗与互阻抗的A相阻抗;用于模拟B相导线自阻抗与互阻抗的B相阻抗;用于模拟C相导线自阻抗与互阻抗的C相阻抗;以及用于模拟大地回路和相间参数的G阻抗;
如图1所示,所述A相阻抗包括顺序连接的入线端A、A相线路阻抗(1)以及出线端A’。其中入线端A用于与电源的A相或前一个模型的出线端A’相连;出线端A’用于接负载A相或者后一个模型的进线端A;A相线路阻抗(1)采用第一中间电阻(12)和第一电感 (13)串联、第一前端下拉电容(11)和第一后端下拉电容(14)并联的π型结构;入线端A、A相线路阻抗(1)以及出线端A’串联构成等效A相输电导线模型。
如图1所示,所述B相阻抗包括顺序连接的入线端B、B相线路阻抗(2)以及出线端B’。其中入线端B用于与电源的B相或前一个模型的出线端B’相连;出线端B’用于接负载B相或者后一个模型的进线端B;B相线路阻抗(2)采用第二中间电阻(22)和第二电感 (23)串联、第二前端下拉电容(21)和第二后端下拉电容(24)并联的π型结构;入线端B、B相线路阻抗(2)以及出线端B’串联构成等效B相输电导线模型。
如图1所示,所述C相阻抗包括顺序连接的入线端C、C相线路阻抗(3)以及出线端C’。其中入线端C用于与电源的C相或前一个模型的出线端C’相连;出线端C’用于接负载C相或者后一个模型的进线端C;C相线路阻抗(3)采用第三中间电阻(32)和第三电感 (33)串联、第三前端下拉电容(31)和第三后端下拉电容(34)并联的π型结构;入线端C、C相线路阻抗(3)以及出线端C’串联构成等效C相输电导线模型。
如图1所示,所述G阻抗包括顺序连接的入线端G、第四线路阻抗(4)以及出线端G’。其中入线端G用于与前一个模型的出线端C’相连或接地;出线端G’用于接后一个模型的进线端G或悬空,靠近电源测第一个入线端G接地;第四线路阻抗(4)采用第四中间电阻 (42)和第四电感(43)串联,第四前端上拉电容(41)和第四后端上拉电容(44)并联的倒π型结构;入线端G、第四线路阻抗(4)以及出线端G’串联构成等效模拟大地回路和相间分布阻抗模型。
如图1所示,所述A相阻抗、B相阻抗、C相阻抗和G阻抗通过 A相线路阻抗(1)的第一前端下拉电容(11)、B相线路阻抗(2)的第二前端下拉电容(21)和C相线路阻抗(3)的第三前端下拉电容 (31)的下端与第四线路阻抗(4)的第四前端上拉电容(41)的上端相连;以及通过A相线路阻抗(1)的第一后端下拉电容(14)、B 相线路阻抗(2)的第二后端下拉电容(24)和C相线路阻抗(3)的第三后端下拉电容(34)的下端与第四线路阻抗(4)的第四后端上拉电容(44)的上端相连;构成一个完整模拟真实A、B、C三相配电线路的等效模型。
如图2所示,本发明所建立的中压配电线路真型等效模型中各个元件参数的计算方法如下:
第一步,确定被等效模拟的配电线路电压等级、线路型号和架设安装方式;
第二步,根据第一步确定的信息,采用数值仿真软件或一般线路计算方法获得等效模拟的配电线路的单位长度分布参数:正序电阻 RP,零序电阻R0;正序电感LP,零序电感L0,正序电容CP,零序电容 C0
第三步,根据被等效模拟的配电线路长度Len,计算被等效模拟的配电线路的总参数:
RPz=Len×RP;LPz=Len×LP;CPz=Len×CP
R0z=Len×R0;L0z=Len×L0;C0z=Len×C0
其中,RPz为被等效模拟的配电线路正序总电阻,LPz为被等效模拟的配电线路正序总电感,CPz为被等效模拟的配电线路正序总电容, R0z为被等效模拟的配电线路零序总电阻,L0z为被等效模拟的配电线路零序总电感,C0z为被等效模拟的配电线路零序总电容。
第四步,根据所要求频率范围内的幅频与相频响应精度,结合数值仿真计算,采用人工步进式分段校核的方式确定被等效模拟的配电线路的π型级联数,并对应将该线路分成N段,每段参数:
其中,RP1为被等效模拟的配电线路分成N段后的每段正序电阻, LP1为被等效模拟的配电线路分成N段后的每段正序电感,CP1为被等效模拟的配电线路分成N段后的每段正序电容,R01为被等效模拟的配电线路分成N段后的每段零序电阻,L01为被等效模拟的配电线路分成N 段后的每段零序电感,C01为被等效模拟的配电线路分成N段后的每段零序电容。
第五步,根据CP1和C01计算G阻抗附加等效电容C’:
第六步,计算各元件参数:
第一前端下拉电容(11)、第二前端下拉电容(21)、第三前端下拉电容(31):CP1/2
第一后端下拉电容(14)、第二后端下拉电容(24)、第三后端下拉电容(34):CP1/2
第一中间电阻(12)、第二中间电阻(22)、第三中间电阻(32): RP1
第一电感(13)、第二电感(23)、第三电感(33):LP1
第四前端上拉电容(41)以及第四后端上拉电容(44):C'/2
第四中间电阻(42):(R01-RP1)/3
第四电感(43):(L01-LP1)/3。
其中,G阻抗附加等效电容C’的参数计算由以下方法获得:
设正序电容为Cp1,零序电压为C01,附加等效电容为C’,系统中性点位移电压为U′,三相电压分别为UA、UB、UC,则根据基尔霍夫电压定律可列如下方程:
解方程可得:
如图4、图5所示,是以某4.5km配电线路为对象,分别对分布式参数模型、单节三电容π模型、单节四电容π模型、15节三电容π模型以及本发明所推荐的15节四电容π模型对该线路进行模拟,将各种模型模拟结果与真实系统(分布式参数)的结果进行对比,可见本发明模型及方法在高频范围内的相频特性与幅频特性上与真实系统有较高的相似度,若未考虑G阻抗附加等效电容C’及多组级联的影响,相频与幅频特性与真实系统具有较大误差。

Claims (7)

1.一种高精度中压配电线路真型等效模型,其特征在于:包括用于模拟A相导线自阻抗与互阻抗的A相阻抗;用于模拟B相导线自阻抗与互阻抗的B相阻抗;用于模拟C相导线自阻抗与互阻抗的C相阻抗;以及用于模拟大地回路和相间参数的G阻抗;
所述A相阻抗采用多模块分段级联组合的方式模拟,A相线路阻抗(1)采用第一中间电阻(12)和第一电感(13)串联、第一前端下拉电容(11)和第一后端下拉电容(14)并联的π型结构,用于等效A相导线分布阻抗参数;
所述B相阻抗采用多模块分段级联组合的方式模拟,B相线路阻抗(2)采用第二中间电阻(22)和第二电感(23)串联,第二前端下拉电容(21)和第二后端下拉电容(24)并联的π型结构,用于等效B相导线分布阻抗参数;
所述C相阻抗采用多模块分段级联组合的方式模拟,C相线路阻抗(3)采用第三中间电阻(32)和第三电感(33)串联,第三前端下拉电容(31)和第三后端下拉电容(34)并联的π型结构,用于等效C相导线分布阻抗参数;
所述G阻抗采用多模块分段级联组合的方式模拟,包括顺序连接的入线端G、第四线路阻抗(4)以及出线端G’;其中入线端G用于与前一个模型的出线端G’相连或接地;出线端G’用于接后一个模型的进线端G或悬空,靠近电源测第一个入线端G接地;第四线路阻抗(4)采用第四中间电阻(42)和第四电感(43)串联,第四前端上拉电容(41)和第四后端上拉电容(44)并联的倒π型结构,用于等效模拟大地回路和相间分布阻抗参数;
所述A相阻抗、B相阻抗、C相阻抗和G阻抗通过A相线路阻抗(1)的第一前端下拉电容(11)、B相线路阻抗(2)的第二前端下拉电容(21)和C相线路阻抗(3)的第三前端下拉电容(31)的下端与第四线路阻抗(4)的第四前端上拉电容(41)的上端相连;以及通过A相线路阻抗(1)的第一后端下拉电容(14)、B相线路阻抗(2)的第二后端下拉电容(24)和C相线路阻抗(3)的第三后端下拉电容(34)的下端与第四线路阻抗(4)的第四后端上拉电容(44)的上端相连;构成一个完整的A、B、C三相配电线路等效模型。
2.根据权利要求1所述的一种高精度中压配电线路真型等效模型,其特征在于:所述第一中间电阻(12)、第二中间电阻(22)、第三中间电阻(32)和第四中间电阻(42)采用无感电阻。
3.根据权利要求1所述的一种高精度中压配电线路真型等效模型,其特征在于:所述第一电感(13)、第二电感(23)、第三电感(33)和第四电感(43)采用空心低阻电感。
4.根据权利要求1所述的一种高精度中压配电线路真型等效模型,其特征在于:所述第一前端下拉电容(11)、第二前端下拉电容(21)、第三前端下拉电容(31),第一后端下拉电容(14)、第二后端下拉电容(24)、第三后端下拉电容(34),第四前端上拉电容(41)以及第四后端上拉电容(44)等所有电容皆采用无局放电容器。
5.一种高精度中压配电线路真型等效模型参数计算方法其特征在于:包括以下步骤:
第一步,确定被等效模拟的配电线路电压等级、线路型号和架设安装方式;
第二步,根据第一步确定的信息,采用数值仿真软件或一般线路计算方法获得等效模拟的配电线路的单位长度分布参数:正序电阻RP,零序电阻R0;正序电感LP,零序电感L0,正序电容CP,零序电容C0
第三步,根据被等效模拟的配电线路长度Len,计算被等效模拟的配电线路的总参数:
RPz=Len×RP;LPz=Len×LP;CPz=Len×CP
R0z=Len×R0;L0z=Len×L0;C0z=Len×C0
其中,RPz为被等效模拟的配电线路正序总电阻,LPz为被等效模拟的配电线路正序总电感,CPz为被等效模拟的配电线路正序总电容,R0z为被等效模拟的配电线路零序总电阻,L0z为被等效模拟的配电线路零序总电感,C0z为被等效模拟的配电线路零序总电容。
第四步,根据所要求频率范围内的幅频与相频响应精度,结合数值仿真计算,采用人工步进式分段校核的方式确定被等效模拟的配电线路的π型级联数,并对应将该线路分成N段,每段参数:
<mrow> <msub> <mi>R</mi> <mrow> <mi>P</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>P</mi> <mi>z</mi> </mrow> </msub> <mi>N</mi> </mfrac> <mo>;</mo> <msub> <mi>L</mi> <mrow> <mi>P</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mrow> <mi>P</mi> <mi>z</mi> </mrow> </msub> <mi>N</mi> </mfrac> <mo>;</mo> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mi>z</mi> </mrow> </msub> <mi>N</mi> </mfrac> </mrow>
<mrow> <msub> <mi>R</mi> <mn>01</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mn>0</mn> <mi>z</mi> </mrow> </msub> <mi>N</mi> </mfrac> <mo>;</mo> <msub> <mi>L</mi> <mn>01</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mrow> <mn>0</mn> <mi>z</mi> </mrow> </msub> <mi>N</mi> </mfrac> <mo>;</mo> <msub> <mi>C</mi> <mn>01</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>C</mi> <mrow> <mn>0</mn> <mi>z</mi> </mrow> </msub> <mi>N</mi> </mfrac> </mrow>
其中,RP1为被等效模拟的配电线路分成N段后的每段正序电阻,LP1为被等效模拟的配电线路分成N段后的每段正序电感,CP1为被等效模拟的配电线路分成N段后的每段正序电容,R01为被等效模拟的配电线路分成N段后的每段零序电阻,L01为被等效模拟的配电线路分成N段后的每段零序电感,C01为被等效模拟的配电线路分成N段后的每段零序电容。
第五步,根据CP1和C01计算G阻抗附加等效电容C’:
<mrow> <msup> <mi>C</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <msub> <mi>C</mi> <mn>01</mn> </msub> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>01</mn> </msub> </mrow> </mfrac> </mrow>
第六步,计算各元件参数:
第一前端下拉电容(11)、第二前端下拉电容(21)、第三前端下拉电容(31):CP1/2
第一后端下拉电容(14)、第二后端下拉电容(24)、第三后端下拉电容(34):CP1/2
第一中间电阻(12)、第二中间电阻(22)、第三中间电阻(32):RP1
第一电感(13)、第二电感(23)、第三电感(33):LP1
第四前端上拉电容(41)以及第四后端上拉电容(44):C'/2
第四中间电阻(42):(R01-RP1)/3
第四电感(43):(L01-LP1)/3。
6.根据权利要求5所述的一种高精度中压配电线路真型等效模型参数计算方法,其特征在于:所述G阻抗电容C’计算公式是基于线路正序电容CP和零序电容C0,基于系统中性点位移电压,根据基尔霍夫电压定律所列方程组推导得出。
7.根据权利要求5所述的一种高精度中压配电线路真型等效模型参数计算方法,其特征在于:根据所要求频率范围内的幅频与相频响应精度,结合数值仿真计算,采用人工步进式分段校核的方式确定被等效模拟的配电线路的π型级联数,并对应将该线路分成N段。
CN201710402687.5A 2017-06-01 2017-06-01 一种高精度中压配电线路真型等效模型及其参数计算方法 Active CN107123348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710402687.5A CN107123348B (zh) 2017-06-01 2017-06-01 一种高精度中压配电线路真型等效模型及其参数计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710402687.5A CN107123348B (zh) 2017-06-01 2017-06-01 一种高精度中压配电线路真型等效模型及其参数计算方法

Publications (2)

Publication Number Publication Date
CN107123348A true CN107123348A (zh) 2017-09-01
CN107123348B CN107123348B (zh) 2023-03-21

Family

ID=59729144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710402687.5A Active CN107123348B (zh) 2017-06-01 2017-06-01 一种高精度中压配电线路真型等效模型及其参数计算方法

Country Status (1)

Country Link
CN (1) CN107123348B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680809A (zh) * 2018-05-22 2018-10-19 中国农业大学 一种线路阻抗模拟装置及系统
CN109063360A (zh) * 2018-08-16 2018-12-21 四川大学 嵌入均匀材料的自制热输电导线交流加热参数优化方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268728A (ja) * 1992-03-13 1993-10-15 Hitachi Ltd 送電線模擬装置
US20040095570A1 (en) * 2001-02-06 2004-05-20 Michael Stanimirov Method for the temperature-compensated, electro-optical measurement of an electrical voltage and device for carrying out the method
US20050222808A1 (en) * 2001-12-21 2005-10-06 Abb Schweiz Ag Determining an operational limit of a power transmision line
RU2469393C1 (ru) * 2011-10-27 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Устройство для моделирования трехфазной линии электропередачи с сосредоточенными параметрами
CN102967779A (zh) * 2012-11-14 2013-03-13 广东电网公司东莞供电局 一种输电线路分布参数的辨识方法
US20140072950A1 (en) * 2011-05-10 2014-03-13 Anhui Electric Power Research Institute Power frequency parameter simulation system for a power transmission line and control method thereof
CN103760420A (zh) * 2014-01-16 2014-04-30 广东电网公司电力科学研究院 基于分布参数模型的输电线路工频参数在线测量方法
CN103760423A (zh) * 2014-01-08 2014-04-30 国家电网公司 一种长距离特高压同塔双回线路相间互电容测量方法
CN104155543A (zh) * 2014-07-17 2014-11-19 国家电网公司 一种基于功率损耗法的输电线路参数辨识方法
CN105372521A (zh) * 2015-10-28 2016-03-02 华中科技大学 基于配电网物理模型中的线路零序电流模拟与检测方法
CN207020866U (zh) * 2017-06-01 2018-02-16 国网湖北省电力公司电力科学研究院 一种高精度中压配电线路真型等效模型

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268728A (ja) * 1992-03-13 1993-10-15 Hitachi Ltd 送電線模擬装置
US20040095570A1 (en) * 2001-02-06 2004-05-20 Michael Stanimirov Method for the temperature-compensated, electro-optical measurement of an electrical voltage and device for carrying out the method
US20050222808A1 (en) * 2001-12-21 2005-10-06 Abb Schweiz Ag Determining an operational limit of a power transmision line
US20140072950A1 (en) * 2011-05-10 2014-03-13 Anhui Electric Power Research Institute Power frequency parameter simulation system for a power transmission line and control method thereof
RU2469393C1 (ru) * 2011-10-27 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Устройство для моделирования трехфазной линии электропередачи с сосредоточенными параметрами
CN102967779A (zh) * 2012-11-14 2013-03-13 广东电网公司东莞供电局 一种输电线路分布参数的辨识方法
CN103760423A (zh) * 2014-01-08 2014-04-30 国家电网公司 一种长距离特高压同塔双回线路相间互电容测量方法
CN103760420A (zh) * 2014-01-16 2014-04-30 广东电网公司电力科学研究院 基于分布参数模型的输电线路工频参数在线测量方法
CN104155543A (zh) * 2014-07-17 2014-11-19 国家电网公司 一种基于功率损耗法的输电线路参数辨识方法
CN105372521A (zh) * 2015-10-28 2016-03-02 华中科技大学 基于配电网物理模型中的线路零序电流模拟与检测方法
CN207020866U (zh) * 2017-06-01 2018-02-16 国网湖北省电力公司电力科学研究院 一种高精度中压配电线路真型等效模型

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王婧等: "输电线路数学模型用于故障测距的分析研究", 《山东电力技术》 *
索南加乐等: "采用模量参数识别的三相重合闸永久性故障判别原理", 《中国电机工程学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680809A (zh) * 2018-05-22 2018-10-19 中国农业大学 一种线路阻抗模拟装置及系统
CN109063360A (zh) * 2018-08-16 2018-12-21 四川大学 嵌入均匀材料的自制热输电导线交流加热参数优化方法
CN109063360B (zh) * 2018-08-16 2022-10-04 四川大学 嵌入均匀材料的自制热输电导线交流加热参数优化方法

Also Published As

Publication number Publication date
CN107123348B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
Zhang et al. Diagnosis of breaks in substation's grounding grid by using the electromagnetic method
Dāsa Determining the locations of faults in distribution systems
CN101551432B (zh) 配电网故障定位方法
CN104898021B (zh) 一种基于k‑means聚类分析的配电网故障选线方法
CN109256771A (zh) 地铁杂散电流及其引起的变压器中性点直流电流计算方法
CN104155626B (zh) 一种检测电压互感器抵御地电位升高能力的系统
CN103869171B (zh) 超高压同塔四回交流/双回双极直流线路零序参数测量法
CN104237758B (zh) 一种基于缩比模型的特高压换流变压器冲击耐压试验方法
CN110045226A (zh) 一种基于压缩感知的配电网故障定位方法
CN106096161B (zh) 输电线路工频感应电压及电流的仿真计算方法
CN111141995A (zh) 一种基于比幅原理的线路双端稳态量测距方法和系统
CN107123348A (zh) 一种高精度中压配电线路真型等效模型及其参数计算方法
CN105823929B (zh) 基于双端异步数据的长距离同塔四回输电线路零序参数精确测量方法
CN107393383B (zh) 一种电力网动态模型及其构建方法
CN107515349A (zh) 一种计算变电站故障入地电流和避雷线分流系数的方法及系统
CN207020866U (zh) 一种高精度中压配电线路真型等效模型
CN110161375A (zh) 一种基于分布电阻参数的高压直流输电线路计算模型
CN105372521B (zh) 基于配电网物理模型中的线路零序电流模拟与检测方法
CN104502751B (zh) 一种获取gis装置外壳瞬态电位抬升的仿真电路模型
CN108761184B (zh) 一种基于雷电冲击的铁塔电位分布及阻抗特性测试方法
CN107290624B (zh) 一种适用于非有效接地配电网的三相配电线路模型
CN106597161A (zh) 一种架空线路地线短路电流分流系数获取方法
CN104459330A (zh) 一种高压输电线路零序阻抗测量电路及其测量方法
CN104833883B (zh) 一种基于10‑35kV短路接地的地网测试方法
CN112415273B (zh) 一种双回非全线平行输电线路零序参数精确测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant