CN107110905A - 灵敏dc电流不平衡检测器和校准方法 - Google Patents

灵敏dc电流不平衡检测器和校准方法 Download PDF

Info

Publication number
CN107110905A
CN107110905A CN201580072839.9A CN201580072839A CN107110905A CN 107110905 A CN107110905 A CN 107110905A CN 201580072839 A CN201580072839 A CN 201580072839A CN 107110905 A CN107110905 A CN 107110905A
Authority
CN
China
Prior art keywords
sensor
coil
magnetic field
current leakage
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580072839.9A
Other languages
English (en)
Inventor
K.汤姆金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pram Underground Equipment Manufacturing Co ltd
Baker Hughes Energy Oilfield Technology Inc
Original Assignee
Sondex Wireline Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sondex Wireline Ltd filed Critical Sondex Wireline Ltd
Publication of CN107110905A publication Critical patent/CN107110905A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/008Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/003Fault detection by injection of an auxiliary voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种电流泄漏检测器(100)被配置用于检测电源和负载之间的电流泄漏。电流泄漏检测器(100)包括第一传感线圈(122)和在第一传感线圈(122)的对面安置的第二传感线圈(124)。电流泄漏检测器(100)进一步包括接近第一传感线圈(122)和第二传感线圈(124)的磁场传感器(126),并且磁场传感器具有响应范围。电流泄漏检测器还包括被配置成调节磁场传感器的响应范围的偏置电路(132)。一种用于检测电流泄漏的方法包括提供第一传感线圈(122)和第二传感线圈(124)的步骤。所述方法继续提供接近第一和第二传感线圈的磁场传感器以及提供偏置电路的步骤。所述方法继续利用偏置电路来将磁场传感器的响应置于优选的响应范围内的步骤。

Description

灵敏DC电流不平衡检测器和校准方法
技术领域
本发明通常涉及电气装置的领域,并且更具体地,但是并非作为限制地,涉及电流泄漏检测器和校准的方法。
背景技术
在许多常规的电路中,电流从电源流动到负载并且流回到电源。典型地通过使用绝缘导体和电气部件来实现预期的电流通路。如果绝缘失败或者电路以其它方式被损害,电流可“泄漏”进装置的非计划中的区域。泄漏电流是逸出预期的电路通道并且通过非计划中的路线返回到电源的电流。
泄漏电流可以从电路行进入导电外壳或面板。如果外壳或面板被适当地接地,则泄漏电流被转向地面。然而,在某些情况下,外壳或面板可能没有被接地或者地面可能不足以安全地携带泄漏电流。在这些情形下,接触到外壳或面板的任何人可能会遭受电击。
现有技术的DC电流泄漏检测器往往会难以校准并且缺乏灵敏度。现有技术的电流泄漏检测器的缺陷使电气设备的操作者易遭受潜在的伤害。因此,存在有对于可以在操作者接触到危险设备之前或者警告操作者电流泄漏事件或者移去电源(或者两者)的改进的电流泄漏检测器的需要。
发明内容
在目前优选的实施例中,电流泄漏检测器被配置用于检测电源和负载之间的电流泄漏。电流泄漏检测器包括第一传感线圈和与第一传感线圈相对布置的第二传感线圈。电流泄漏检测器进一步包括接近第一传感线圈和第二传感线圈的磁场传感器,并且磁场传感器具有响应范围。电流泄漏检测器还包括被配置成调节磁场传感器的响应范围的偏置电路。
在另一方面,优选的实施例包括电动装置,所述电动装置包括电源、负载以及用于检测电源和负载之间的电流泄漏的电流泄漏检测器。电流泄漏检测器包括第一传感线圈和与第一传感线圈相对布置的第二传感线圈。电流泄漏检测器进一步包括接近第一传感线圈和第二传感线圈的磁场传感器,并且磁场传感器具有响应范围。电流泄漏检测器还包括被配置成调节磁场传感器的响应范围的偏置电路。
在又一方面,优选的实施例包括用于检测电源和被连接到电源的负载之间的电流泄漏的方法。所述方法包括在电源和负载之间提供第一传感线圈以及提供与负载和电源之间的第一传感线圈相对布置的第二传感线圈的步骤。所述方法继续提供接近第一和第二传感线圈的磁场传感器以及提供偏置电路的步骤。所述方法继续利用偏置电路来将磁场传感器的响应置于优选的响应范围内的步骤。
附图说明
图1是根据优选的实施例构造的并且在电潜泵送系统内安装的电流泄漏检测器的描绘。
图2是图1的电流泄漏检测器的电路图。
图3是用于校准图1的电流泄漏检测器的方法的过程流程图。
具体实施方式
根据本发明的优选的实施例,图1示出了结合在泵送系统102内的电流泄漏检测器100的描绘。将会意识到,电流泄漏检测器100可以被结合在任何电气设备内并且电流泄漏检测器100结合在泵送系统102内的讨论只是电流泄漏检测器100的目前优选的应用。
泵送系统102包括由电动机106驱动的潜水泵104。当被通电时,马达106移动泵104,所述泵104将井眼108中的流体用力推到表面。马达106配备有来自表面安装的电源110的电功率。电源110可以包括发电机和到电网的连接。泵送系统102进一步包括调节和控制提供给马达106的功率的马达驱动112和变压器114。以这种方式,可以通过马达驱动112、变压器114和电源110来控制并影响马达106的操作特征。尽管泵送系统102被描绘为用来从地下水库回收流体的潜水系统,但是将会意识到,泵送系统102还可以包括在表面设施之间移动流体的表面泵送系统。
第一电流泄漏检测器100优选地被结合在马达驱动112内(如图1中所示)并且被使用来监控被传到变压器114的电流。第二电流泄漏检测器100可以被放置在变压器114内并且被使用来监控被传到马达106的电流。每个电流泄漏检测器100被配置成监控传入和传出负载的电流。在图1中所描绘的示范实施例中,负载或者是变压器114或者是电动机106。将会意识到,由电流泄漏检测器100观测的负载可以是从电源汲取电流的任何电负载。将会进一步意识到,在优选的实施例中可以使用附加的或者更少的电流泄漏检测器100。
转向图2,在其中示出的是电流泄漏检测器100的目前优选的实施例的电路图。在优选的实施例中,电流泄漏检测器100包括电源116、负载118、线圈铁心120、第一传感线圈122、第二传感线圈124、巨磁阻(GMR)传感器126、传感器放大器128、传感器模数转换器(ADC)130、偏置线圈132、偏置线圈驱动器134、控制单元136和开关138。在图1中的电流泄漏检测器100的示范应用中,负载118是马达106和变压器114。使用电源116来在开关138被闭合时向负载118提供功率。电源116还优选地被配置成直接或间接向控制单元136、偏置线圈驱动器134、传感器放大器128和传感器ADC提供功率。
电流从电源116通过第一传感线圈122被引导到负载118。电流从负载118通过第二传感线圈124返回到电源116。第一和第二传感线圈122、124各自缠绕线圈铁心120的相对的侧。在优选的实施例中,线圈铁心120形成为具有“块C”形状的整体软铁磁芯。第一和第二传感线圈122、124具有基本上相同的匝数并且在铁心上反相缠绕,但是不必在线圈铁心120的相对的铁心柱(legs)上,使得当通过第一和第二传感线圈122、124的电流相同时由第一和第二传感线圈122、124产生的净磁矫顽力基本上被消除。
如果在负载118与第一和第二传感线圈122、124之间存在泄漏电流,则通过第一和第二传感线圈122、124的电流将会不相等并且由第一和第二传感线圈122、124生成的矫顽磁力将不会被抵消。GMR传感器126被磁耦合到第一和第二传感线圈122、124并且被配置成响应于由第一和第二传感线圈122、124中的电流不平衡生成的矫顽磁力的存在所生成的磁场而输出模拟信号。
由第一和第二传感线圈122、124生成的矫顽磁力所生成的磁场以及由GMR传感器126生成的响应信号两者都是非常非线性的。如果由第一和第二传感线圈122、124生成的矫顽磁力是小的,GMR传感器126可不产生有代表性的输出信号。信号可不成比例地小并且可由不正确的极性来表征。
为了改进GMR传感器126的响应,电流泄漏检测器100利用偏置线圈132来在GMR传感器126处提供基线磁场。偏置线圈132选择性地施加将由GMR传感器126提供的响应移入更可预测且有用的范围的偏置磁场。由偏置的基线范围,GMR传感器126可以更精确且鲁棒地用信号通知第一和第二传感线圈122、124之间的场不平衡。为了将GMR传感器126的响应置于偏置的基线范围内,电流泄漏检测器100包括偏置电路140。偏置电路140可以被表征为GMR传感器126、传感器放大器128、传感器ADC 130、偏置线圈132、偏置线圈驱动器134和控制单元136的集合。
通常,控制单元136将控制信号提供给偏置线圈驱动器134。偏置线圈驱动器134然后将响应驱动电流施加于偏置线圈132。偏置线圈132接着产生被GMR传感器126拾取的偏置磁场。GMR传感器126产生表示偏置磁场的信号。将由GMR传感器126输出的信号提供给传感器放大器128并且然后提供给传感器ADC 130。接着将数字化的信号传回到控制单元136以完成偏置电路140回路。
在优选的实施例中,偏置电路140被使用来利用由控制单元136执行的算法在所选择的偏置的基线范围内校准GMR传感器126。在图3中描绘了校准电流泄漏检测器100的目前优选的方法200。当控制单元136指示偏置线圈驱动器134将偏置电流(I b )发送到偏置线圈132时,方法在步骤202开始。由GMR传感器126辨认出由偏置线圈132生成的磁矫顽力所产生的磁场,并且由控制单元136登记由偏置线圈132生成的磁矫顽力所产生的磁场。在步骤204,将偏置电流(I b )调节到GMR传感器126输出最小信号(V min )的电平。通过控制单元136来记录由GMR传感器126输出的最小电压。
在步骤206,控制单元136将供给偏置线圈132的电流调节到产生可以被传感器放大器128接受的、由GMR传感器126输出的最大电压(V max )的程度。通过控制单元136来记录由GMR传感器126输出的最大电压。接下来,在步骤208,控制单元136将初始偏置电流(I b0 )设置成在GMR传感器126处产生近似于由控制单元136记录的最小电压(V min )和最大电压(V max )之间的中位值(V mid )的电压的值。由于偏置线圈132和GMR传感器126的响应中的组合的非线性,在GMR传感器126处产生中点电压(V mid )的初始偏置电流(I b0 )可不代表被用来在GMR传感器126处产生最小电压(V min )和最大电压(V max )的偏置电流之间的中位值。
在电源116被连接到负载118之前优选地执行校准电流泄漏检测器100的方法200。一旦电流泄漏检测器100被置于操作中,在步骤210,可以连续地或周期性地重新校准GMR传感器126以解决系统的变化。这样的变化可以包括例如负载118的变化以及第一和第二传感线圈处的温度变化。可以通过调节供给偏置线圈132的偏置电流(I b )来执行重新校准,以找到由GMR传感器126输出的中位电压(V mid )。
在操作中并且在已经确定了初始偏置电流(I b0 )之后,可以闭合开关138以将电流从电源116通过第一和第二传感线圈122、124引导到负载118。偏置线圈132施加初始偏置磁场以将GMR传感器126的响应置于期望的范围内,使得第一和第二传感线圈122、124之间的任何不平衡被GMR传感器126更精确地检测到并且被控制单元136报告。在优选的实施例中,如果检测到泄漏电流条件,则控制单元136触发警报或者通知。控制单元136还可以被配置成在检测到泄漏电流条件的情况下断开开关138或者以其它方式切断电源116。
将会理解,虽然在前面的描述中已经阐述了本发明的各种实施例的许多特征和优势,连同本发明的各种实施例的结构和功能的细节,但是本公开仅仅是说明性的,并且可以在细节上(尤其是与在由其中表达所附的权利要求的术语的广泛的一般含义充分表明的本发明的原理内的零件的结构和布置有关)进行变化。本领域技术人员将会意识到,本发明的教导可以被应用于其它系统,而不会背离本发明的范围和精神。

Claims (20)

1.一种电流泄漏检测器,用于检测电源和负载之间的电流泄漏,所述电流泄漏检测器包括:
第一传感线圈;
第二传感线圈,所述第二传感线圈被安置在所述第一传感线圈的对面;
磁场传感器,所述磁场传感器接近所述第一传感线圈和所述第二传感线圈,其中所述磁场传感器具有响应范围;以及
偏置电路,所述偏置电路被配置成调节所述磁场传感器的所述响应范围。
2.如权利要求1所述的电流泄漏检测器,其中所述磁场传感器是巨磁阻传感器。
3.如权利要求1或权利要求2所述的电流泄漏检测器,其中所述偏置传感器电路包括:
控制单元;
偏置线圈驱动器,所述偏置线圈驱动器能够被操作连接到所述控制单元;以及
偏置线圈,所述偏置线圈由所述偏置线圈驱动器来驱动。
4. 如权利要求3所述的电流泄漏检测器,其中所述偏置传感器电路进一步包括:
传感器放大器,其中所述传感器放大器能够被操作连接到所述磁场传感器;以及
传感器模数转换器。
5.一种电动装置,包括:
电源;
负载;以及
电流泄漏检测器,所述电流泄漏检测器用于检测所述电源和所述负载之间的电流泄漏,所述电流泄漏检测器包括:
第一传感线圈;
第二传感线圈,所述第二传感线圈被安置在所述第一传感线圈的对面;
磁场传感器,所述磁场传感器接近所述第一传感线圈和所述第二传感线圈,其中所述磁场传感器具有响应范围;以及
偏置电路,所述偏置电路被配置成调节所述磁场传感器的所述响应范围。
6.如权利要求5所述的电动装置,其中所述电流泄漏检测器的所述磁场传感器是巨磁阻传感器。
7.如权利要求5或权利要求6所述的电动装置,其中所述偏置传感器电路包括:
控制单元;
偏置线圈驱动器,所述偏置线圈驱动器能够被操作连接到所述控制单元;以及
偏置线圈,所述偏置线圈由所述偏置线圈驱动器来驱动。
8. 如权利要求5至7中的任何一项所述的电动装置,其中所述电流泄漏检测器的所述偏置传感器电路进一步包括:
传感器放大器,其中所述传感器放大器能够被操作连接到所述磁场传感器;以及
传感器模数转换器。
9.如权利要求5至8中的任何一项所述的电动装置,其中所述负载是电动机。
10.一种用于检测电源和被连接到所述电源的负载之间的电流泄漏的方法,所述方法包括以下步骤:
在所述电源和所述负载之间提供第一传感线圈;
在与所述负载和所述电源之间的所述第一传感线圈的相对位置提供第二传感线圈;
提供接近所述第一传感线圈和所述第二传感线圈的磁场传感器;
提供偏置电路;以及
利用所述偏置电路来将所述磁场传感器的所述响应置于优选的响应范围内。
11.如权利要求10所述的方法,其中提供偏置电路的所述步骤进一步包括:
提供偏置线圈;
提供偏置线圈驱动器以驱动所述偏置线圈;以及
提供控制单元以控制所述偏置线圈的所述操作。
12. 如权利要求11所述的方法,其中利用所述偏置电路的所述步骤进一步包括以下步骤:
利用所述磁场传感器来测量由所述偏置线圈产生的所述磁场;以及
调节施加于所述偏置线圈的所述电流以找到由所述磁场传感器输出的所述最小电压。
13.如权利要求12所述的方法,其中利用所述偏置电路的所述步骤进一步包括调节施加于所述偏置线圈的所述电流以找到由所述磁场传感器输出的所述最大电压的步骤。
14.如权利要求13所述的方法,其中利用所述偏置电路的所述步骤进一步包括将施加于所述偏置线圈的所述电流调节到由所述磁场传感器产生的所述电压是由所述磁场传感器输出的所述最小电压和由所述磁场传感器输出的所述最大电压之间的中位值的点的步骤。
15.如权利要求14所述的方法,其中利用所述偏置电路的所述步骤进一步包括在所述电源被连接到所述负载之前将初始偏置电流施加于所述偏置线圈。
16.如权利要求10至15中的任何一项所述的方法,进一步包括识别电流泄漏条件的步骤。
17.如权利要求16所述的方法,其中识别电流泄漏条件的所述步骤包括识别所述第一传感线圈和所述第二传感线圈之间的磁场不平衡。
18.如权利要求16所述的方法,其中所述方法进一步包括当检测到电流泄漏条件时提供警报的步骤。
19.如权利要求16所述的方法,其中所述方法进一步包括响应于检测到电流泄漏条件而自动把所述电源与所述负载断开的步骤。
20.如权利要求10至19中的任何一项所述的方法,进一步包括在利用所述偏置电路来将所述磁场传感器的所述响应置于优选的响应范围内的所述步骤之后识别电流泄漏条件的步骤。
CN201580072839.9A 2015-01-08 2015-01-08 灵敏dc电流不平衡检测器和校准方法 Pending CN107110905A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GB2015/050020 WO2016110661A1 (en) 2015-01-08 2015-01-08 Sensitive dc current imbalance detector and calibration method

Publications (1)

Publication Number Publication Date
CN107110905A true CN107110905A (zh) 2017-08-29

Family

ID=52395098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580072839.9A Pending CN107110905A (zh) 2015-01-08 2015-01-08 灵敏dc电流不平衡检测器和校准方法

Country Status (5)

Country Link
US (2) US10539603B2 (zh)
EP (1) EP3243083A1 (zh)
CN (1) CN107110905A (zh)
CA (1) CA2972702A1 (zh)
WO (1) WO2016110661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115762843A (zh) * 2022-12-01 2023-03-07 杭州旷潼量子科技有限公司 一种用于超冷原子磁场精密控制装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204453B2 (ja) * 2018-11-30 2023-01-16 株式会社東芝 電流検出装置
WO2021173164A1 (en) * 2020-02-27 2021-09-02 Power Feed-Thru Systems And Connectors Systems and methods for testing electrical properties of a downhole power cable
US11313917B2 (en) * 2020-05-13 2022-04-26 Lear Corporation Electric current sensor for detecting leakage current

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2555255A1 (de) * 1975-12-09 1977-06-16 Bbc Brown Boveri & Cie Einrichtung zur erfassung von fehlerstroemen
EP0157054A1 (en) * 1984-01-23 1985-10-09 Duraplug Electricals Limited Residual current circuit breaker
GB2181599A (en) * 1985-10-07 1987-04-23 Duraplug Elect Ltd Residual current circuit breaker
CN1215246A (zh) * 1997-10-16 1999-04-28 东芝株式会社 向电动机输出驱动电力的变频装置及其上安装的滤波装置
CN2459132Y (zh) * 2001-01-11 2001-11-14 廖正明 漏磁式电子电焊机
CN102437548A (zh) * 2011-12-30 2012-05-02 邹溪 一种零剩余电流保护电路方法及其剩余电流保护断路器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043662A (en) * 1996-09-18 2000-03-28 Alers; Glenn Baldwin Detecting defects in integrated circuits
JPH10332722A (ja) * 1997-06-02 1998-12-18 Matsushita Electric Ind Co Ltd 回転速度検出装置
US6011398A (en) * 1998-04-23 2000-01-04 Associated Research, Inc. Current-leakage tester
US6653831B2 (en) * 2001-11-20 2003-11-25 Gentex Corporation Magnetometer having a dynamically adjustable bias setting and electronic vehicle compass incorporating the same
US6984978B2 (en) * 2002-02-11 2006-01-10 Honeywell International Inc. Magnetic field sensor
US20070262779A1 (en) * 2006-05-11 2007-11-15 Lucent Technologies Inc. Detection of unbalanced power feed conditions
DE102010002060A1 (de) * 2010-02-17 2011-08-18 BSH Bosch und Siemens Hausgeräte GmbH, 81739 Netzfilter für ein Hausgerät und Hausgerät mit Netzfilter
CN102023244A (zh) * 2010-10-26 2011-04-20 江苏多维科技有限公司 独立封装的电表传感器
US8593150B2 (en) * 2010-11-10 2013-11-26 Rockwell Automation Technologies, Inc. Method and apparatus for detecting a location of ground faults in a motor/motor drive combination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2555255A1 (de) * 1975-12-09 1977-06-16 Bbc Brown Boveri & Cie Einrichtung zur erfassung von fehlerstroemen
EP0157054A1 (en) * 1984-01-23 1985-10-09 Duraplug Electricals Limited Residual current circuit breaker
GB2181599A (en) * 1985-10-07 1987-04-23 Duraplug Elect Ltd Residual current circuit breaker
CN1215246A (zh) * 1997-10-16 1999-04-28 东芝株式会社 向电动机输出驱动电力的变频装置及其上安装的滤波装置
CN2459132Y (zh) * 2001-01-11 2001-11-14 廖正明 漏磁式电子电焊机
CN102437548A (zh) * 2011-12-30 2012-05-02 邹溪 一种零剩余电流保护电路方法及其剩余电流保护断路器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115762843A (zh) * 2022-12-01 2023-03-07 杭州旷潼量子科技有限公司 一种用于超冷原子磁场精密控制装置

Also Published As

Publication number Publication date
CA2972702A1 (en) 2016-07-14
US10539603B2 (en) 2020-01-21
EP3243083A1 (en) 2017-11-15
WO2016110661A1 (en) 2016-07-14
US20200033391A1 (en) 2020-01-30
US20170356949A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
RU2394207C2 (ru) Устройство определения положения и способ определения положения упаковочного материала с магнитной меткой
CN100454024C (zh) 磁桥型电流传感器及磁桥型电流检测方法、以及用于该传感器与检测方法的磁桥
CN108401471B (zh) 感应式电力发射器
CA2828299C (en) Inductively interrogated passive sensor apparatus
CN107110905A (zh) 灵敏dc电流不平衡检测器和校准方法
JP5362713B2 (ja) 磁気抵抗複合センサにおける低周波ノイズ除去の方法
JP2008539411A5 (zh)
Koch et al. Fundamental limits to magnetic-field sensitivity of flux-gate magnetic-field sensors
JP2010508937A (ja) 磁気共鳴検査システムのクエンチ検出
JP2006266909A5 (zh)
JP2010525437A5 (zh)
Li et al. Nonlinear current detection based on magnetic modulation technology
CN105605142B (zh) 一种主被动混合隔振系统中磁悬浮作动器位移自感知方法
CN102103193A (zh) 基于庞磁电阻效应的磁感应强度测量装置及其测量方法
JP2004257904A (ja) 電流プローブ
KR102597387B1 (ko) 차량 배터리 전류 감지 시스템
Habu et al. The contactless detection of local normal transitions in superconducting coils by using Poynting’s vector method
JP6695054B2 (ja) 着磁防止装置及びこれを用いた電流検出装置
CN102881437A (zh) 一种用于检测剩余电流的电流互感器和剩余电流保护装置
WO2015070345A1 (en) Simultaneous measurement technique for line current, geomagnetically induced currents (gic) and transient currents in power systems
RU2533347C1 (ru) Устройство автономной регистрации импульсного магнитного поля
TWI644112B (zh) 用以感測電氣設備使用狀態之感測器及其感測方法
CN106996999A (zh) 电感元件、室外机控制器、空调及电感电流检测方法
JP2002333467A (ja) 磁界検出装置
JP2021156617A (ja) 水位計測装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190821

Address after: Texas, USA

Applicant after: Pram Underground Equipment Manufacturing Co.,Ltd.

Address before: louisiana

Applicant before: GE Energy Oilfield Technology, Inc.

Effective date of registration: 20190821

Address after: louisiana

Applicant after: GE Energy Oilfield Technology, Inc.

Address before: English Language Schools

Applicant before: Sondex Wireline Ltd.

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170829