CN107118528A - 一种黄麻纤维增强聚乳酸复合材料的制备方法 - Google Patents

一种黄麻纤维增强聚乳酸复合材料的制备方法 Download PDF

Info

Publication number
CN107118528A
CN107118528A CN201710416289.9A CN201710416289A CN107118528A CN 107118528 A CN107118528 A CN 107118528A CN 201710416289 A CN201710416289 A CN 201710416289A CN 107118528 A CN107118528 A CN 107118528A
Authority
CN
China
Prior art keywords
fiber
silicon dioxide
dioxide gel
composite material
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710416289.9A
Other languages
English (en)
Inventor
王维明
温作强
董爱学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201710416289.9A priority Critical patent/CN107118528A/zh
Publication of CN107118528A publication Critical patent/CN107118528A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • C08J2497/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于,包括以下步骤:纤维粉碎——煮练——二氧化硅溶胶处理——制备改性麻纤维聚乳酸复合材料,本发明采用将纤维粉碎后再进行改性,有利于均匀煮练,同时可以有效减少纤维在与聚乳酸混合造粒时因打断而产生亲水性截面,从而改善纤维在聚乳酸中的分散性和界面相容性;而通过二氧化硅溶胶表面改性处理,得到粗糙的疏水表面,不仅与PLA界面相容性好,而且可产生良好的机械钉锚作用,提高界面粘结强度。

Description

一种黄麻纤维增强聚乳酸复合材料的制备方法
技术领域:
本发明属于复合材料制造领域,具体涉及一种改性麻纤维聚乳酸复合材料的制备方法。
背景技术:
纤维增强复合材料因比重小、比强度和比模量大等优异性能,被广泛应用于航天航空、国防、交通、体育等领域。近年来,随着人们环保意识的不断提高及石化资源的日益枯竭,传统以石化资源为原料的人造纤维(如玻璃纤维、芳纶和碳纤维等)增强复合材料的弊端日益显现。植物纤维是一种生物可降解的可再生资源,在很多应用领域中正逐步取代人造纤维成为聚合物基体最主要的增强材料。前期研究发现,天然植物纤维因具有较强的吸湿性和极性,与非极性聚合物基体界面相容性和粘结性较差,而且容易聚集形成富纤维区,对复合材料的机械强度及强度分布产生严重影响。作为增强体与基体连接的“桥梁”,界面的微观结构与结合性能决定着复合材料的整体性能,复合材料界面性能已成为纤维增强复合材料领域的研究热点。
目前,通过处理降低纤维表面羟基含量,以疏水性基团取代亲水性基团,以此改善纤维与树脂基体间界面相容性的主要方法。至今,科研工作者已采用物理法(如热处理、等离子处理等)和化学法(如碱处理、乙酰化处理、表面接枝、界面偶联等)对纤维表面进行改性,一定程度上改善了纤维与树脂间的相容性,但结果表明单一的表面疏水性改性对界面粘结强度的提高具有一定的局限性。
Li等通过单纤维拔出试验研究了纤维表面处理对界面剪切强度的影响,发现,经过硅烷处理的剑麻纤维拔出时的力-位移曲线在力达到最大后出现了急剧下降,发生界面脱粘现象,而经过高锰酸钾和过氧化二异丙苯处理纤维表面比较粗糙,起到了机械钉锚作用,拔出时力-位移曲线达到最大后平稳下降。由此可见,在纤维表面构建疏水性粗糙微观结构,可有效改善纤维与树脂间的界面相容性和粘结性能。
通过硅烷偶联剂对纳米二氧化硅(SiO2)溶胶处理纤维表面进行修饰,可在纤维表面构筑一种疏水性微纳米粗糙结构,目前主要用于超疏水纤维制品的制备。在复合材料研究中发现,纳米二氧化硅溶胶处理可以赋予纤维良好的疏水性,但粗糙度较小,致使在复合材料中的机械钉锚作用较弱。此外,在二氧化硅溶胶处理后,而未发生完全缩合时,浸渍碱液,不仅有利于缩合反应而进一步减少表面羟基含量,而且二氧化硅溶胶在快速缩合过程中在纤维表面形成更明显的粗糙结构,进而增强机械钉锚作用。
前期研究发现,二氧化硅溶胶改性工艺纤维或纺织品适合热压成型法制备增强复合材料,而不适合注塑成型法。这是因为纤维在与聚乳酸复合时会被打断,断面疏水性较差。
发明内容:
本发明的目的在于提供一种黄麻纤维增强聚乳酸复合材料的制备方法,本发明工艺简单、条件易控制,改性麻纤维与聚乳酸具有良好的界面相容性和粘结性能,制取的复合材料增强效果显著、成本较低。
为达到上述目的,本发明的技术方案是:
一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于,包括以下步骤:
(1)纤维粉碎:
采用粉碎机对束状黄麻纤维进行粉碎处理;
(2)煮练:
室温条件下,依次加入10-20g/L的氢氧化钠、5-10g/L过氧化氢、3-5g/L的硅酸钠、1-3g/L的渗透剂JFC,重量浴比为1:10-20,以1-3℃/min升温至80-100℃,保温90-180min,水洗,酸洗至中性,水洗,脱水;
(3)二氧化硅溶胶处理
①制备二氧化硅溶胶
反应液组成:10-50g/L前驱体、0.1-0.5g/L十二烷基苯磺酸钠、1-5g/L盐酸(质量浓度为36.5%)。
反应条件:将十二烷基苯磺酸钠加入到1-5g/L盐酸水溶液中,在30℃条件下搅拌,使十二烷基苯磺酸钠充分溶解,在20-30min内逐渐加入前驱体,前驱体加完之后,继续搅拌30-60min,接着以1-3℃/min升温至50-70℃,在搅拌的条件下反应3-6h。
前驱体为:硅酸四乙酯、甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷中的一种或几种的混合物。
②纤维改性
用质量浓度为10%的氢氧化钠溶液将二氧化硅溶胶调至pH值为5-6,在30-50℃下,将黄麻浸于二氧化硅溶胶中保温40-60min,脱水至带液率为100-150%,80-100℃条件下烘干,于室温下将二氧化硅溶胶处理的黄麻浸于0.5-2g/L的氢氧化钠溶液中处理1-5min,脱水至带液率为100-150%,80-100℃条件下烘20-30min,120-150℃焙烘10-20min,水洗至中性,80-100℃烘干。
(4)制备改性麻纤维聚乳酸复合材料:
将步骤(3)处理后的麻纤维和聚乳酸在80-100℃烘燥2-4h去除水分,再将麻纤维、聚乳酸、抗氧剂按照比例混合在双螺杆挤出机中进行复合挤出,冷却、切粒,重复2-3次,得到改性麻纤维聚乳酸复合材料;其中:螺杆转速为60-80rpm,挤出温度为190-200℃;各组成的重量百分比为:改性麻纤维10-30%,抗氧剂1-3%,其余为聚乳酸,总重量满足100%。
进一步的设置在于:
步骤(3)中,前驱体选择甲基三甲氧基硅烷与乙基三甲氧基硅烷的混合物。
步骤(3)中,制备的二氧化硅溶胶粒径为50~100nm。
步骤(3)中,脱水至带液率为130%。
步骤(3)中,将二氧化硅溶胶处理的黄麻浸于浓度为1.0g/L氢氧化钠溶液中处理5分钟。
本发明采用的原理如下:
(1)纤维粉碎:
将束状黄麻纤维粉碎,有利于均匀煮练,同时可以有效减少纤维在与聚乳酸混合造粒时因打断而产生亲水性界面,从而改善纤维在聚乳酸中的分散性和界面相容性。
(2)煮练:
黄麻纤维含有20-40%的果胶、木质素、半纤维素、色素等非纤维素物质,这些物质覆盖在纤维表面,这样的麻纤维表面光滑、色泽不均一。在氢氧化钠和过氧化氢处理时,通过条件控制,可以去除覆盖于纤维表面的非纤维素物质,使工艺纤维表面产生沟槽,有利于制备增强复合材料时产生机械钉锚作用,同时预处理可以赋予纤维均一的色泽。
(2)二氧化硅溶胶pH值调节:
前驱体的有效水解是制备二氧化硅溶胶的基础,酸性调节有利于前驱体的水解。然而,作为纤维素纤维的黄麻纤维耐酸性较差。将二氧化硅溶胶pH值调节至5-6,既不会导致溶胶粒子的急剧缩合,也不会对纤维强度造成明显的影响。
(3)浸渍碱液
碱性条件有利于硅羟基(Si-OH)的缩合反应,提高缩合程度,改善纤维的疏水性。此外,浸渍碱液后,由于缩合速度加快,二氧化硅溶胶薄膜表面会形成轻微的裂痕,进一步提高聚乳酸在纤维表面的械钉锚作用。
本发明的有益效果是:
通过使用本发明得到的一种黄麻纤维增强聚乳酸复合材料的制备方法,与现有技术相比,具有以下突出优点和积极效果:
(1)工艺简单,工艺参数稳定易控制;
(2)纤维改性方法对纤维力学性能影响小;
(3)采用二氧化硅溶胶表面改性处理,改性麻纤维与聚乳酸具有优良的界面相容性,
分散性好;
(4)改性麻纤维与聚乳酸界面粘结力强;
(5)制取的复合材料增强效果显著。
以下结合具体实施方式对本发明做进一步说明。
附图说明:
图1为纤维切断再进行溶胶改性的复合材料拉断截面结构;
图2为纤维粉碎后再进行溶胶改性的复合材料拉断截面结构;
图3为采用本发明煮练工艺处理后的纤维表面状态图:
图4为采用二氧化硅溶胶未浸碱处理后纤维表面结构图:
图5为采用本发明二氧化硅溶胶改性处理后纤维表面结构图。
具体实施方式:
本发明的一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于,包括以下步骤:
(1)纤维粉碎:
采用粉碎机对束状黄麻纤维进行粉碎处理。不同步骤进行粉碎处理对纤维吸湿性及其与PLA界面相容性的影响分别见表1和图1-2所示。
表1、不同处理方法对纤维吸湿性的影响。
如表1所示:方法2处理的纤维的吸湿性显著低于方法1处理的纤维。这是因为二氧化硅溶胶改性主要发生在纤维表面,改性后,再进行粉碎的纤维两端仍不具备疏水性。
如图1‐2所示,检测粉碎对纤维与PLA界面相容性的影响,图1为纤维切断再改性黄麻/PLA复合材料的拉断截面结构,由图1可以看出,束状改性黄麻纤维在PLA中发生聚集,集中分布在小范围内,且截面具有深而宽的沟槽,这些沟槽是因为纤维与PLA界面相容性较差,在熔融状态进行注塑时,纤维与PLA之间产生滑移所致。而图2中,纤维粉碎后再进行改性,是以单根纤维状分布在PLA中,且断裂解截面无明显的沟槽存在。
由此可见:将纤维粉碎后再进行改性,有利于均匀煮练,同时可以有效减少纤维在与聚乳酸混合造粒时因打断而产生亲水性截面,从而改善纤维在聚乳酸中的分散性和界面相容性。
(2)煮练:
室温条件下,依次加入10-20g/L的氢氧化钠、5-10g/L过氧化氢、3-5g/L的硅酸钠、1-3g/L的渗透剂JFC,重量浴比为1:10-20,以1-3℃/min升温至80-100℃,保温90-180min,水洗,酸洗至中性,水洗,脱水;
如前所述,传统的采用沤制切断再进行碱处理,由于根部纤维、中部纤维和梢部纤维中胶质含量不同,因此,会造成不同部位纤维的强度不匀,致使采用不同部位纤维制备的复合材料的强度存在显著差异。
本发明采取将黄麻纤维进行粉碎,根部、中部和梢部纤维能够均匀混合,然后进行煮练处理,并调整煮练处理工艺参数,从而使得复合材料的强度均匀一致。具体如表2所示:
表2、不同处理工艺对麻纤维性能的影响。
注:在相同的条件下,采用二氧化硅溶胶对工艺1和工艺2处理的纤维进行改性,同时采用相同的工艺制备纤维/PLA复合材料。
如表2所示:
比较工艺1和工艺2可知:采用工艺1处理时,梢部、中部和根部纤维增强复合材料的强度存在显著差异,这是因为,根部纤维、中部纤维和梢部纤维中胶质含量不同,其中根部纤维含胶质量最多,梢部最少。在化学助剂用量和工艺参数相同时,不同部位的纤维强度存在差异,致使复合材料的强度存在差异。此外,表2表明,粉碎后再进行改性,制备的复合材料的强度显著高于沤制切断再进行改性的纤维植被的复合材料,这是因为粉碎后再进行改性的纤维与PLA之间的界面相容性和粘结强力较好。
此外,采用工艺2处理:通过调整煮练工艺,尤其是在氢氧化钠和过氧化氢处理时,通过条件控制,可以有效去除覆盖于纤维表面的非纤维素物质,使工艺纤维表面产生沟槽(如图3所示),有利于制备增强复合材料时产生机械钉锚作用,同时预处理可以赋予纤维均一的色泽。
(3)二氧化硅溶胶处理:
①制备二氧化硅溶胶:
反应液组成:10-50g/L前驱体、0.1-0.5g/L十二烷基苯磺酸钠、1-5g/L盐酸(质量浓度为36.5%)。
反应条件:将十二烷基苯磺酸钠加入到1-5g/L盐酸水溶液中,在30℃条件下搅拌,使十二烷基苯磺酸钠充分溶解,在20-30min内逐渐加入前驱体,前驱体加完之后,继续搅拌30-60min,接着以1-3℃/min升温至50-70℃,在搅拌的条件下反应3-6h。
前驱体为:硅酸四乙酯、甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷中的一种或几种的混合物。
②纤维改性:
用质量浓度为10%的氢氧化钠溶液将二氧化硅溶胶调至pH值为5-6,在30-50℃下,将黄麻浸于二氧化硅溶胶中保温40-60min,脱水至带液率为100-150%,80-100℃条件下烘干,于室温下将二氧化硅溶胶处理的黄麻浸于0.5-2g/L的氢氧化钠溶液中处理1-5min,脱水至带液率为100-150%,80-100℃条件下烘20-30min,120-150℃焙烘10-20min,水洗至中性,80-100℃烘干。
表3、不同改性方法处理的黄麻纤维性能对照
由表3可见:
乙酰化处理纤维的吸湿性较大,二氧化硅溶胶改性纤维的吸湿性与防水剂改性纤维的相近,这是因为,乙酰化处理是对纤维中的羟基进行酯化,不仅难以对所有羟基进行酯化,而且酯键的疏水性有限,而防水剂改性与二氧化硅溶胶改性均在纤维表面形成一层疏水性薄膜,所以改性纤维的疏水性较好。
乙酰化改性纤维增强PLA复合材料的强度最小,二氧化硅溶胶改性纤维增强复合材料的强度最大。这是因为,纤维表面的疏水性和形态结构是影响纤维增强复合材料强度的两个主要因素。乙酰化改性纤维不仅疏水性较弱,而且乙酰化是在酸性条件下进行的,而纤维素在酸性条件下易水解,对纤维强度的损伤最为严重,所以乙酰化改性纤维增强复合材料的强度最小。
如图4、图5所示,防水剂改性虽能赋予纤维较低的吸水性,但形成的疏水性薄膜表面光滑,而二氧化硅溶胶表面改性处理,得到的是粗糙的疏水表面,不仅与PLA界面相容性好,而且可产生良好的机械钉锚作用,提高界面粘结强度。
纤维表面结构对复合材料的机械强度起着决定性作用,而影响改性纤维表面结构的4个主要因素有前驱体中疏水基团的大小、溶胶粒径的大小(通过调整前驱体用量、反应温度、反应时间等进行控制)、附着于纤维表面的二氧化硅溶胶含量(通过调整浸渍时间、前驱体浓度、带液率等进行控制)和氢氧化钠浓度。上述4个主要因素对纤维吸湿性和复合材料机械强度的影响规律见表4。
表4、不同处理工艺对纤维吸湿性和复合材料机械强度的影响
注:表中数据均为单因素研究数据,即研究某一因素时,只改变该因素的工艺条件,其他所有因素的工艺条件相同。
如表4所示:
a、不同前驱体制备的二氧化硅溶胶,对纤维的吸湿性和复合材料机械强度具有明显的影响。这可能是因为,硅酸四乙酯制备的二氧化硅溶胶不含有疏水性烷基,用其改性的纤维的吸湿性较好,而复合材料的强度偏小。烷基三甲氧基硅烷制备的二氧化硅溶胶含有疏水性烷基,可以改善纤维的疏水性,同时疏水性烷基与PLA具有良好的相容性。烷基越大,疏水性越好,但溶胶粒径也越大。从表4数据可以看出,前驱体选择甲基三甲氧基硅烷与乙基三甲氧基硅烷的混合物时,复合材料的性能最佳。
b、二氧化硅溶胶粒径对纤维吸湿性和复合材料的机械强度具有明显的影响。这可能是因为,溶胶粒径较小或较大时,在碱性条件下缩合容易产生裂痕,而形成的薄膜未能将纤维表面完全包覆。表4表明,二氧化硅溶胶为50~100nm时,效果最佳。
c、带液率越大,吸附于纤维上的溶胶量越多。当带液率较小时,二氧化硅溶胶在碱性条件下缩合,容易产生裂痕,而不能将纤维表面完全包覆,从而影响纤维吸湿性和复合材料的强度。当吸附于纤维上的溶胶足以在纤维表面形成致密的粗糙薄膜后,继续增大带液率,不会进一步改善纤维吸湿性和复合材料的强度。表4表明,130%的带液率已能满足要求。
d、表4表明,氢氧化钠浓度为1.0g/L左右时,处理效果最佳。这是因为,氢氧化钠浓度较低时,二氧化硅溶胶缩合速度较慢,在纤维表面形成的薄膜较平滑;氢氧化钠浓度偏大时,因缩合速度过快而产生裂痕,部分纤维表面并未被二氧化硅溶胶缩合薄膜包覆。
由此可见,纤维表面疏水性和粗糙程度均对黄麻纤维增强复合材料机械强度产生显著影响。

Claims (5)

1.一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于,包括以下步骤:
(1)纤维粉碎:
采用粉碎机对束状黄麻纤维进行粉碎处理;
(2)煮练:
室温条件下,依次加入10-20g/L的氢氧化钠、5-10g/L过氧化氢、 3-5g/L的硅酸钠、1-3g/L的渗透剂JFC,重量浴比为1:10-20,以1-3℃/min升温至80-100℃,保温90-180min,水洗,酸洗至中性,水洗,脱水;
(3)二氧化硅溶胶处理:
制备二氧化硅溶胶:
反应液组成:10-50g/L前驱体、0.1-0.5g/L十二烷基苯磺酸钠、1-5g/L盐酸;
反应条件:将十二烷基苯磺酸钠加入到1-5g/L盐酸水溶液中,在30℃条件下搅拌,使十二烷基苯磺酸钠充分溶解,在20-30min内逐渐加入前驱体,前驱体加完之后,继续搅拌30-60min,接着以1-3℃/min升温至50-70℃,在搅拌的条件下反应3-6h;
前驱体为:硅酸四乙酯、甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷中的一种或几种;
纤维改性:
用质量浓度为10%的氢氧化钠溶液将二氧化硅溶胶调至pH值为5-6,在30-50℃下,将黄麻浸于二氧化硅溶胶中保温40-60min,脱水至带液率为100-150%,80-100℃条件下烘干,于室温下将二氧化硅溶胶处理的黄麻浸于0.5-2g/L的氢氧化钠溶液中处理1-5min,脱水至带液率为100-150%,80-100℃条件下烘20-30min,120-150℃焙烘10-20min,水洗至中性,80-100℃烘干;
(4)制备改性麻纤维聚乳酸复合材料:
将步骤(3)处理后的麻纤维和聚乳酸在80-100℃烘燥2-4h去除水分,再将麻纤维、聚乳酸、抗氧剂按照比例混合在双螺杆挤出机中进行复合挤出、冷却、切粒,重复2-3次,得到改性麻纤维聚乳酸复合材料;其中:螺杆转速为60-80rpm,挤出温度为190-200℃;各组成的重量百分比为:改性麻纤维10-30%,抗氧剂1-3%,其余为聚乳酸,总重量满足100%。
2.根据权利要求1所述的一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于:步骤(3)中,前驱体选择甲基三甲氧基硅烷与乙基三甲氧基硅烷的混合物。
3.根据权利要求1所述的一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于:步骤(3)中,制备的二氧化硅溶胶粒径为50~100nm。
4.根据权利要求1所述的一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于:步骤(3)中,脱水至带液率为130%。
5.根据权利要求1所述的一种黄麻纤维增强聚乳酸复合材料的制备方法,其特征在于:步骤(3)中,将二氧化硅溶胶处理的黄麻浸于浓度为1.0g/L氢氧化钠溶液中处理5分钟。
CN201710416289.9A 2017-06-06 2017-06-06 一种黄麻纤维增强聚乳酸复合材料的制备方法 Pending CN107118528A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710416289.9A CN107118528A (zh) 2017-06-06 2017-06-06 一种黄麻纤维增强聚乳酸复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710416289.9A CN107118528A (zh) 2017-06-06 2017-06-06 一种黄麻纤维增强聚乳酸复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107118528A true CN107118528A (zh) 2017-09-01

Family

ID=59729036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710416289.9A Pending CN107118528A (zh) 2017-06-06 2017-06-06 一种黄麻纤维增强聚乳酸复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107118528A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060577A (zh) * 2017-12-19 2018-05-22 绍兴文理学院 一种麻纤维增强树脂基复合材料的制备方法
CN108084677A (zh) * 2017-12-19 2018-05-29 绍兴文理学院 一种耐热麻纤维增强聚乳酸复合材料的制备方法
CN109233187A (zh) * 2018-09-20 2019-01-18 广州市拿火信息科技有限公司 Abs复合材料及其制备方法和应用
CN111019308A (zh) * 2019-12-12 2020-04-17 万卓(武汉)新材料有限公司 一种隔热型pla复合塑料瓶及其制备方法
CN111691182A (zh) * 2020-07-13 2020-09-22 张万玲 一种植物纤维的表面处理工艺
CN113263791A (zh) * 2021-04-21 2021-08-17 苏州大学 改性纤维增强聚乳酸复合材料及其制备方法
CN114575039A (zh) * 2022-02-21 2022-06-03 台州益普高分子材料有限公司 一种无反弹针刺无纺布及其制备方法
CN115160750A (zh) * 2022-07-26 2022-10-11 扬州丽华汽车内饰件有限公司 一种环保可降解黄麻纤维增强聚乳酸复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026920A1 (en) * 2014-08-21 2016-02-25 Styrolution Group Gmbh Polylactic acid composites with natural fibers
CN105670250A (zh) * 2016-01-28 2016-06-15 绍兴文理学院 一种改性麻纤维聚乳酸复合材料的制备方法
CN105968751A (zh) * 2016-03-01 2016-09-28 安徽猛牛彩印包装有限公司 一种具有保鲜作用的包装用全降解塑料薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026920A1 (en) * 2014-08-21 2016-02-25 Styrolution Group Gmbh Polylactic acid composites with natural fibers
CN105670250A (zh) * 2016-01-28 2016-06-15 绍兴文理学院 一种改性麻纤维聚乳酸复合材料的制备方法
CN105968751A (zh) * 2016-03-01 2016-09-28 安徽猛牛彩印包装有限公司 一种具有保鲜作用的包装用全降解塑料薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭宁: ""电化学沉积法SiO2水溶胶织物表面疏水性能研究"", 《中国优秀硕士学位论文数据库 工程科技I辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060577A (zh) * 2017-12-19 2018-05-22 绍兴文理学院 一种麻纤维增强树脂基复合材料的制备方法
CN108084677A (zh) * 2017-12-19 2018-05-29 绍兴文理学院 一种耐热麻纤维增强聚乳酸复合材料的制备方法
CN109233187A (zh) * 2018-09-20 2019-01-18 广州市拿火信息科技有限公司 Abs复合材料及其制备方法和应用
CN111019308A (zh) * 2019-12-12 2020-04-17 万卓(武汉)新材料有限公司 一种隔热型pla复合塑料瓶及其制备方法
CN111019308B (zh) * 2019-12-12 2022-08-23 万卓(武汉)新材料有限公司 一种隔热型pla复合塑料瓶及其制备方法
CN111691182A (zh) * 2020-07-13 2020-09-22 张万玲 一种植物纤维的表面处理工艺
CN113263791A (zh) * 2021-04-21 2021-08-17 苏州大学 改性纤维增强聚乳酸复合材料及其制备方法
CN114575039A (zh) * 2022-02-21 2022-06-03 台州益普高分子材料有限公司 一种无反弹针刺无纺布及其制备方法
CN114575039B (zh) * 2022-02-21 2023-08-18 台州益普高分子材料有限公司 一种无反弹针刺无纺布及其制备方法
CN115160750A (zh) * 2022-07-26 2022-10-11 扬州丽华汽车内饰件有限公司 一种环保可降解黄麻纤维增强聚乳酸复合材料及其制备方法
CN115160750B (zh) * 2022-07-26 2024-04-02 扬州丽华汽车内饰件有限公司 一种环保可降解黄麻纤维增强聚乳酸复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107118528A (zh) 一种黄麻纤维增强聚乳酸复合材料的制备方法
CN107236267A (zh) 一种表面改性黄麻聚乳酸复合材料的制备方法
CN107129669A (zh) 一种高界面粘结强度黄麻聚乳酸复合材料的制备方法
Prasanna Venkatesh et al. Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites
CN105670250B (zh) 一种改性麻纤维聚乳酸复合材料的制备方法
CN102277777B (zh) 一种天然纤维/纳米SiO2复合材料纸的制备方法及其所使用的水乳液
CN105671937A (zh) 一种用作环保型复合材料增强体的苎麻纤维的改性方法
CN108977045B (zh) 纳米纤维素分散石墨烯化学改性水性木器涂料的方法
CN109054323B (zh) 木质素/微晶纤维素复合物、增强聚乳酸3d打印材料及其制备方法
CN104562636B (zh) 表面接枝纳米二氧化钛的连续亚麻纤维束及其制备方法
CN105541126A (zh) 树脂相容型玻璃纤维细纱浸润剂及其制备方法
CN107474343A (zh) 一锅法制备海鞘纳米微晶纤维素/橡胶纳米复合材料的方法
CN102504558B (zh) 一种蒸汽爆破制备碳系粒子包覆植物纤维填料的方法
CN109667191A (zh) 用于纸质保护的环氧环己烷改性壳聚糖加固液及应用方法
Liu et al. Study on wood chips modification and its application in wood-cement composites
CN108084677A (zh) 一种耐热麻纤维增强聚乳酸复合材料的制备方法
CN110643102A (zh) 一种竹纤维增强热塑性树脂复合材料及其制备方法
CN104497362B (zh) 一种纤维素/纳米氮化硅复合膜的制备方法
CN109988359A (zh) 一种竹纤维/聚丙烯复合材料的制备方法
Gironès et al. High-performance-tensile-strength alpha-grass reinforced starch-based fully biodegradable composites
CN102604453B (zh) 一种木器纳米复合专用封闭漆及其制备方法
CN108060577A (zh) 一种麻纤维增强树脂基复合材料的制备方法
CN113957741B (zh) 一种钛复合材料及其在原纸制备中的用途
CN103518017A (zh) 生产用于生产复合材料的含纤维素物质的方法
CN102877377B (zh) 一种含有玻璃纤维的滤纸的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170901

RJ01 Rejection of invention patent application after publication