CN107103584A - A kind of production high-spatial and temporal resolution NDVI weighted based on space-time method - Google Patents

A kind of production high-spatial and temporal resolution NDVI weighted based on space-time method Download PDF

Info

Publication number
CN107103584A
CN107103584A CN201710231237.4A CN201710231237A CN107103584A CN 107103584 A CN107103584 A CN 107103584A CN 201710231237 A CN201710231237 A CN 201710231237A CN 107103584 A CN107103584 A CN 107103584A
Authority
CN
China
Prior art keywords
ndvi
mrow
msub
time
increment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710231237.4A
Other languages
Chinese (zh)
Other versions
CN107103584B (en
Inventor
曹鑫
刘梦
陈晋
陈学泓
杨林清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201710231237.4A priority Critical patent/CN107103584B/en
Publication of CN107103584A publication Critical patent/CN107103584A/en
Application granted granted Critical
Publication of CN107103584B publication Critical patent/CN107103584B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明提供了一种基于时空加权的生产高时空分辨率NDVI的方法,包括:对t1时间的低空间分辨率的NDVI数据和高空间分辨率的NDVI数据以及tp时间的低空间分辨率NDVI数据通过混合像元分解以及空间插值得到高空间分辨率数据在时间上的两种NDVI增量;使用贝叶斯模型平均方法对所述两种NDVI增量进行权重组合计算,得到每个像元的NDVI综合增量;最后将NDVI综合增量加到t1时间的高空间分辨率的NDVI上即可获得所需的高时空分辨率NDVI。本发明对两种NDVI增量进行贝叶斯综合,充分利用了地理数据之间的时空关联性,为生产高时空分辨率的植被指数提供了一种行之有效的方法。

The present invention provides a kind of method based on spatio-temporal weighting of producing high spatio-temporal resolution NDVI, comprising: the NDVI data of the low spatial resolution of t1 time and the NDVI data of high spatial resolution and the low spatial resolution of t p time Two kinds of NDVI increments of high spatial resolution data in time are obtained through mixed pixel decomposition and spatial interpolation of NDVI data; the Bayesian model averaging method is used to calculate the weight combination of the two NDVI increments to obtain each image The NDVI synthesis increment of the element; finally, add the NDVI synthesis increment to the NDVI with high spatial resolution at time t 1 to obtain the required high spatio-temporal resolution NDVI. The invention performs Bayesian synthesis on two kinds of NDVI increments, fully utilizes the time-space correlation between geographic data, and provides an effective method for producing vegetation indices with high time-space resolution.

Description

一种基于时空加权的生产高时空分辨率NDVI的方法A method of producing high spatiotemporal resolution NDVI based on spatiotemporal weighting

技术领域technical field

本发明涉及一种多源遥感数据融合的方法,主要用来生产高时空分辨率的归一化植被指数(NDVI),属于时空数据融合的范畴。The invention relates to a multi-source remote sensing data fusion method, which is mainly used to produce a normalized difference vegetation index (NDVI) with high temporal and spatial resolution, and belongs to the category of temporal and spatial data fusion.

背景技术Background technique

归一化植被指数(Normalized Difference Vegetation Index,缩写为NDVI)是一种广泛使用的植被指数。NDVI数值能够反映植被的生长状况并与植被的生理参数比如叶绿素含量,含水量以及叶面积指数等有直接的联系。The Normalized Difference Vegetation Index (NDVI for short) is a widely used vegetation index. NDVI values can reflect the growth status of vegetation and are directly related to physiological parameters of vegetation such as chlorophyll content, water content and leaf area index.

CN 102831310 B公开了一种构建高空间分辨率的时间序列数据的方法,其背景技术部分对于NDVI数据的相关知识进行了详细说明,其中提及两种现有的NDVI数据:LandsatNDVI数据和MODIS NDVI数据。其中,Landsat NDVI数据中的NDVI数值的空间分辨率为30m*30m,时间分辨率为16天,而MODIS NDVI数据中的NDVI数值的最大空间分辨率为250m*250m,时间分辨率为1天。也就是说,Landsat NDVI数据具有较高的空间分辨率和较低的时间分辨率,而MODIS NDVI数据具有较低的空间分辨率和较高的时间分辨率。CN 102831310 B discloses a method for constructing high-spatial-resolution time-series data. Its background technology section describes the relevant knowledge of NDVI data in detail, and mentions two existing NDVI data: Landsat NDVI data and MODIS NDVI data data. Among them, the spatial resolution of NDVI values in Landsat NDVI data is 30m*30m, and the time resolution is 16 days, while the maximum spatial resolution of NDVI values in MODIS NDVI data is 250m*250m, and the time resolution is 1 day. That is to say, Landsat NDVI data has higher spatial resolution and lower temporal resolution, while MODIS NDVI data has lower spatial resolution and higher temporal resolution.

为了能够同时获得高空间分辨率和高时间分辨率的NDVI数据,现有技术发展出了多种对Landsat NDVI数据和MODIS NDVI数据进行融合,以获取高空间分辨率的NDVI数据的方法,主要包括三种类型:(1)基于权函数的方法;(2)基于混合像元分解的方法;(3)基于混合模型的方法。In order to obtain NDVI data with high spatial resolution and high temporal resolution at the same time, the existing technology has developed a variety of methods for fusing Landsat NDVI data and MODIS NDVI data to obtain NDVI data with high spatial resolution, mainly including Three types: (1) method based on weight function; (2) method based on mixed pixel decomposition; (3) method based on mixed model.

其中,(1)基于权函数的方法以STARFM(空间和时间自适应反射融合模型,Spatialand Temporal Adaptive Reflectance Fusion Model)为典型代表,参见Gao,F.,Masek,J.,Schwaller,M.,&Hall,F.(2006),“对Landsat与MODIS的地表反射率进行融合:预测每日的Landsat地表反射率”,电气与电子工程师学会之地球科学与遥感学报,44,2207-2218。(Gao,F.,Masek,J.,Schwaller,M.,&Hall,F.(2006).On the blending of the Landsatand MODIS surface reflectance:Predicting daily Landsat surfacereflectance.IEEE Transactions on Geoscience and Remote Sensing,44,2207-2218)。该类方法着眼于相似像元的搜索及其权重的确定,通过当前像元与周围像元在时间、空间以及光谱等特征上的相似性确定相似像元并计算对应的权重,以相似像元的平均增量作为当前像元的增量。这类方法往往在纯净度比较高的区域才有比较好的效果。Among them, (1) the weight function-based method is typically represented by STARFM (Spatial and Temporal Adaptive Reflectance Fusion Model), see Gao, F., Masek, J., Schwaller, M., & Hall , F. (2006), "Fusing Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance", IEEE Transactions on Earth Science and Remote Sensing, 44, 2207-2218. (Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflection: Predicting daily Landsat surface reflection. IEEE Transactions on Geoscience and Remote Sensing, 44, 2207 -2218). This type of method focuses on the search for similar pixels and the determination of their weights. The similarity between the current pixel and surrounding pixels in terms of time, space, and spectrum is used to determine similar pixels and calculate the corresponding weights. The average increment of is used as the increment of the current cell. This type of method often has better results in areas with higher purity.

(2)基于混合像元分解的方法以NDVI-LMGM(NDVI-线性混合生长模型,NDVILinear Mixing Growth Model)为代表,参见Rao,Y.,Zhu,X.,Chen,J.,&Wang,J.(2015),“一种升级过地使用多时相MODIS NDVI数据与Landsat TM/ETM+影像生产高时空分辨率的NDVI时序数据的方法”,遥感,7,7865-7891(Rao,Y.,Zhu,X.,Chen,J.,&Wang,J.(2015).AnImproved Method for Producing High Spatial-Resolution NDVI Time SeriesDatasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+Images.RemoteSensing,7,7865-7891)。该类方法通过混合像元分解,计算出每个像元在时间上的增量,从而得到预测时间的NDVI数据,有关该方法的具体内容也可参见前述现有技术CN 102831310B,二者实质上是相同的。这类方法对于异质性程度比较高的区域也能够有比较好的效果,但其假设土地覆盖状况不发生变化,这一点不一定能够满足。(2) The method based on mixed pixel decomposition is represented by NDVI-LMGM (NDVI-Linear Mixing Growth Model, NDVILinear Mixing Growth Model), see Rao, Y., Zhu, X., Chen, J., & Wang, J. (2015), "An upgraded method of using multi-temporal MODIS NDVI data and Landsat TM/ETM+ images to produce high temporal and spatial resolution NDVI time series data", Remote Sensing, 7, 7865-7891 (Rao, Y., Zhu, X., Chen, J., & Wang, J.(2015). An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+Images. RemoteSensing, 7, 7865-7891) . This type of method calculates the time increment of each pixel by decomposing the mixed pixels, so as to obtain the NDVI data of the predicted time. For the specific content of this method, please refer to the aforementioned prior art CN 102831310B. The two are essentially Are the same. This type of method can also have better results for areas with a relatively high degree of heterogeneity, but it assumes that the land cover status does not change, which may not be satisfied.

(3)基于混合模型的方法以FSDAF(灵活时空数据融合方法,FlexibleSpatiotemporal Data Fusion method)为代表,参见Zhu,X.,Helmer,E.H.,Gao,F.,Liu,D.,Chen,J.,&Lefsky,M.A.(2016),“一种灵活地将不同分辨率的卫星影像进行时空融合的方法”,环境遥感,172,165-177(Zhu,X.,Helmer,E.H.,Gao,F.,Liu,D.,Chen,J.,&Lefsky,M.A.(2016).A flexible spatiotemporal method for fusing satellite images withdifferent resolutions.Remote Sensing of Environment,172,165-177)。该类方法将多种模型,如权函数模型、混合像元分解模型以及空间插值模型等结合起来,计算得到高分辨率影像上每个像元的增量。这类方法往往比较复杂,但是精度相对较高,而且能够对土地覆盖变化进行一定程度的捕捉。(3) The method based on the mixed model is represented by FSDAF (Flexible Spatiotemporal Data Fusion method), see Zhu, X., Helmer, E.H., Gao, F., Liu, D., Chen, J., & Lefsky, M.A. (2016), "A method for flexible spatiotemporal fusion of satellite imagery with different resolutions", Remote Sensing of the Environment, 172, 165-177 (Zhu, X., Helmer, E.H., Gao, F., Liu , D., Chen, J., & Lefsky, M.A. (2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165-177). This type of method combines a variety of models, such as weight function model, mixed pixel decomposition model, and spatial interpolation model, to calculate the increment of each pixel on the high-resolution image. Such methods are often complex, but have relatively high precision and can capture land cover changes to a certain extent.

以上三类方法在各自适用的领域里都取得了比较好的效果。但是它们都没有考虑到使用两期低空间分辨率数据插值到高空间分辨率的方式,两期插值结果之间的增量能够从一定程度上反映像元尺度的增量,同时也包含了土地覆盖变化的信息。本发明基于贝叶斯模型平均方法将混合像元分解的增量与空间插值的增量进行综合,能够有效提高数据融合的精度。为生产高时空分辨率的NDVI提供了新的途径。The above three types of methods have achieved relatively good results in their respective applicable fields. However, none of them considered the method of using two periods of low spatial resolution data to interpolate to high spatial resolution. The increment between the two periods of interpolation results can reflect the increment of the pixel scale to a certain extent, and it also includes land Override information on changes. The invention synthesizes the increment of mixed pixel decomposition and the increment of space interpolation based on the Bayesian model averaging method, and can effectively improve the accuracy of data fusion. It provides a new way to produce NDVI with high spatio-temporal resolution.

发明内容Contents of the invention

本发明要解决的技术问题是提供一种基于时空加权的生产高时空分辨率NDVI的方法,以减少或避免前面所提到的问题。The technical problem to be solved by the present invention is to provide a method for producing NDVI with high spatiotemporal resolution based on spatiotemporal weighting, so as to reduce or avoid the aforementioned problems.

为解决上述技术问题,本发明提出了一种基于时空加权的生产高时空分辨率NDVI的方法,用于将高空间分辨率和低时间分辨率的Landsat NDVI数据与低空间分辨率和高时间分辨率的MODIS NDVI数据融合,从基准时间t1获得预测时间tp的高时空分辨率的NDVI数据,所述方法包括如下步骤:In order to solve the above technical problems, the present invention proposes a method for producing high spatio-temporal resolution NDVI based on spatiotemporal weighting, which is used to combine Landsat NDVI data with high spatial resolution and low temporal resolution with low spatial resolution and high temporal resolution The MODIS NDVI data fusion of rate obtains the NDVI data of the high spatio -temporal resolution of prediction time t from reference time t 1 , described method comprises the following steps:

步骤A:以同一基准时间t1为起点,利用MODIS NDVI数据和Landsat NDVI数据,分别获得预测时间tp的每个像元在NDVI上的第一增量△NDVId和第二增量△NDVIs;其中,Step A: Starting from the same reference time t1 , using MODIS NDVI data and Landsat NDVI data, respectively obtain the first increment △NDVI d and the second increment △NDVI of each pixel on NDVI at the prediction time t p s ; among them,

所述第一增量△NDVId指的是,从基准时间t1到预测时间tp,假定MODIS NDVI数据的每个像元的NDVI增量,等于同样面积下的Landsat NDVI数据的不同地物类别的像元的NDVI增量的平均值,则利用t1时间的MODIS NDVI数据和Landsat NDVI数据,以及tp时间的MODIS NDVI数据,计算获得tp时间到t1时间的Landsat NDVI数据的每个像元的NDVI增量,该增量即为所述第一增量△NDVIdThe first increment ΔNDVI d refers to, from the reference time t 1 to the forecast time t p , assuming that the NDVI increment of each pixel of the MODIS NDVI data is equal to the different features of the Landsat NDVI data under the same area The average value of the NDVI increment of the pixels of the category is calculated by using the MODIS NDVI data and Landsat NDVI data at time t 1 and the MODIS NDVI data at time t p to obtain the Landsat NDVI data from time t p to time t 1 The NDVI increment of pixels, which is the first increment ΔNDVI d ;

所述第二增量△NDVIs指的是,采用现有ENVI/IDL软件中集成的薄板样条方法工具,直接将t1时间与tp时间的低空间分辨率MODIS像元分别插值到高空间分辨率的Landsat像元上去,然后使用tp时间的插值结果与t1时间的插值结果相减,其结果即为每个像元的所述第二增量△NDVIsThe second increment ΔNDVI s refers to directly interpolating MODIS pixels with low spatial resolution at time t 1 and time t p to high The Landsat pixel of spatial resolution goes up, and then the interpolation result of time t p is subtracted from the interpolation result of time t 1 , and the result is the second increment ΔNDVI s of each pixel;

步骤B,使用贝叶斯模型平均方法,将步骤A获得的每个高空间分辨率的像元在NDVI上的所述第一增量与所述第二增量进行权重组合计算,获得每个像元的NDVI综合增量;Step B, using the Bayesian model averaging method, performing weighted combination calculations on the first increment and the second increment of each pixel with high spatial resolution obtained in step A on NDVI, to obtain each The NDVI comprehensive increment of the pixel;

步骤C,通过步骤B计算得到的t1时间到tp时间,每个像元的所述NDVI综合增量,加到t1时间对应的高空间分辨率NDVI数值上,即可得到tp时间的高空间分辨率NDVI数值。Step C, from the t1 time to the tp time calculated by the step B, the NDVI comprehensive increment of each pixel is added to the high spatial resolution NDVI value corresponding to the t1 time, and the tp time can be obtained High spatial resolution NDVI values for .

优选地,所述步骤B中,每个高空间分辨率像元(xi,yj)的所述NDVI综合增量用公式表示为,Preferably, in the step B, the NDVI comprehensive increment of each high spatial resolution pixel ( xi , y j ) is expressed as,

ΔNDVIcom(xi,yj)=ws*ΔNDVIs(xi,yj)+wd*ΔNDVId(xi,yj) (2)ΔNDVI com ( xi ,y j )=w s *ΔNDVI s ( xi ,y j )+w d *ΔNDVI d ( xi ,y j ) (2)

其中,公式(2)中,wd和ws分别表示所述第一增量和所述第二增量的权重,△NDVIcom(xi,yj)表示所述第一增量与所述第二增量结合得到的所述NDVI综合增量。Wherein, in formula (2), w d and w s represent the weights of the first increment and the second increment respectively, and △NDVI com ( xi , y j ) represents the weight of the first increment and the weight of the second increment The NDVI composite increment obtained by combining the second increment.

优选地,所述公式(2)种的每个像元的所述权重wd和ws通过贝叶斯模型平均方法求解获得。Preferably, the weights w d and w s of each pixel in the formula (2) are obtained by solving the Bayesian model averaging method.

优选地,所述步骤B进一步包括对所述NDVI综合增量进行误差修正的步骤。Preferably, said step B further includes the step of performing error correction on said NDVI synthesis increment.

优选地,所述误差修正的步骤包括:Preferably, the step of error correction includes:

首先计算出低空间分辨率像元(x,y)整体的误差为,Firstly, the overall error of the low spatial resolution pixel (x, y) is calculated as,

公式(4)中,m表示低空间分辨率像元(x,y)所覆盖的高空间分辨率像元的数目;R(x,y)表示低空间分辨率像元(x,y)整体的误差;△NDVIC(x,y)表示tp时间与t1时间低空间分辨率像元(x,y)的NDVI的差值;In formula (4), m represents the number of high spatial resolution pixels covered by low spatial resolution pixels (x, y); R(x, y) represents the overall low spatial resolution pixels (x, y) △ NDVI C (x, y) represents the difference between the NDVI of the low spatial resolution pixel (x, y) at time t p and time t 1 ;

然后计算高空间分辨率像元的均质性如下,The homogeneity of the high spatial resolution pixel is then calculated as follows,

HI(xi,yj)=nsmae/m, (5)HI(x i ,y j )=n smae /m, (5)

公式(5)中,HI(xi,yj)是以高空间分辨率像元(xi,yj)为中心,构建的8*8的窗口的均质性参数;m表示这个窗口中高空间分辨像元的数目,nsame表示这个窗口中,与中心像元(xi,yj)具有相同类型的高空间分辨率像元的数目;In formula (5), HI( xi , y j ) is the homogeneity parameter of an 8*8 window constructed with the high spatial resolution pixel ( xi , y j ) as the center; m represents the height of the window The number of spatially resolved pixels, n same represents the number of pixels with the same type of high spatial resolution as the central pixel ( xi , yj ) in this window;

之后,根据像元的均质性来对误差进行分配如下,After that, the error is distributed according to the homogeneity of the pixel as follows,

公式(6)中,r(xi,yj)即为高空间分辨率像元(xi,yj)应该分配到的误差;In formula (6), r(x i , y j ) is the error that the high spatial resolution pixel (x i , y j ) should be allocated to;

最后,将这个误差加到公式(2)中的综合增量上去,得到修正过的高空间分辨率像元的NDVI增量如下,Finally, this error is added to the comprehensive increment in formula (2), and the corrected NDVI increment of the high spatial resolution pixel is as follows,

公式(7)中,△NDVIcom new(xi,yj)即为最后计算得到的高空间分辨率像元(xi,yj)从t1时间到tp时间的修正过的所述NDVI综合增量。In formula (7), △NDVI com new ( xi , y j ) is the corrected value of the finally calculated high spatial resolution pixel ( xi , y j ) from time t 1 to time t p NDVI composite increment.

优选地,所述步骤C中,利用所述修正过的NDVI综合增量计算tp时间的高空间分辨率NDVI的公式为:Preferably, in the step C, the formula for calculating the high spatial resolution NDVI at time tp using the revised NDVI comprehensive increment is:

公式(8)中,NDVIp(xi,yj)即为tp时间的每个像元(xi,yj)的高空间分辨率NDVI,NDVI1(xi,yj)即为t1时间的每个像元(xi,yj)的高空间分辨率NDVI。In formula (8), NDVI p ( xi , y j ) is the high spatial resolution NDVI of each pixel ( xi , y j ) at time t p , and NDVI 1 ( xi , y j ) is High spatial resolution NDVI for each pixel ( xi ,y j ) at time t 1 .

本发明通过对低空间分辨率的数据和高空间分辨率数据进行混合像元分解以及空间插值得到高空间分辨率数据在时间上的两种增量,然后采用贝叶斯模型平均方法将所述两种增量进行权重组合计算,得到优化过的综合增量,提高了增量计算的准确性,充分利用了地理数据间的时空联系,提高了融合精度。The present invention obtains two increments of high spatial resolution data in time by performing mixed pixel decomposition and spatial interpolation on low spatial resolution data and high spatial resolution data, and then adopts the Bayesian model averaging method to The weight combination calculation of the two kinds of increments is carried out to obtain the optimized comprehensive increment, which improves the accuracy of the increment calculation, makes full use of the spatio-temporal relationship between geographic data, and improves the fusion accuracy.

附图说明Description of drawings

以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中,The following drawings are only intended to illustrate and explain the present invention schematically, and do not limit the scope of the present invention. in,

图1显示的是根据本发明的一个具体实施例的第一增量的原理示意图;Figure 1 shows a schematic diagram of the principle of the first increment according to a specific embodiment of the present invention;

图2a-2f分别显示的是土地覆盖变化区域以及对应的Landsat NDVI数据和MODISNDVI数据;其中表示的某集水流域区的情况,分别为:图2a表示2004年11月26日的LandsatNDVI,图2b表示的2004年12月12日Landsat NDVI;从上述图像分别模拟得到图2d表示的2004年11月26日和图2e表示的2004年12月12日MODIS NDVI;图2c表示的是2004年11月26日的Landsat影像,图2f表示对应的非监督分类结果。Figures 2a-2f show the land cover change area and the corresponding Landsat NDVI data and MODISNDVI data respectively; the situation of a catchment area represented therein is: Figure 2a shows the Landsat NDVI on November 26, 2004, and Figure 2b Landsat NDVI on December 12, 2004; Figure 2d shows November 26, 2004 and Figure 2e shows MODIS NDVI on December 12, 2004; Figure 2c shows November 2004 For the Landsat image on the 26th, Figure 2f shows the corresponding unsupervised classification results.

图3a-3e分别显示的是几种不同的数据融合方法在土地覆盖变化区域的融合结果;其中图3a-3d分别表示的是2004年12月12日Landsat NDVI经过NDVI-LMGM融合、STARFM融合、FSDAF融合、本发明的方法融合的结果,图3e表示的是真实值。Figures 3a-3e respectively show the fusion results of several different data fusion methods in land cover change areas; Figures 3a-3d respectively represent Landsat NDVI on December 12, 2004 after NDVI-LMGM fusion, STARFM fusion, The result of FSDAF fusion and the method fusion of the present invention, Fig. 3e shows the real value.

具体实施方式detailed description

为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。但本领域的技术人员应该知道,以下实施例并不是对本发明技术方案作的唯一限定,凡是在本发明技术方案精神实质下所做的任何等同变换或改动,均应视为属于本发明的保护范围。In order to have a clearer understanding of the technical features, purposes and effects of the present invention, the specific implementation manners of the present invention will now be described with reference to the accompanying drawings. But those skilled in the art should know that the following examples are not the sole limitation to the technical solution of the present invention, and any equivalent transformation or modification made under the spirit of the technical solution of the present invention should be considered as belonging to the protection of the present invention scope.

下面详细说明根据本发明提供的基于时空加权的生产高时空分辨率NDVI的方法的原理,当然,与背景部分所述的三种类型的对Landsat NDVI数据和MODIS NDVI数据进行融合的方法的一样,本发明也是对上述不同数据源的遥感数据进行融合的方法,亦即,本发明的基于时空加权的生产高时空分辨率NDVI的方法用于将高空间分辨率和低时间分辨率的Landsat NDVI数据与低空间分辨率和高时间分辨率的MODIS NDVI数据融合,从基准时间t1获得预测时间tp的高时空分辨率的NDVI数据。The principle of the method for producing high spatio-temporal resolution NDVI based on spatio-temporal weighting provided by the present invention will be described in detail below. Of course, it is the same as the three types of methods for fusing Landsat NDVI data and MODIS NDVI data described in the background section. The present invention is also a method for fusing remote sensing data from the above-mentioned different data sources, that is, the method for producing NDVI with high spatial-temporal resolution based on time-space weighting of the present invention is used to combine Landsat NDVI data with high spatial resolution and low temporal resolution Fused with MODIS NDVI data at low spatial resolution and high temporal resolution, NDVI data with high temporal and spatial resolution at prediction time tp are obtained from reference time t1 .

由于获取Landsat NDVI数据和MODIS NDVI数据的卫星有相似的轨道参数以及不足30分钟的卫星过境时间间隔(该间隔对于每天24小时来说可以忽略不计),因此,在理论上可以假设这两种数据同一地点和同一基准时间t1的NDVI数据仅存在空间分辨率上的差别,其余均可忽略不计。其中,Landsat NDVI数据的空间分辨率为30m*30m,时间分辨率为16天;MODIS NDVI数据的空间分辨率为250m*250m,时间分辨率为1天;则数据融合之后生产获得的高时空分辨率的NDVI数据,其最大空间分辨率可以等于Landsat NDVI数据的空间分辨率(30m*30m),其最大时间分辨率可以等于MODIS NDVI数据的时间分辨率(1天)。也就是说,通过已知空间分辨率为250m*250m、时间分辨率为1天的MODIS NDVI数据,以及空间分辨率为30m*30m、时间分辨率为16天的Landsat NDVI数据,以同一基准时间t1为起点,本发明的方法可以预测获得其后15天的任意1天的预测时间tp的高时空分辨率的NDVI数据。Since the satellites acquiring Landsat NDVI data and MODIS NDVI data have similar orbital parameters and satellite transit time intervals of less than 30 minutes (this interval is negligible for a 24-hour day), it can theoretically be assumed that both data The NDVI data at the same location and the same reference time t 1 only have differences in spatial resolution, and the rest can be ignored. Among them, the spatial resolution of Landsat NDVI data is 30m*30m, and the temporal resolution is 16 days; the spatial resolution of MODIS NDVI data is 250m*250m, and the temporal resolution is 1 day; The maximum spatial resolution of the NDVI data at a high rate can be equal to the spatial resolution of Landsat NDVI data (30m*30m), and its maximum temporal resolution can be equal to the temporal resolution of MODIS NDVI data (1 day). That is to say, through the known MODIS NDVI data with a spatial resolution of 250m*250m and a time resolution of 1 day, and the Landsat NDVI data with a spatial resolution of 30m*30m and a time resolution of 16 days, the same reference time t 1 is the starting point, and the method of the present invention can predict and obtain NDVI data with high temporal and spatial resolution at the prediction time t p of any one day in the next 15 days.

下面详细说明本发明的基于时空加权的生产高时空分辨率NDVI的方法的具体步骤。The specific steps of the method for producing NDVI with high spatiotemporal resolution based on spatiotemporal weighting of the present invention will be described in detail below.

步骤A:以同一基准时间t1为起点,利用MODIS NDVI数据和Landsat NDVI数据,分别获得预测时间tp的每个像元在NDVI上的第一增量△NDVId和第二增量△NDVIsStep A: Starting from the same reference time t1 , using MODIS NDVI data and Landsat NDVI data, respectively obtain the first increment △NDVI d and the second increment △NDVI of each pixel on NDVI at the prediction time t p s .

其中,所述第一增量△NDVId指的是,从基准时间t1到预测时间tp,假定MODIS NDVI数据的每个像元的NDVI增量,等于同样面积下的Landsat NDVI数据的不同地物类别的像元的NDVI增量的平均值,则利用t1时间的MODIS NDVI数据和Landsat NDVI数据,以及tp时间的MODIS NDVI数据,计算获得tp时间到t1时间的Landsat NDVI数据的每个像元的NDVI增量,该增量即为所述第一增量△NDVIdWherein, the first increment ΔNDVI d refers to, from the reference time t 1 to the predicted time t p , assuming that the NDVI increment of each pixel of MODIS NDVI data is equal to the difference of Landsat NDVI data under the same area The average value of the NDVI increment of the pixel of the ground object category is calculated by using the MODIS NDVI data and Landsat NDVI data at time t1 , and the MODIS NDVI data at time tp to obtain the Landsat NDVI data from time tp to time t1 The NDVI increment of each pixel of , which is the first increment ΔNDVI d .

具体来说,基准时间t1(实际上存在30分钟的时间间隔)的低空间分辨率MODISNDVI数据和高空间分辨率的Landsat NDVI数据对同一地点来说仅存在空间分辨率上的差别,为了融合时将两种数据的位置对准方便计算,可以将低空间分辨率的MODIS NDVI数据从250m*250m重采样到240*240m,从而一个MODIS像元可以完全覆盖8*8=64个Landsat像元。Specifically, the low-spatial-resolution MODISNDVI data and the high-spatial-resolution Landsat NDVI data at the reference time t 1 (actually there is a time interval of 30 minutes) only have a difference in spatial resolution for the same location. Aligning the positions of the two data is convenient for calculation, and the MODIS NDVI data with low spatial resolution can be resampled from 250m*250m to 240*240m, so that one MODIS pixel can completely cover 8*8=64 Landsat pixels .

如图1所示,其显示的是根据本发明的一个具体实施例的第一增量的原理示意图,其中时间轴的上方表示的是低空间分辨率的MODIS NDVI数据,时间轴下方表示的是高空间分辨率的Landsat NDVI数据。以同一基准时间t1为起点,利用t1时间的MODIS NDVI数据和Landsat NDVI数据,以及tp时间的MODIS NDVI数据,可以获得时间轴右下方虚线表示的原本不存在的tp时间的高空间分辨率的Landsat NDVI数据。As shown in Figure 1, what it shows is the schematic diagram of the principle of the first increment according to a specific embodiment of the present invention, and what the top of wherein the time axis represents is the MODIS NDVI data of low spatial resolution, and what represent below the time axis is Landsat NDVI data with high spatial resolution. Starting from the same reference time t1 , using the MODIS NDVI data and Landsat NDVI data at time t1 and the MODIS NDVI data at time tp , the high space at time tp that did not exist originally indicated by the dotted line at the lower right of the time axis can be obtained Resolution Landsat NDVI data.

此时,假定从基准时间t1到预测时间tp,MODIS NDVI数据的每个像元的NDVI增量,等于同样面积下的Landsat NDVI数据的不同地物类别的像元的NDVI增量的平均值。即,图1中时间轴上方心形表示的1个MODIS像元从t1至tp时间的NDVI增量,可以通过将tp时间的低空间分辨率的MODIS NDVI数据与t1时间的低空间分辨率的MODIS NDVI数据直接相减得到。At this time, it is assumed that from the reference time t 1 to the prediction time t p , the NDVI increment of each pixel of the MODIS NDVI data is equal to the average of the NDVI increments of the pixels of different object categories in the Landsat NDVI data under the same area value. That is, the NDVI increment of one MODIS pixel represented by the heart shape above the time axis in Fig . The MODIS NDVI data with spatial resolution were directly subtracted.

对应于时间轴上方的1个MODIS像元的面积,等于时间轴下方的64个Landsat像元的面积,将这64个Landsat像元的NDVI增量按照其面积平均起来,即可认定为等于时间轴上方的同样面积的1个MODIS像元的NDVI增量。其计算过程为,根据高空间分辨率的LandsatNDVI数据的地物分类计算出每个低空间分辨率的MODIS NDVI数据的像元中每种地物类型的丰度。分类数据可以来源于已有的分类产品,比如GlobeLand30,也可以通过对高空间分辨率的Landsat NDVI数据的卫星影像数据进行分类得到。根据高空间分辨率的LandsatNDVI数据的地物分类结果,计算出每个低空间分辨率的MODIS NDVI数据的像元中包含的不同地物类型的面积比例,即丰度。因此,将每种地物类型的NDVI增量与其丰度的乘积相加,就可以得到该面积下的全部Landsat像元(64个像元)的NDVI增量的平均值,这个平均值正好等于前述同样面积的MODIS像元(1个像元)从t1至tp时间的NDVI增量。The area corresponding to 1 MODIS pixel above the time axis is equal to the area of 64 Landsat pixels below the time axis, and the NDVI increments of these 64 Landsat pixels are averaged according to their areas, which can be regarded as equal to time NDVI increment of 1 MODIS cell of the same area above the axis. The calculation process is to calculate the abundance of each surface object type in each pixel of MODIS NDVI data with low spatial resolution according to the object classification of LandsatNDVI data with high spatial resolution. Classification data can come from existing classification products, such as GlobeLand30, or it can be obtained by classifying satellite image data of Landsat NDVI data with high spatial resolution. According to the object classification results of LandsatNDVI data with high spatial resolution, the area proportion of different object types contained in each pixel of MODIS NDVI data with low spatial resolution is calculated, that is, the abundance. Therefore, by adding the product of the NDVI increment of each surface object type and its abundance, the average value of the NDVI increment of all Landsat pixels (64 pixels) under the area can be obtained, which is exactly equal to NDVI increment of MODIS pixel (1 pixel) with the same area from t 1 to t p time.

例如,图1时间轴下方的64个Landsat像元包括三种地物类型,则第1类地物类型的24个像元具有一个NDVI增量,第2类地物类型的20个像元具有另一个NDVI增量,第3类地物类型的20个像元具有又一个NDVI增量,这三种NDVI增量,相对于每个像元来说都是其从t1至tp时间的第一增量△NDVId。为了计算出这三个增量,需要构建至少三个方程,此时假定最邻近时间轴上方的心形标记像元的8个像元(亦即围绕心形标记像元的8个像元)的NDVI增量与该心形标记像元的NDVI增量相同,则可以以每个低空间分辨率像元为中心,构建3*3的局部窗口。假设这个局部窗口中每一种地物类型在t1时间至tp时间内的NDVI增量是相同的。根据这个局部窗口中的9个低空间分辨率像元的NDVI增量,可构建如下的线性方程组,公式表示如下,For example, the 64 Landsat pixels below the time axis in Figure 1 include three types of objects, then the 24 pixels of the first type of objects have an NDVI increment, and the 20 pixels of the second type of objects have Another NDVI increment, 20 pixels of the third type of ground object type has another NDVI increment, these three NDVI increments, relative to each pixel, are its time from t 1 to t p The first increment ΔNDVI d . In order to calculate these three increments, at least three equations need to be constructed, assuming that the 8 cells closest to the heart-shaped marker cell above the time axis (that is, the 8 cells surrounding the heart-shaped marker cell) The NDVI increment of is the same as the NDVI increment of the heart-shaped marker pixel, then a 3*3 local window can be constructed centered on each low spatial resolution pixel. Assume that the NDVI increment of each object type in this local window is the same from time t1 to time tp . According to the NDVI increments of the 9 low spatial resolution pixels in this local window, the following linear equations can be constructed, and the formulas are as follows,

公式(1)中,△NDVIC(x,y)表示从t1到tp时间低空间分辨率像元(x,y)的NDVI增量,fl(x,y)表示第l种类型在低空间分辨率像元(x,y)中的丰度,△NDVIl(x,y)表示3*3的局部窗口中第l种类型的NDVI增量。In formula (1), △NDVI C (x, y) represents the NDVI increment of the low-spatial resolution pixel (x, y) from t 1 to time t p , and f l (x, y) represents the type l Abundance in low spatial resolution pixel (x, y), △ NDVI l (x, y) represents the NDVI increment of type l in a 3*3 local window.

根据公式(1)通过最小二乘进行求解可以得到△NDVIl(x,y)。对于图示局部窗口中的低空间分辨率像元(x,y)而言,其覆盖范围下的高分辨率像元(xi,yj)在时间上的增量为△NDVId(xi,yj),这个增量即称为第一增量,下标(i,j)表示低空间分辨率像元覆盖下的第(i,j)个高空间分辨率像元。已经假设这个局部窗口中,每种地物类型的NDVI增量是固定的。因此,对于高空间分辨率像元(xi,yj)而言,其在时间上的增量△NDVId(xj,yj)就等于高空间分辨率像元(xj,yj)所属的那个地物类型的NDVI增量。如果高空间分辨率像元(xi,yj)属于第l类,那么△NDVId(xi,yj)就等于△NDVIl(x,y)。△NDVI l (x, y) can be obtained by solving the least squares according to formula (1). For the low spatial resolution pixel (x, y) in the local window shown in the figure, the time increment of the high resolution pixel ( xi , y j ) under its coverage is △NDVI d (x i , y j ), this increment is called the first increment, and the subscript (i, j) indicates the (i, j)th high spatial resolution pixel covered by the low spatial resolution pixel. It has been assumed that in this local window, the NDVI increment of each object type is fixed. Therefore, for a high spatial resolution pixel ( xi , y j ), its time increment △NDVI d (x j , y j ) is equal to the high spatial resolution pixel (x j , y j ) is the NDVI increment of the feature type to which it belongs. If the high spatial resolution pixel ( xi , y j ) belongs to class l, then △NDVI d ( xi , y j ) is equal to △NDVI l (x, y).

对于第一增量△NDVId而言,由于tp时间的地物类型与t1时间的地物类型可能有较大不同,例如水土流失、森林砍伐、火灾、洪水等均可造成不同时间的地物类型发生变化。因此,公式(1)中的每种地物类型的丰度fl(x,y)在两个时间下有可能是不同的,会导致地物类型的NDVI增量△NDVIl(x,y)计算出错。而且在将每种地物类型的NDVI增量△NDVIl(x,y)按类型分配给tp时间的高空间分辨率像元时也会出错。For the first increment △NDVI d , since the type of ground objects at time tp may be quite different from that at time t1 , for example, soil erosion, deforestation, fire, flood, etc. The feature type changes. Therefore, the abundance f l (x, y) of each object type in formula (1) may be different at two times, which will lead to the NDVI increment of the object type △ NDVI l (x, y ) calculation error. And it will also make mistakes when assigning the NDVI increment △NDVI l (x, y) of each surface object type to the high spatial resolution pixel at time t p according to the type.

为了避免这种不利因素的影响,因此,本发明进一步提出了采用第二增量△NDVIs来对第一增量进行修正的构思。In order to avoid the influence of such unfavorable factors, the present invention further proposes the idea of using the second increment ΔNDVI s to correct the first increment.

其中,所述第二增量△NDVIs指的是,采用现有ENVI/IDL软件中集成的薄板样条(Thin Plate Spline,TPS)方法工具,直接将t1时间与tp时间的低空间分辨率MODIS像元分别插值到高空间分辨率的Landsat像元上去(该插值方法工具已经集成在ENVI/IDL软件中,为公知的方法,调用函数即可完成)。然后,使用tp时间的插值结果与t1时间的插值结果相减,其结果即为每个像元的所述第二增量△NDVIs。由于该第二增量△NDVIs忽略了地物类型的差异,不但可以提供空间上的信息,而且不受地物类型的干扰,因此通过下面的步骤将第一和第二增量进行融合,即可消除第一增量△NDVId缺陷和不利影响。Wherein, the second increment △NDVI s refers to using the thin plate spline (Thin Plate Spline, TPS) method tool integrated in the existing ENVI/IDL software to directly convert the low space between the time t 1 and the time t p The resolution MODIS pixels are interpolated to the high spatial resolution Landsat pixels respectively (this interpolation method tool has been integrated in the ENVI/IDL software, which is a known method and can be completed by calling a function). Then, the interpolation result at time t p is subtracted from the interpolation result at time t 1 , and the result is the second increment ΔNDVI s of each pixel. Since the second increment △NDVI s ignores the difference of object types, it can not only provide spatial information, but also not be disturbed by the types of objects, so the first and second increments are fused through the following steps, The defects and adverse effects of the first increment △NDVI d can be eliminated.

即,图1所示的心形标记的1个MODIS像元,对应下的64个Landsat像元,每个像元的第一增量△NDVId与地物类型相关,图中表示有三种地物类型,则第1类地物类型下的24个像元的第一增量△NDVId都是相同的,第2类地物类型下的20个像元的第一增量△NDVId也是相同的,第3类地物类型下的20个像元的第一增量△NDVId也都是相同的,当然,这三种第一增量△NDVId的数值是分别计算获得的,是相互独立的。上述第一增量△NDVId是在假定同一像元的地物类别没有发生改变的情况下获得的,这显然会存在一定的问题。That is, one MODIS pixel of the heart-shaped mark shown in Figure 1 corresponds to the 64 Landsat pixels below, and the first increment △NDVI d of each pixel is related to the type of ground object. object type, the first increment △NDVI d of the 24 pixels under the first type of object type is the same, and the first increment △NDVI d of the 20 pixels under the second type of object type is also Similarly, the first increment △NDVI d of the 20 pixels under the third type of ground object is also the same. Of course, the values of these three first increments △NDVI d are calculated separately, and are mutually independant. The above-mentioned first increment △NDVI d is obtained under the assumption that the object category of the same pixel has not changed, which obviously has certain problems.

而第二增量△NDVIs的获取是根据薄板样条的方法工具直接将t1时间与tp时间的低空间分辨率的MODIS像元插值得到tp时间的高空间分辨率的Landsat像元(薄板样条的方法原理是,在两张低空间分辨率MODIS图像中找出多个匹配点,应用薄板样条函数可以将这多个点形变到对应位置,同时给出了整个图像的插值),将插值获得的tp时间的高空间分辨率的Landsat图像的每个像元(例如对应于图1中的64个Landsat像元)的NDVI数值与已知的t1时间的Landsat图像的每个像元的NDVI数值相减,即可获得每个像元从t1至tp时间的第二增量△NDVIs,即第二增量△NDVIs与地物类型无关,每个像元均具有一个独立的第二增量△NDVIs。当然,由于可以从低空间分辨率的MODIS像元直接插值得到高空间分辨率的Landsat像元,则单独计算获得第二增量△NDVIs是没有价值的,因此,此处提出第二增量△NDVIs的目的就是为了下一步的融合,以消除单独采用第一增量△NDVId获得高时空分辨率NDVI时所带来的问题。The acquisition of the second increment △ NDVI s is based on the method of thin plate splines, directly interpolating MODIS pixels with low spatial resolution at time t1 and time tp to obtain Landsat pixels with high spatial resolution at time tp (The principle of the thin-plate spline method is to find multiple matching points in two low-spatial-resolution MODIS images, and apply the thin-plate spline function to deform these multiple points to the corresponding positions, and at the same time give the interpolation of the entire image ), the NDVI value of each pixel (for example, corresponding to 64 Landsat pixels in Figure 1) of the Landsat image with high spatial resolution at time t p obtained by interpolation and the known Landsat image at time t 1 Subtract the NDVI value of each pixel to obtain the second increment △NDVI s of each pixel from t 1 to t p , that is, the second increment △NDVI s has nothing to do with the type of ground objects, and each image Each element has an independent second increment ΔNDVI s . Of course, since Landsat pixels with high spatial resolution can be directly interpolated from MODIS pixels with low spatial resolution, it is worthless to obtain the second increment △ NDVI s by separate calculation. Therefore, the second increment △ NDVI s is proposed here The purpose of △NDVI s is for the next step of fusion, so as to eliminate the problems caused by using the first increment △NDVI d alone to obtain NDVI with high spatio-temporal resolution.

步骤B,使用贝叶斯模型平均方法,将每个高空间分辨率的像元在NDVI上的第一增量与第二增量进行权重组合计算,获得每个像元的NDVI综合增量。In step B, the Bayesian model averaging method is used to combine the weights of the first increment and the second increment of each pixel with high spatial resolution on NDVI to obtain the comprehensive NDVI increment of each pixel.

这里使用两个权重来对每个像元(xi,yj)所对应的第一增量△NDVId(xi,yj)和第二增量△NDVIs(xi,yj)进行权重组合。得到每个高空间分辨率像元(xi,yj)的NDVI综合增量为,Here two weights are used to adjust the first increment △NDVI d ( xi , y j ) and the second increment △NDVI s ( xi , y j ) corresponding to each pixel ( xi , y j ) Combine weights. The NDVI comprehensive increment of each high spatial resolution pixel (x i , y j ) is obtained as,

ΔNDVIcom(xi,yj)=ws*ΔNDVIs(xi,yj)+wd*ΔNDVId(xi,yj) (2)ΔNDVI com ( xi ,y j )=w s *ΔNDVI s ( xi ,y j )+w d *ΔNDVI d ( xi ,y j ) (2)

公式(2)中,wd和ws分别表示第一增量和第二增量的权重,这两个权重是不随像元变化的,整幅图像只有一个wd和一个ws。△NDVIcom(xi,yj)表示第一增量与第二增量结合得到的NDVI综合增量。In formula (2), w d and w s represent the weights of the first increment and the second increment respectively, these two weights do not vary with the pixel, and the whole image has only one w d and one w s . ΔNDVI com ( xi , y j ) represents the NDVI comprehensive increment obtained by combining the first increment and the second increment.

下面将需要使用贝叶斯模型平均(Bayesian Model Averaging,BMA)方法来求解每个像元的这两个权重。BMA方法是一种比较经典的多模型综合方法,它通过对似然函数进行优化来计算最终各个模型的权重。详细内容可以参看参考文献Raftery,A.E.,Gneiting,T.,Balabdaoui,F.,&Polakowski,M.(2005),“使用贝叶斯模型平均方法对天气的集合预报校正”,每月天气评论,133,1155-1174(Raftery,A.E.,Gneiting,T.,Balabdaoui,F.,&Polakowski,M.(2005).Using Bayesian Model Averaging to Calibrate ForecastEnsembles.Monthly Weather Review,133,1155-1174)。对于本发明中第一增量与第二增量的极大似然函数表示如下,Next, the Bayesian Model Averaging (BMA) method will be used to solve the two weights for each pixel. The BMA method is a more classic multi-model synthesis method, which calculates the final weight of each model by optimizing the likelihood function. For details, see references Raftery, A.E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005), "Ensemble Forecast Correction for Weather Using Bayesian Model Averaging", Monthly Weather Review, 133 , 1155-1174 (Raftery, A.E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133, 1155-1174). The maximum likelihood function for the first increment and the second increment in the present invention is expressed as follows,

公式(3)中,L表示极大似然值,ws和wd分别表示两种增量的权重,△NDVId,i表示第i个像元的第一增量,△NDVIs,i表示第i个像元的第二增量,△NDVIi表示第i个像元的真实增量。gs和gd分别表示两个增量集合的概率密度函数,认为其为正态分布,N表示训练样本的数目。本发明中,由于没有高空间分辨率的真实NDVI增量数据,因此使用t1时间与tp时间低分辨率像元的真实增量作为训练样本,将高空间分辨率的第一增量和第二增量都进行8*8的合成升尺度到低空间分辨率上。这样即可得到低空间分辨率尺度的像元真实NDVI增量、低空间分辨率的第一增量和低空间分辨率的第二增量。根据低空间分辨的第一增量计算出其与低空间分辨率真实NDVI增量之间的平均平方误差(Mean Square Error,MSE),这个平均平方误差就是概率密度函数gd的方差,同理可以获得概率密度函数gs的方差。gs(△NDVIi|△NDVIs,i)表示概率密度函数gs以其平均平方误差为方差,以△NDVIs,i为均值,能产生△NDVIi的概率。同样,gd(△NDVIi|△NDVId,i)表示概率密度函数gd以其平均平方误差为方差,以△NDVId,i为均值,能产生△NDVIi的概率。通过对似然函数(3)进行极大化,可以得到权重ws和wdIn formula (3), L represents the maximum likelihood value, w s and w d represent the weights of the two increments respectively, △NDVI d,i represents the first increment of the i-th pixel, △NDVI s,i Indicates the second increment of the i-th pixel, and △NDVI i represents the real increment of the i-th pixel. g s and g d respectively represent the probability density functions of the two incremental sets, which are considered to be normal distribution, and N represents the number of training samples. In the present invention, since there is no real NDVI increment data of high spatial resolution, the real increment of the low-resolution pixel at time t1 and time tp is used as the training sample, and the first increment of high spatial resolution and The second increments are all 8*8 synthetically upscaled to low spatial resolution. In this way, the real NDVI increment of the pixel at the low spatial resolution scale, the first increment of the low spatial resolution and the second increment of the low spatial resolution can be obtained. Calculate the mean square error (Mean Square Error, MSE) between the first increment of low spatial resolution and the real NDVI increment of low spatial resolution. This mean square error is the variance of the probability density function g d , similarly The variance of the probability density function g s can be obtained. g s (△NDVI i |△NDVI s,i ) means the probability that the probability density function g s can produce △NDVI i with its mean squared error as the variance and △NDVI s,i as the mean. Similarly, g d (△NDVI i |△NDVI d,i ) represents the probability that the probability density function g d can produce △NDVI i with its average squared error as the variance and △NDVI d,i as the mean. By maximizing the likelihood function (3), the weights w s and w d can be obtained.

值的说明的是,虽然NDVI综合增量△NDVIcom(xi,yj)已经能够比较好的接近高空间分辨率像元从t1时间到tp时间的真实NDVI增量,但是其仍然可能包含误差,因此为了得到更准确的结果,在一个优选实施例中,还可以对获得的NDVI综合增量进行进一步的误差修正,其修正步骤为:The value shows that although the NDVI comprehensive increment △ NDVI com ( xi , y j ) can be relatively close to the real NDVI increment of the high spatial resolution pixel from time t 1 to time t p , it is still May contain errors, so in order to obtain more accurate results, in a preferred embodiment, further error correction can also be carried out to the obtained NDVI comprehensive increment, and its correction steps are:

首先计算出低空间分辨率像元(x,y)整体的误差为,Firstly, the overall error of the low spatial resolution pixel (x, y) is calculated as,

公式(4)中,m表示低空间分辨率像元(x,y)所覆盖的高空间分辨率像元的数目,在图1中显示的即为64;R(x,y)表示低空间分辨率像元(x,y)整体的误差;△NDVIC(x,y)表示tp时间与t1时间低空间分辨率像元(x,y)的NDVI的差值。In formula (4), m represents the number of high spatial resolution pixels covered by low spatial resolution pixels (x, y), which is 64 in Fig. 1; R(x, y) represents low spatial resolution The overall error of the resolution pixel (x, y); △ NDVI C (x, y) represents the difference between the NDVI of the low spatial resolution pixel (x, y) at time t p and time t 1 .

此处,需要将低空间分辨率像元尺度所包含的误差R(x,y)分配到其所覆盖的高空间分辨率像元(xi,yj)上。一般来说,影像上均质性比较高的区域(比如一大片水体或者一大片草地)往往预测时误差较小,而均质性低的区域(比如树木和裸土交错分布的稀疏林地)往往预测误差较大。因此,本发明根据高空间分辨率像元的均质性(xi,yj)来对误差R(x,y)进行分配。Here, it is necessary to distribute the error R(x, y) contained in the pixel scale of low spatial resolution to the pixel (x i , y j ) of high spatial resolution covered by it. Generally speaking, areas with relatively high homogeneity on the image (such as a large body of water or a large grassland) tend to have less error in prediction, while areas with low homogeneity (such as sparse forest land interlaced with trees and bare soil) tend to The prediction error is large. Therefore, the present invention distributes the error R(x,y) according to the homogeneity ( xi , yj ) of the high spatial resolution pixel.

即,然后计算高空间分辨率像元的均质性如下,That is, the homogeneity of the high spatial resolution pixel is then calculated as follows,

HI(xi,yj)=nsmae/m, (5)HI(x i ,y j )=n smae /m, (5)

公式(5)中,HI(xi,yj)是以高空间分辨率像元(xi,yj)为中心,构建的8*8的窗口的均质性参数。m表示这个窗口中高空间分辨像元的数目,这里即64个,nsame表示这个窗口中,与中心像元(xi,yj)具有相同类型的高空间分辨率像元的数目。In formula (5), HI( xi , y j ) is a homogeneity parameter of an 8*8 window constructed with the high spatial resolution pixel ( xi , y j ) as the center. m represents the number of high spatial resolution pixels in this window, 64 here, and n same represents the number of high spatial resolution pixels of the same type as the central pixel ( xi , y j ) in this window.

之后,根据像元的均质性来对误差进行分配如下,After that, the error is distributed according to the homogeneity of the pixel as follows,

公式(6)中,r(xi,yj)即为高空间分辨率像元(xi,yj)应该分配到的误差。In formula (6), r( xi , y j ) is the error to which the high spatial resolution pixel ( xi , y j ) should be assigned.

最后,将这个误差加到公式(2)中的综合增量上去,得到修正过的高空间分辨率像元的NDVI增量如下,Finally, this error is added to the comprehensive increment in formula (2), and the corrected NDVI increment of the high spatial resolution pixel is as follows,

公式(7)中,△NDVIcom new(xi,yj)即为最后计算得到的高空间分辨率像元(xi,yj)从t1时间到tp时间的修正过的NDVI综合增量。In formula (7), △ NDVI com new ( xi , y j ) is the corrected NDVI comprehensive increment.

步骤C,计算tp时间的高空间分辨率NDVI;Step C, calculating the high spatial resolution NDVI at time tp ;

前面的步骤中已经计算得到的t1时间到tp时间,每个高空间分辨率像元(xi,yj)的NDVI综合增量,下面将综合增量加到t1时间的高空间分辨率NDVI上,即可得到tp时间的高空间分辨率NDVI数据。计算如下,From time t 1 to time t p calculated in the previous steps, the NDVI comprehensive increment of each high spatial resolution pixel ( xi , y j ) will be added to the high space of time t 1 below The high spatial resolution NDVI data of time t p can be obtained on the resolution NDVI. Calculated as follows,

公式(8)中,NDVIp(xi,yj)即为tp时间的高空间分辨率NDVI,NDVI1(xi,yj)即为t1时间的高空间分辨率NDVI。In formula (8), NDVI p ( xi , y j ) is the high spatial resolution NDVI at time t p , and NDVI 1 ( xi , y j ) is the high spatial resolution NDVI at time t 1 .

如上所述,经过步骤A、B和C的处理后,预测时间tp所有的高空间分辨率像元都能通过时空加权的预测过程得到比较精确的融合结果。相比于已有的数据融合方法而言,本发明通过BMA(贝叶斯模型平均)方法更充分的使用了低空间分辨率数据中所包含的信息,能够更好地应对土地覆盖类型变化造成的问题。As mentioned above, after the processing of steps A, B and C, all the pixels with high spatial resolution at the prediction time tp can obtain more accurate fusion results through the prediction process of spatiotemporal weighting. Compared with the existing data fusion method, the present invention uses the information contained in the low spatial resolution data more fully through the BMA (Bayesian model average) method, and can better deal with the changes caused by land cover type changes. The problem.

为了更好地说明本发明的技术效果,将本发明中的方法与背景技术部分提及的三种类型的数据融合方法进行比较,即针对STARFM(空间和时间自适应反射融合模型)、NDVI-LMGM(NDVI-线性混合生长模型)和FSDAF(灵活时空数据融合方法),分别进行时序数据的测试和单景数据的测试。测试中以NDVI为融合对象,低空间分辨率数据为MODIS数据,高空间分辨率数据为Landsat数据。由于这两种数据获取的过境时间相同,并且轨道参数接近,因此比较适合于用来进行融合处理。In order to better illustrate the technical effects of the present invention, the method in the present invention is compared with the three types of data fusion methods mentioned in the background technology section, namely for STARFM (Space and Time Adaptive Reflective Fusion Model), NDVI- LMGM (NDVI-Linear Mixed Growth Model) and FSDAF (Flexible Spatio-Temporal Data Fusion Method) are used to test time-series data and single-scene data respectively. In the test, NDVI is used as the fusion object, the low spatial resolution data is MODIS data, and the high spatial resolution data is Landsat data. Since the transit time of the two data acquisitions is the same, and the orbital parameters are close, they are more suitable for fusion processing.

图2a-2f分别显示的是土地覆盖变化区域以及对应的Landsat NDVI数据和MODISNDVI数据;其中表示的某集水流域区的情况,具体选择的测试数据位于澳大利亚新南威尔士北部的Gwydir下游流域研究区(Lower Gwydir Catchment site),经纬度分别为29°07′S和149°04′E。该区域是一个典型的农作物种植区,并于2004年12月发生了一次比较大的洪水事件,有大量农田被淹没,发生了比较明显的土地覆盖变化。为了验证本发明对于土地覆盖变化的检测效果,从澳大利亚联邦科学与工业研究组织(Commonwealth Scientific andIndustrial Research Organization,CSIRO)的官方网站:https://data.csiro.au/dap/landingpage?execution=e2s2&_eventId=viewDescription,下载到洪水发生前2004年11月26日和洪水发生后2004年12月12日的Landsat TM影像,对其进行了裁剪,计算出对应的NDVI(图2a和2b)。根据2004年11月26日裁剪过的影像(图2c)进行基于isodata的非监督分类,得到分类结果(图2f)。为了避免不同传感器之间的系统误差,以及几何纠正和大气校正等过程中带来的误差,本发明使用Landsat数据进行8*8的升尺度合成得到MODIS数据(图2d和2e)。Figures 2a-2f show the land cover change area and the corresponding Landsat NDVI data and MODISNDVI data; they represent the situation of a catchment area, and the specific test data is located in the Gwydir lower watershed research area in northern New South Wales, Australia (Lower Gwydir Catchment site), the latitude and longitude are 29°07′S and 149°04′E respectively. This area is a typical crop planting area, and a relatively large flood event occurred in December 2004, a large number of farmlands were submerged, and relatively obvious land cover changes occurred. In order to verify the detection effect of the present invention for land cover change, from the official website of the Commonwealth Scientific and Industrial Research Organization (CSIRO): https://data.csiro.au/dap/landingpage? execution=e2s2&_eventId=viewDescription, downloaded the Landsat TM images of November 26, 2004 before the flood and December 12, 2004 after the flood, clipped them, and calculated the corresponding NDVI (Fig. 2a and 2b). According to the clipped image on November 26, 2004 (Fig. 2c), the non-supervised classification based on isodata was carried out, and the classification result was obtained (Fig. 2f). In order to avoid systematic errors between different sensors, as well as errors caused by geometric correction and atmospheric correction, the present invention uses Landsat data to perform 8*8 upscaling synthesis to obtain MODIS data (Figure 2d and 2e).

图3a-3e分别显示的是几种不同的数据融合方法在土地覆盖变化区域的融合结果,以2004年11月26日的Landsat NDVI数据为参考数据,对2004年12月12日的数据进行融合。将四种方法的融合结果(图3a、图3b、图3c和图3d)与2004年12月12日真实的NDVI(图3e)进行比较。从局部放大图的整体可以看到,NDVI-LMGM方法的融合结果有明显的斑块问题,而本发明的方法融合的结果的平滑性比较好。从图3a-3e中较小的方框可以看到;STARFM融合对于土地覆盖变化的检测能力不够,较小的方框中的黑色区域没有被识别出来,而本发明的方法能够很好地对土地覆盖的变化进行识别;从较大的方框可以看到,FSDAF融合的结果受到分类的影响相对大一些,融合结果中对于洪水发生前的水体边界有明显的保留,使得被水覆盖区域的过渡不平滑,而本发明的方法受到分类的影响相对小,对土地覆盖的识别能力更强,并且融合结果与真实值更接近。Figures 3a-3e respectively show the fusion results of several different data fusion methods in the land cover change area. Taking the Landsat NDVI data on November 26, 2004 as the reference data, the data on December 12, 2004 were fused . The fusion results of the four methods (Fig. 3a, Fig. 3b, Fig. 3c, and Fig. 3d) were compared with the real NDVI on December 12, 2004 (Fig. 3e). It can be seen from the whole of the partially enlarged picture that the fusion result of the NDVI-LMGM method has obvious plaque problems, while the smoothness of the fusion result of the method of the present invention is relatively good. It can be seen from the smaller boxes in Figure 3a-3e; STARFM fusion is not enough for the detection of land cover change, the black area in the smaller box has not been identified, and the method of the present invention can be well It can be seen from the larger box that the result of FSDAF fusion is relatively greatly affected by classification, and the fusion result clearly retains the boundary of the water body before the flood, making the area covered by water The transition is not smooth, but the method of the present invention is relatively less affected by classification, has a stronger ability to identify land cover, and the fusion result is closer to the real value.

综上所述,本发明基于贝叶斯模型平均方法将混合像元分解的增量与空间插值的增量进行综合,对增量的计算过程进行了优化。对时空数据进行了综合,有效提高了数据融合的精度。本发明充分利用了地理数据之间的时空关联性,为生产高时空分辨率的植被指数提供了一种行之有效的方法。To sum up, the present invention synthesizes the increment of mixed pixel decomposition and the increment of spatial interpolation based on the Bayesian model averaging method, and optimizes the calculation process of the increment. The spatio-temporal data are synthesized, which effectively improves the accuracy of data fusion. The invention makes full use of the time-space correlation between geographic data, and provides an effective method for producing vegetation indices with high time-space resolution.

本领域技术人员应当理解,虽然本发明是按照多个实施例的方式进行描述的,但是并非每个实施例仅包含一个独立的技术方案。说明书中如此叙述仅仅是为了清楚起见,本领域技术人员应当将说明书作为一个整体加以理解,并将各实施例中所涉及的技术方案看作是可以相互组合成不同实施例的方式来理解本发明的保护范围。Those skilled in the art should understand that although the present invention is described in terms of multiple embodiments, not each embodiment only includes an independent technical solution. The description in the description is only for the sake of clarity, and those skilled in the art should understand the description as a whole, and understand the present invention by considering the technical solutions involved in each embodiment as being able to be combined with each other to form different embodiments scope of protection.

以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化、修改与结合,均应属于本发明保护的范围。The above descriptions are only illustrative specific implementations of the present invention, and are not intended to limit the scope of the present invention. Any equivalent changes, modifications and combinations made by those skilled in the art without departing from the concept and principle of the present invention shall fall within the protection scope of the present invention.

Claims (6)

1. A method for producing high space-time resolution NDVI based on space-time weighting is used for fusing Landsat NDVI data with high space resolution and low time resolution with MODIS NDVI data with low space resolution and high time resolution from a reference time t1Obtaining a predicted time tpThe high spatial and temporal resolution NDVI data of (1), the method comprising the steps of:
step A: at the same reference time t1As a starting point, obtaining the predicted time t by using MODIS NDVI data and Landsat NDVI data respectivelypEach pixel ofFirst increment △ NDVI on NDVIdAnd a second increment △ NDVIs(ii) a Wherein,
the first increment △ NDVIdIs to mean from the reference time t1To the predicted time tpAssuming that the NDVI increment of each pixel of the MODIS NDVI data is equal to the average value of the NDVI increments of the pixels of different ground object types of the Landsat NDVI data under the same area, t is used1MODIS NDVI and Landsat NDVI of time, and tpObtaining t by calculating MODISNDVI data of timepTime to t1The NDVI increment of each pixel of the Landsat NDVI data of the time is the first increment △ NDVId
The second increment △ NDVIsThe method is characterized in that t is directly processed by adopting a thin plate spline method tool integrated in the existing ENVI/IDL software1Time and tpRespectively interpolating the time low-spatial resolution MODIS pixels to the high-spatial resolution Landsat pixels, and then using tpInterpolation result of time and t1The interpolation results of the time are subtracted, and the result is the second increment △ NDVI of each pixels
B, performing weight combination calculation on the first increment and the second increment of each pixel with high spatial resolution on the NDVI by using a Bayes model average method to obtain an NDVI comprehensive increment of each pixel;
step C, t obtained by calculating in step B1Time to tpTime, the NDVI integrated increment for each pel, added to t1On the high spatial resolution NDVI value corresponding to time, t can be obtainedpHigh spatial resolution NDVI values in time.
2. The method of claim 1, wherein in step B, each high spatial resolution pel (x) isi,yj) Is formulated as,
ΔNDVIcom(xi,yj)=ws*ΔNDVIs(xi,yj)+wd*ΔNDVId(xi,yj) (2)
wherein, in the formula (2), wdAnd wsWeights representing said first increment and said second increment, respectively, △ NDVIcom(xi,yj) Representing the NDVI composite delta resulting from the combination of the first delta and the second delta.
3. A method according to claim 2, characterized in that the weight w for each picture element of said formula (2)dAnd wsAnd solving by a Bayesian model averaging method.
4. The method of any one of claims 1-3, wherein said step B further comprises the step of error correcting said NDVI composite delta.
5. The method of claim 4, wherein the step of error correction comprises:
firstly, the error of the whole low-spatial resolution pixel (x, y) is calculated as,
<mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>&amp;Delta;NDVI</mi> <mi>C</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>8</mn> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>8</mn> </munderover> <msub> <mi>&amp;Delta;NDVI</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
in equation (4), m represents the number of high spatial resolution pixels covered by the low spatial resolution pixel (x, y), R (x, y) represents the error of the low spatial resolution pixel (x, y) as a whole, △ NDVIC(x, y) denotes tpTime and t1Difference in NDVI for temporal low spatial resolution pixel (x, y);
the homogeneity of the high spatial resolution picture elements is then calculated as follows,
HI(xi,yj)=nsmae/m, (5)
in the formula (5), HI (x)i,yj) Is a high spatial resolution picture element (x)i,yj) As a center, homogeneity parameter of the constructed 8 x 8 windows; m represents the number of high spatial resolution picture elements in this window, nsameIndicating that in this window, the pixel is centered on (x)i,yj) A number of high spatial resolution picture elements having the same type;
the error is then assigned according to the homogeneity of the picture elements as follows,
<mrow> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>m</mi> <mo>*</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>*</mo> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mi>H</mi> <mi>I</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>/</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>8</mn> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>8</mn> </munderover> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mi>H</mi> <mi>I</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
in the formula (6), r (x)i,yj) I.e. high spatial resolution picture element (x)i,yj) The error that should be assigned;
finally, this error is added to the integrated increment in equation (2) to obtain the NDVI increment for the corrected high spatial resolution pixel as follows,
<mrow> <msubsup> <mi>&amp;Delta;NDVI</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>m</mi> </mrow> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;Delta;NDVI</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
in equation (7), △ NDVIcom new(xi,yj) Namely the high spatial resolution pixel (x) obtained by final calculationi,yj) From t1Time to tpA corrected integrated increment of the NDVI in time.
6. The method of claim 5, wherein in step C, t is calculated using the modified NDVI synthetic deltapThe formula for the temporal high spatial resolution NDVI is:
<mrow> <msub> <mi>NDVI</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>NDVI</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;Delta;NDVI</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>m</mi> </mrow> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
in formula (8), NDVIp(xi,yj) Is tpEach picture element of time (x)i,yj) High spatial resolution NDVI, NDVI1(xi,yj) Is t1Each picture element of time (x)i,yj) High spatial resolution NDVI.
CN201710231237.4A 2017-04-11 2017-04-11 A method for producing high spatiotemporal resolution NDVI based on spatiotemporal weighting Expired - Fee Related CN107103584B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710231237.4A CN107103584B (en) 2017-04-11 2017-04-11 A method for producing high spatiotemporal resolution NDVI based on spatiotemporal weighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710231237.4A CN107103584B (en) 2017-04-11 2017-04-11 A method for producing high spatiotemporal resolution NDVI based on spatiotemporal weighting

Publications (2)

Publication Number Publication Date
CN107103584A true CN107103584A (en) 2017-08-29
CN107103584B CN107103584B (en) 2019-06-14

Family

ID=59675152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710231237.4A Expired - Fee Related CN107103584B (en) 2017-04-11 2017-04-11 A method for producing high spatiotemporal resolution NDVI based on spatiotemporal weighting

Country Status (1)

Country Link
CN (1) CN107103584B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033543A (en) * 2018-06-29 2018-12-18 北京师范大学 A kind of heterogeneous area's vegetation fraction estimation method, device and equipment of earth's surface
CN109612588A (en) * 2019-01-02 2019-04-12 中国科学院新疆生态与地理研究所 LST image data prediction method, device and electronic device
CN109685108A (en) * 2018-11-23 2019-04-26 电子科技大学 A method of generating high-spatial and temporal resolution NDVI long-term sequence
CN110147832A (en) * 2019-05-08 2019-08-20 北京师范大学 The method model of high space-time timing EVI index is obtained based on bayesian theory
CN110363246A (en) * 2019-07-18 2019-10-22 滨州学院 A Fusion Method of Vegetation Index NDVI with High Temporal and Spatial Resolution
CN110909821A (en) * 2019-12-03 2020-03-24 中国农业科学院农业资源与农业区划研究所 Method for carrying out high-space-time resolution vegetation index data fusion based on crop reference curve
CN111125277A (en) * 2019-11-14 2020-05-08 国家气候中心 Landsat remote sensing vegetation index restoration method based on cube technology
CN111369483A (en) * 2020-03-05 2020-07-03 北京师范大学 Method for generating high-spatial-temporal-resolution remote sensing data by fusing multi-source remote sensing data
CN111523451A (en) * 2020-04-22 2020-08-11 重庆邮电大学 A Method for Constructing High Spatiotemporal Resolution NDVI Data
CN111898494A (en) * 2020-07-16 2020-11-06 大同煤矿集团有限责任公司 A method for identifying the boundaries of mining disturbed plots
CN112052720A (en) * 2020-07-16 2020-12-08 贵州师范学院 High-space-time normalization vegetation index NDVI fusion model based on histogram clustering
CN112819697A (en) * 2021-02-04 2021-05-18 北京师范大学 Remote sensing image space-time fusion method and system
CN114301905A (en) * 2020-09-23 2022-04-08 华为技术有限公司 Resolution conversion method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120101634A1 (en) * 2010-10-25 2012-04-26 Lindores Robert J Crop treatment compatibility
CN102831310A (en) * 2012-08-17 2012-12-19 北京师范大学 Method for building high-spatial resolution NDVI (normalized difference vegetation index) time series data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120101634A1 (en) * 2010-10-25 2012-04-26 Lindores Robert J Crop treatment compatibility
CN102831310A (en) * 2012-08-17 2012-12-19 北京师范大学 Method for building high-spatial resolution NDVI (normalized difference vegetation index) time series data

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033543A (en) * 2018-06-29 2018-12-18 北京师范大学 A kind of heterogeneous area's vegetation fraction estimation method, device and equipment of earth's surface
CN109033543B (en) * 2018-06-29 2020-06-30 北京师范大学 A method, device and equipment for estimating vegetation coverage in a heterogeneous surface area
CN109685108A (en) * 2018-11-23 2019-04-26 电子科技大学 A method of generating high-spatial and temporal resolution NDVI long-term sequence
CN109685108B (en) * 2018-11-23 2022-05-03 电子科技大学 Method for generating high-space-time resolution NDVI long-time sequence
CN109612588A (en) * 2019-01-02 2019-04-12 中国科学院新疆生态与地理研究所 LST image data prediction method, device and electronic device
CN110147832A (en) * 2019-05-08 2019-08-20 北京师范大学 The method model of high space-time timing EVI index is obtained based on bayesian theory
CN110363246A (en) * 2019-07-18 2019-10-22 滨州学院 A Fusion Method of Vegetation Index NDVI with High Temporal and Spatial Resolution
CN110363246B (en) * 2019-07-18 2023-05-09 滨州学院 Fusion method of vegetation index NDVI with high space-time resolution
CN111125277A (en) * 2019-11-14 2020-05-08 国家气候中心 Landsat remote sensing vegetation index restoration method based on cube technology
CN110909821B (en) * 2019-12-03 2020-07-28 中国农业科学院农业资源与农业区划研究所 A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve
CN110909821A (en) * 2019-12-03 2020-03-24 中国农业科学院农业资源与农业区划研究所 Method for carrying out high-space-time resolution vegetation index data fusion based on crop reference curve
CN111369483A (en) * 2020-03-05 2020-07-03 北京师范大学 Method for generating high-spatial-temporal-resolution remote sensing data by fusing multi-source remote sensing data
CN111369483B (en) * 2020-03-05 2020-11-13 北京师范大学 Method for generating high-spatial-temporal-resolution remote sensing data by fusing multi-source remote sensing data
CN111523451A (en) * 2020-04-22 2020-08-11 重庆邮电大学 A Method for Constructing High Spatiotemporal Resolution NDVI Data
CN112052720A (en) * 2020-07-16 2020-12-08 贵州师范学院 High-space-time normalization vegetation index NDVI fusion model based on histogram clustering
CN111898494B (en) * 2020-07-16 2022-09-27 大同煤矿集团有限责任公司 A method for identifying the boundaries of mining disturbed plots
CN111898494A (en) * 2020-07-16 2020-11-06 大同煤矿集团有限责任公司 A method for identifying the boundaries of mining disturbed plots
CN114301905A (en) * 2020-09-23 2022-04-08 华为技术有限公司 Resolution conversion method and device
CN114301905B (en) * 2020-09-23 2023-04-04 华为技术有限公司 Resolution conversion method and device
CN112819697A (en) * 2021-02-04 2021-05-18 北京师范大学 Remote sensing image space-time fusion method and system
CN112819697B (en) * 2021-02-04 2023-04-14 北京师范大学 A method and system for spatial-temporal fusion of remote sensing images

Also Published As

Publication number Publication date
CN107103584B (en) 2019-06-14

Similar Documents

Publication Publication Date Title
CN107103584B (en) A method for producing high spatiotemporal resolution NDVI based on spatiotemporal weighting
Luo et al. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product
Zhu et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
EP3455742B1 (en) Statistical blending of weather data sets
EP4207054A1 (en) A system and method to fuse multiple sources of optical data to generate a high-resolution, frequent and cloud-/gap-free surface reflectance product
CN109325540B (en) Spatial downscaling method for remote sensing daily precipitation data
Andersen et al. Improving the coastal mean dynamic topography by geodetic combination of tide gauge and satellite altimetry
CN110222870A (en) Assimilate the Regional Fall Wheat yield estimation method of satellite fluorescence data and crop growth model
CN115079172B (en) A MTInSAR landslide monitoring method, device and storage medium
Zhang et al. An object-based spatiotemporal fusion model for remote sensing images
Tao et al. Improving the spatiotemporal fusion accuracy of fractional vegetation cover in agricultural regions by combining vegetation growth models
CN110909821B (en) A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve
CN115077656A (en) Reservoir water reserve retrieval method and device
CN113888386A (en) High-resolution time-space seamless earth surface soil moisture estimation method and system
Zhang et al. Merging multisatellite precipitation products using stacking method and the censored-shifted gamma ensemble model output statistics in china's Beimiaoji basin
CN112285808B (en) A downscaling method for APHRODITE precipitation data
CN103034988B (en) A kind of space-time quantitative remote sensing fusion method of any sensor quantity
Xu et al. Exploring the potential of Gaofen-1/6 for crop monitoring: Generating daily decametric-resolution leaf area index time series
CN116522090A (en) A Soil Moisture Downscaling Method Considering Vegetation Memory and Fine-scale Vegetation Index
CN115630308A (en) Ground surface temperature space-time resolution enhancement method combining downscaling and fusion
CN114461983B (en) Satellite precipitation product space downscaling method based on water balance principle
CN111666896A (en) Remote sensing image space-time fusion method based on linear fusion model
Jing et al. A Rigorously-Incremental Spatiotemporal Data Fusion Method for Fusing Remote Sensing Images
CN109359264B (en) A method and device for downscaling chlorophyll products based on MODIS
CN113538388A (en) Arable land loss assessment method based on MODIS NDVI time sequence data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190614

Termination date: 20200411

CF01 Termination of patent right due to non-payment of annual fee