CN110909821B - A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve - Google Patents
A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve Download PDFInfo
- Publication number
- CN110909821B CN110909821B CN201911217214.3A CN201911217214A CN110909821B CN 110909821 B CN110909821 B CN 110909821B CN 201911217214 A CN201911217214 A CN 201911217214A CN 110909821 B CN110909821 B CN 110909821B
- Authority
- CN
- China
- Prior art keywords
- curve
- modis
- crop
- data
- curves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000004927 fusion Effects 0.000 title claims description 17
- 238000009499 grossing Methods 0.000 claims abstract 3
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012952 Resampling Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 claims 2
- 238000012935 Averaging Methods 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 abstract description 33
- 238000012544 monitoring process Methods 0.000 description 17
- 244000068988 Glycine max Species 0.000 description 9
- 235000010469 Glycine max Nutrition 0.000 description 9
- 240000008042 Zea mays Species 0.000 description 6
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 6
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 6
- 235000005822 corn Nutrition 0.000 description 6
- 238000012271 agricultural production Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 241000209140 Triticum Species 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007500 overflow downdraw method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009355 double cropping Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000021393 food security Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/251—Fusion techniques of input or preprocessed data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种基于作物参考曲线的高时空分辨率植被指数数据集重建方法,包括:步骤一:构建作物参考曲线样本库;利用作物分类图CDL的作物类别信息和空间位置得到基于纯净像元的不同作物的多条MODIS参考曲线,形成MODIS作物参考曲线样本库,同时结合MODIS本地曲线共同作为MODIS候选曲线参与到曲线匹配中;步骤二:确定初始拟合曲线;步骤三:确定最终拟合曲线;针对Landsat初始拟合曲线和原始Landsat时间序列NDVI影像之间存在的局部差异,经过二次拟合平滑后得到Landsat最终拟合曲线,从而同时得到具有MODIS时间分辨率和Landsat空间分辨率的高时空分辨率植被指数数据。
The invention discloses a method for reconstructing a vegetation index data set with high temporal and spatial resolution based on a crop reference curve. The method includes the following steps: Step 1: constructing a sample library of crop reference curves; Multiple MODIS reference curves of different crops are collected to form a MODIS crop reference curve sample library. At the same time, combined with MODIS local curves, they are used as MODIS candidate curves to participate in curve matching; Step 2: Determine the initial fitting curve; Step 3: Determine the final fitting curve According to the local difference between the initial Landsat fitting curve and the original Landsat time series NDVI images, the final Landsat fitting curve is obtained after quadratic fitting and smoothing, thereby obtaining the MODIS temporal resolution and Landsat spatial resolution at the same time. high spatial and temporal resolution vegetation index data.
Description
技术领域technical field
本发明涉及农业遥感技术领域,特别涉及一种基于作物参考曲线进行高时空分辨率植被指数重建的方法,适用于不同农田系统的农业遥感监测研究。The invention relates to the technical field of agricultural remote sensing, in particular to a method for reconstructing a vegetation index with high temporal and spatial resolution based on a crop reference curve, which is suitable for agricultural remote sensing monitoring research of different farmland systems.
背景技术Background technique
在监测区域或全球尺度的地球系统动态变化时,如植被覆盖变化、土地利用变化等,地球观测卫星能够提供丰富的数据与监测方法来获取地表信息,从而为资源管理和政策制定提供科学依据。但是,由于地球观测卫星获取的遥感数据在高时间分辨率和高空间分辨率上存在相互制约的问题,而以田块尺度研究区域为代表的遥感监测对于时间分辨率和空间分辨率都具有较高要求,因此需要特定的方法来生成具有高时空分辨率的遥感数据。以Landsat和MODIS影像为例,Landsat影像具有30m的中高空间分辨率,能较好满足田块尺度遥感监测的要求,但其16天的重返周期以及比较严重的云覆盖问题极大限制了Landsat影像进行地表快速变化监测的能力;相反MODIS影像具有每天获取数据的能力,但其较低的空间分辨率(250-1000m)难以实现复杂农田系统的精准监测。When monitoring the dynamic changes of the Earth system at the regional or global scale, such as changes in vegetation cover and land use, Earth observation satellites can provide abundant data and monitoring methods to obtain surface information, thereby providing scientific basis for resource management and policy formulation. However, due to the mutual constraints of high temporal resolution and high spatial resolution of remote sensing data obtained by earth observation satellites, remote sensing monitoring represented by field-scale research areas has relatively high temporal and spatial resolutions. High requirements and therefore specific methods are required to generate remote sensing data with high spatial and temporal resolution. Taking Landsat and MODIS images as examples, Landsat images have a medium-high spatial resolution of 30 m, which can better meet the requirements of field-scale remote sensing monitoring, but its 16-day reentry cycle and serious cloud coverage greatly limit Landsat. On the contrary, MODIS images have the ability to obtain data every day, but its low spatial resolution (250-1000m) makes it difficult to achieve accurate monitoring of complex farmland systems.
为了满足上述遥感监测对于高时空分辨率数据的需求,如果单纯从数据源的角度考虑,可以通过发射更多具有不同用途特点的对地观测卫星,从而获取足够多的高时空分辨率影像,但是这种方式需要更加先进的软硬件技术和巨大的研发生产成本等,并不具有实际可操作性。因此基于现有的多源遥感影像,利用时空融合技术得到高时空分辨率影像的方法从提出伊始就受到关注,并取得了较大的发展和应用。该技术很好的结合了不同传感器具有的时间、空间和光谱特征,通过算法将同一区域不同卫星获取的高空间低时间分辨率数据和高时间低空间分辨率数据之间具有某种的对应关系进行模拟,融合生成具有高时空分辨率的影像,很好地解决了时空分辨率不一致对于遥感监测效率和精度的限制。在近几十年的发展过程中,时空融合经典算法STARFM在植被动态变化监测、作物物候信息提取、水资源监测、地表温度监测等众多领域取得了很好的应用效果,同时也产生了一系列改进算法,如STAARCH、ESTARFM、FSDAF等。这类时空融合算法的理论基础通常是,对于同一地区同一时间段的高低空间分辨率影像,两者在同一时相的影像特征是一一对应的,因此可以将低空间分辨率影像上的连续时相变化特征映射到高空间分辨率影像上,弥补了高空间分辨率影像获取周期偏长导致时相变化信息缺乏的不足,从而很好地结合了高空间分辨率影像提供的空间结构信息和低空间分辨率影像提供的时间维信息,生成具有高时空分辨率的影像数据。但是该类时空融合方法也具有一些局限性,首先提供时间维信息的低空间分辨率影像存在较严重的混合像元现象,导致得到的时空融合产品虽然具有较高的时空分辨率,但进行地物识别分类时往往精度不高,容易出现误判,尤其对线状地物、小块地物或不规则地物的分类识别影响较大,因此这类算法比较适用于空间均质区域的遥感监测识别,但不太适用于空间异质性较大的区域。其次,这类时空融合算法需要多对在晴空条件下获取的高空间低时间分辨率和低空间高时间分辨率影像并进行匹配拟合,低空间分辨率影像由于具有较高的时间分辨率,可以满足晴空条件下的可用影像数要求,但高空间分辨率影像由于获取周期较长,很容易受到云覆盖等因素的影响,导致可用于匹配的影像数受到限制。尤其是在多云雨天气的地区,可用的高空间分辨率影像往往较少,融合结果的误差较大。In order to meet the above-mentioned requirements of remote sensing monitoring for high temporal and spatial resolution data, if only from the perspective of data sources, it is possible to obtain enough high temporal and spatial resolution images by launching more Earth observation satellites with different characteristics. This method requires more advanced software and hardware technology and huge R&D and production costs, and is not practical. Therefore, based on the existing multi-source remote sensing images, the method of using spatiotemporal fusion technology to obtain high spatiotemporal resolution images has attracted attention since it was proposed, and has achieved great development and application. This technology combines the time, space and spectral characteristics of different sensors well, and through the algorithm, there is a certain correspondence between the high-spatial and low-temporal resolution data and the high-temporal and low-spatial resolution data obtained by different satellites in the same area. Simulate and fuse to generate images with high temporal and spatial resolution, which well solves the limitation of inconsistent temporal and spatial resolutions on the efficiency and accuracy of remote sensing monitoring. In the development process in recent decades, the classical spatiotemporal fusion algorithm STARFM has achieved good application results in many fields such as vegetation dynamic change monitoring, crop phenology information extraction, water resources monitoring, and surface temperature monitoring, and has also produced a series of Improved algorithms, such as STAARCH, ESTARFM, FSDAF, etc. The theoretical basis of this type of spatiotemporal fusion algorithm is usually that for high and low spatial resolution images of the same region and the same time period, the image features of the two in the same time phase are in a one-to-one correspondence, so the continuous images on the low spatial resolution images can be combined. The temporal phase change feature is mapped to the high spatial resolution image, which makes up for the lack of temporal phase change information caused by the long acquisition period of the high spatial resolution image, and thus well combines the spatial structure information and the The temporal dimension information provided by low spatial resolution imagery generates image data with high spatial and temporal resolution. However, this type of spatiotemporal fusion method also has some limitations. First, the low spatial resolution images that provide temporal dimension information have serious mixed pixel phenomenon, resulting in the obtained spatiotemporal fusion product with high temporal and spatial resolution, but the ground The accuracy of object recognition and classification is often not high, and misjudgment is prone to occur, especially for the classification and recognition of linear objects, small objects or irregular objects. Therefore, this type of algorithm is more suitable for remote sensing in spatially homogeneous areas. Monitoring identifies, but is less suitable for areas with greater spatial heterogeneity. Secondly, this type of spatiotemporal fusion algorithm requires multiple pairs of high spatial low temporal resolution and low spatial high temporal resolution images acquired under clear sky conditions and matching and fitting. Due to the high temporal resolution of low spatial resolution images, It can meet the requirements for the number of available images under clear sky conditions, but high spatial resolution images are easily affected by factors such as cloud coverage due to the long acquisition period, which limits the number of images that can be used for matching. Especially in areas with cloudy and rainy weather, there are often fewer high spatial resolution images available, and the error of fusion results is large.
通过现有研究发现,84%的全球农业生产单元的面积都是小于0.02km2(近似于140*140m,),而不同的地区存在一定的区域差异,如美国农业生产单元的面积相对较大,其平均值和中位数值能达到0.193km2和0.278km2,非洲部分国家超过一半的田块面积则小于0.004km2(近似于63*63m),而这种较小面积的田块通常具有较高的空间异质性。因此,在利用遥感手段监测田块尺度的农业生产状况时,常用的时空融合算法具有较大的局限性,应用效果并不理想。同时,考虑到田块尺度的农业生产单元在全球范围内分布广泛,通过遥感方法实现对田块尺度农业生产活动的精准监测对于减少全球贫困和保障粮食安全具有十分重要的意义。Through existing research, it is found that 84% of the global agricultural production units have an area of less than 0.02km 2 (approximately 140*140m), and there are certain regional differences in different regions. For example, the area of agricultural production units in the United States is relatively large. , the average and median values can reach 0.193km2 and 0.278km2, and more than half of the fields in some African countries are less than 0.004km2 (approximately 63*63m), and such smaller fields usually have larger high spatial heterogeneity. Therefore, when using remote sensing means to monitor the agricultural production status at the field scale, the commonly used spatiotemporal fusion algorithm has great limitations, and the application effect is not ideal. At the same time, considering that field-scale agricultural production units are widely distributed around the world, the accurate monitoring of field-scale agricultural production activities through remote sensing methods is of great significance for reducing global poverty and ensuring food security.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是针对现有技术的不足提供一种基于作物参考曲线进行高时空分辨率植被指数数据融合的方法,基于多源遥感影像进行时空融合重建,得到适用于空间异质性较高的复杂农田系统遥感监测的高时空分辨率植被指数数据。The technical problem to be solved by the present invention is to provide a method for fusion of vegetation index data with high spatial and temporal resolution based on crop reference curves, and to perform spatial and temporal fusion reconstruction based on multi-source remote sensing images, so as to obtain a method suitable for spatial heterogeneity. High temporal and spatial resolution vegetation index data for remote sensing monitoring of higher complex farmland systems.
为解决上述技术问题,本发明提出了一种基于作物参考曲线进行高时空分辨率植被指数数据融合的方法。In order to solve the above technical problems, the present invention proposes a method for fusing vegetation index data with high spatial and temporal resolution based on crop reference curves.
一种基于作物参考曲线进行高时空分辨率植被指数数据融合的方法,包括:步骤一:构建作物参考曲线样本库;利用作物分类图CDL的作物类别信息和空间位置得到基于纯净像元的不同作物的多条MODIS参考曲线,形成MODIS作物参考曲线样本库,同时结合MODIS本地曲线共同作为MODIS候选曲线参与到曲线匹配中;步骤二:确定初始拟合曲线;将Landsat时间序列NDVI影像的像元值和MODIS候选曲线中的所有曲线对应位置的影像像元值进行拟合匹配,找到拟合度最高的候选曲线作为基于MODIS作物参考曲线的最佳参考曲线;再利用最佳参考曲线的拟合参数对Landsat时间序列NDVI影像进行拟合,得到Landsat初始拟合曲线;步骤三:确定最终拟合曲线;针对Landsat初始拟合曲线和原始Landsat时间序列NDVI影像之间存在的局部差异,经过二次拟合平滑后得到Landsat最终拟合曲线,从而同时得到具有MODIS时间分辨率和Landsat空间分辨率的高时空分辨率植被指数数据。A method for high temporal and spatial resolution vegetation index data fusion based on crop reference curves, comprising: step 1: constructing a sample library of crop reference curves; obtaining different crops based on pure pixels by using crop category information and spatial positions of a crop classification map CDL Multiple MODIS reference curves were obtained to form a MODIS crop reference curve sample library, and combined with MODIS local curves as MODIS candidate curves to participate in curve matching; Step 2: Determine the initial fitting curve; Fit and match the image pixel values at the corresponding positions of all the curves in the MODIS candidate curve, and find the candidate curve with the highest fitting degree as the best reference curve based on the MODIS crop reference curve; then use the fitting parameters of the best reference curve Fitting the Landsat time series NDVI images to obtain the Landsat initial fitting curve; Step 3: Determine the final fitting curve; for the local differences between the Landsat initial fitting curve and the original Landsat time series NDVI images, the second fitting is performed. The final fitting curve of Landsat is obtained after combined and smoothed, thereby obtaining vegetation index data with high spatial and temporal resolution with MODIS temporal resolution and Landsat spatial resolution at the same time.
所述的方法,所述步骤一包括以下步骤:Said method, said
步骤A:利用作物分类图CDL中的作物类别信息,设定一个25*25像元大小的移动窗口,通过移动像元窗口,当窗口中的95%以上的像元归属于作物分类图中的单一作物类别时,则认为该窗口像元为纯净像元,获取该CDL纯净像元窗口的位置信息;Step A: Use the crop category information in the crop classification map CDL to set a moving window with a size of 25*25 pixels. By moving the pixel window, when more than 95% of the pixels in the window belong to the crop classification map. When there is a single crop category, the window pixel is considered to be a pure pixel, and the position information of the CDL pure pixel window is obtained;
步骤B:对低空间分辨率MODIS数据进行重采样和重投影预处理,使其与高空间分辨率Landsat数据和作物分类图CDL数据具有同样的空间分辨率和投影信息,并对MODIS数据和Landsat数据进行几何配准,再计算得到MODIS时间序列植被指数NDVI数据;同时,对高空间分辨率Landsat数据中的部分Landsat7影像进行插值处理,得到完整覆盖研究区的数据,再计算得到Landsat时间序列NDVI数据;Step B: Preprocess the low spatial resolution MODIS data by resampling and reprojection so that it has the same spatial resolution and projection information as the high spatial resolution Landsat data and the crop classification map CDL data. The data is geometrically registered, and then the MODIS time series vegetation index NDVI data is obtained by calculation; at the same time, some Landsat7 images in the high spatial resolution Landsat data are interpolated to obtain the data covering the study area completely, and then the Landsat time series NDVI data is obtained by calculation. data;
步骤C:利用步骤A中得到的CDL纯净像元窗口的位置信息,选取MODIS时间序列植被指数NDVI数据上与该窗口中间的部分像元区域相对应的位置,提取得到该位置包含的像元的NDVI平均值,得到不同类型作物的多条MODIS时间序列NDVI曲线;对于部分曲线依然存在的异常值,采用线性插值法消除该异常值,再将这些曲线作为不同地物的MODIS参考曲线构建成样本库。Step C: Using the position information of the CDL pure pixel window obtained in Step A, select the position corresponding to the part of the pixel area in the middle of the window on the MODIS time series vegetation index NDVI data, and extract the position of the pixel contained in the position. The average NDVI value is obtained to obtain multiple MODIS time series NDVI curves of different types of crops; for the outliers that still exist in some curves, linear interpolation method is used to eliminate the outliers, and then these curves are used as MODIS reference curves of different ground objects to construct samples. library.
所述的方法,所述步骤二包括以下步骤:Said method, said
步骤D:利用步骤B中计算得到的MODIS时间序列植被指数NDVI数据的原始值,得到MODIS影像每一个像元的时间序列植被指数NDVI曲线,称之为该像元的MODIS本地曲线,然后综合考虑MODIS本地曲线以及步骤C中得到的MODIS参考曲线样本库,将两者结合起来一起作为MODIS候选曲线参与到曲线匹配中;Step D: Use the original value of the MODIS time series vegetation index NDVI data calculated in step B to obtain the time series vegetation index NDVI curve of each pixel of the MODIS image, which is called the MODIS local curve of the pixel, and then comprehensively consider The MODIS local curve and the MODIS reference curve sample library obtained in step C are combined together to participate in the curve matching as a MODIS candidate curve;
步骤E:利用步骤B中计算得到的Landsat时间序列NDVI数据,分析该数据所有影像像元与步骤C中得到的MODIS作物参考曲线样本库中的所有曲线的相关指数R2大小;以及该Landsat时间序列NDVI数据所有影像像元与步骤D中得到的MODIS本地曲线的相关指数R2大小,将相关指数R2最大的曲线作为Landsat时间序列NDVI数据的影像像元的MODIS最佳参考曲线,然后通过公式(1)来进一步拟合步骤B中的Landsat时间序列NDVI数据和MODIS最佳参考曲线,得到Landsat拟合曲线。Step E: Using the Landsat time series NDVI data calculated in step B, analyze the correlation index R 2 of all image pixels of the data and all curves in the MODIS crop reference curve sample library obtained in step C; and the Landsat time The correlation index R 2 of all image pixels of the sequence NDVI data and the MODIS local curve obtained in step D, the curve with the largest correlation index R 2 is used as the best reference curve of MODIS for the image pixels of the Landsat time series NDVI data, and then through Formula (1) is used to further fit the Landsat time series NDVI data and the MODIS best reference curve in step B to obtain the Landsat fitting curve.
L(x)=a*M(x+x0)+b (1)L(x)=a*M(x+x0)+b (1)
式中x表示一年中的某一天,L(x)为Landasat时间序列NDVI曲线函数,M(x)为MODIS最佳参考曲线函数,x0表示两种曲线之间可能存在的时间上的偏移量,范围在±30天之间,a和b为利用最小二乘法计算得到的拟合参数;where x represents a certain day of the year, L(x) is the Landasat time series NDVI curve function, M(x) is the MODIS optimal reference curve function, and x0 represents the possible time offset between the two curves The range is between ±30 days, a and b are the fitting parameters calculated by the least squares method;
步骤F:通过计算步骤B中的Landsat时间序列NDVI影像像元值与对应位置MODIS所有候选曲线像元值之间的相关指数R2,分析两者之间的相关指数R2大小并选取MODIS最佳参考曲线;Step F: Calculate the
步骤G:利用步骤E和步骤F可以确认最佳参考曲线,此时最佳时间偏移量x0为0,同时得到对应的拟合参数a与b,然后利用MODIS最佳参考曲线以及相对应的拟合参数得到Landsat初始拟合曲线。Step G: Use steps E and F to confirm the best reference curve. At this time, the best time offset x0 is 0, and the corresponding fitting parameters a and b are obtained at the same time. Then use the MODIS best reference curve and the corresponding Fit the parameters to get the Landsat initial fit curve.
所述的方法,所述步骤三包括以下步骤:步骤H:通过计算原始Landsat时间序列NDVI像元值(晴空像元)与步骤G得到Landast初始拟合曲线上对应像元NDVI拟合值之间的差值,采用线性插值法将线性插值的结果拟合到初始拟合曲线上,以减小两者之间的差异,最后利用IDL编程平台中的高斯函数来进一步平滑优化后的拟合曲线,使该曲线尽可能的包含所有可用的原始Landsat时间序列NDVI值,则称该曲线为最终拟合曲线。In the method, the third step includes the following steps: Step H: Calculate the difference between the NDVI pixel value (clear sky pixel) of the original Landsat time series and the NDVI fitting value of the corresponding pixel on the Landast initial fitting curve. The difference between the two values, the linear interpolation method is used to fit the linear interpolation result to the initial fitting curve to reduce the difference between the two, and finally the Gaussian function in the IDL programming platform is used to further smooth the optimized fitting curve. , so that the curve contains all the available original Landsat time series NDVI values as much as possible, and the curve is called the final fitting curve.
所述的方法,步骤F中,对于每一条MODIS作物参考曲线,均有60个相关指数R2,其取值范围集中在0.11至0.92之间,然后选取相关指数最大的候选曲线作为该MODIS作物参考曲线的待匹配曲线,再比较所有MODIS作物参考曲线对应的待匹配曲线和Landsat时间序列NDVI数据之间的相关指数大小,以及MODIS本地曲线和Landsat时间序列NDVI数据之间的相关指数大小,其取值范围集中在0.78至0.92之间。如果MODIS本地曲线相关指数R2值最大,则直接将MODIS本地曲线作为最佳参考曲线;如果相关指数R2最大值出现在MODIS作物参考曲线的待匹配曲线中,则计算所有候选曲线相关指数R2的平均值,选取其中高于R2平均值的候选曲线并进行再次平均,将最后得到的平均曲线作为最佳参考曲线。In the described method, in step F, for each MODIS crop reference curve, there are 60 correlation indices R 2 , the value range of which is concentrated between 0.11 and 0.92, and then the candidate curve with the largest correlation index is selected as the MODIS crop. The curve to be matched of the reference curve, and then compare the correlation index between the curve to be matched and the Landsat time series NDVI data corresponding to all MODIS crop reference curves, as well as the correlation index between the MODIS local curve and the Landsat time series NDVI data. The value range is centered between 0.78 and 0.92. If the MODIS local curve correlation index R 2 value is the largest, the MODIS local curve is directly used as the best reference curve; if the correlation index R 2 maximum value appears in the curve to be matched in the MODIS crop reference curve, the correlation index R of all candidate curves is calculated. 2 , select the candidate curve higher than the average value of R 2 and average it again, and take the final average curve as the best reference curve.
所述的方法,不同地物的MODIS参考曲线是利用已知的作物分类图CDL数据中分类精度较高的结果选定的纯净像元区域得到的,所述步骤A中的具体设置参数是根据多次实验的经验参数。In the described method, the MODIS reference curves of different ground objects are obtained by using the pure pixel area selected by the results of the known crop classification map CDL data with higher classification accuracy, and the specific setting parameters in the step A are based on: Empirical parameters of multiple experiments.
有益效果:Beneficial effects:
本发明根据不同传感器影像的不同空间分辨率植被指数数据具有线性关系的特点,提出了一种基于作物参考曲线的数据时空融合方法,适用于具有较高空间异质性的复杂农田系统遥感监测。利用已知作物分类图层CDL数据,设定移动窗口确定了不同类型作物的纯净像元区域,并基于纯净像元区域构建了MODIS作物参考曲线样本库;通过比较Landsat影像像元的时间序列NDVI数据与MODIS作物参考曲线以及MODIS对应像元原始NDVI数据的本地曲线之间的相关性,构建了最佳参考曲线的选取方法,并基于最佳参考曲线的拟合参数和Landsat时间序列NDVI原始数据得到了初始拟合曲线;通过线性插值和高斯函数拟合等方法最大限度保留了Landsat原始有效值在曲线拟合中的作用,进一步减小了初始过度拟合的现象,得到最终拟合曲线,从而生成同时具有高时间和高空间分辨率的植被指数数据集。本方法综合考虑了低空间分辨率影像混合像元严重和传统融合方法匹配数据较少的两大问题,利用已知比较可靠的分类数据减小了混合像元的影响,同时通过将基于高时间分辨率影像得到的最佳参考曲线的时间维度信息进行“传递”,避免了云覆盖导致的高空间分辨率影像可匹配数目受限制的问题,能够最大限度的利用所有可用的原始影像信息,生成的具有高时空分辨率的植被指数数据能够很好的应用在复杂农田系统遥感监测中。According to the feature of linear relationship between vegetation index data of different spatial resolutions of different sensor images, the invention proposes a data spatiotemporal fusion method based on crop reference curve, which is suitable for remote sensing monitoring of complex farmland systems with high spatial heterogeneity. Using the CDL data of the known crop classification layer, the moving window was set to determine the pure pixel area of different types of crops, and the MODIS crop reference curve sample library was constructed based on the pure pixel area. By comparing the time series NDVI of Landsat image pixels The correlation between the data and the MODIS crop reference curve and the local curve of the original NDVI data of MODIS corresponding pixels, the selection method of the best reference curve is constructed, and based on the fitting parameters of the best reference curve and the original Landsat time series NDVI data The initial fitting curve is obtained; the role of the original effective value of Landsat in the curve fitting is preserved to the greatest extent by methods such as linear interpolation and Gaussian function fitting, which further reduces the phenomenon of initial overfitting, and the final fitting curve is obtained, This results in a vegetation index dataset with both high temporal and high spatial resolution. This method comprehensively considers the two major problems of serious mixed pixels in low spatial resolution images and the lack of matching data in traditional fusion methods, and uses known reliable classification data to reduce the impact of mixed pixels. The time dimension information of the optimal reference curve obtained from the high-resolution image is "transferred", which avoids the problem of limited matching number of high-spatial-resolution images caused by cloud coverage, and can maximize the use of all available original image information to generate The vegetation index data with high spatial and temporal resolution can be well applied in remote sensing monitoring of complex farmland systems.
附图说明Description of drawings
图1为四种典型地物的MODIS参考曲线图;左上为森林,右上为双季作物,左下为玉米,右下为大豆;Figure 1 shows the MODIS reference curves of four typical features; the upper left is forest, the upper right is double crop, the lower left is corn, and the lower right is soybean;
图2为四种典型地物的MODIS参考曲线、最佳参考曲线、初始拟合曲线、最终拟合曲线以及Landsat时间序列NDVI值;左上为玉米,右上为大豆,左下为双季作物,右下为森林;(1)MODIS参考曲线,(2)最佳参考曲线,(3)初始拟合曲线,(4)最终拟合曲线,圆点表示Landsat时间序列NDVI值;Figure 2 shows the MODIS reference curve, the best reference curve, the initial fitting curve, the final fitting curve and the Landsat time series NDVI values of four typical ground objects; the upper left is corn, the upper right is soybean, the lower left is double crop, the lower right is the forest; (1) MODIS reference curve, (2) best reference curve, (3) initial fitting curve, (4) final fitting curve, dots represent Landsat time series NDVI values;
图3为2013年基于作物参考曲线和基于STARFM在三种作物类型上的NDVI拟合曲线比较;图(a)为作物分类图,图(b)、(c)、(d)分别为图(a)对应圆点位置的玉米、大豆、双季作物的曲线图,图(b)、(c)、(d)中小圆点为时间序列Landsat影像,大圆点为STARFM配对影像,(1)为基于作物参考曲线法的拟合曲线,(2)为STARFM法拟合曲线,(3)为MODIS参考曲线;Figure 3 shows the comparison of NDVI fitting curves based on crop reference curve and STARFM on three crop types in 2013; Figure (a) is the crop classification diagram, Figures (b), (c), and (d) are respectively ( a) Curves of corn, soybean, and double-crop crops corresponding to the dot positions. The small dots in the figures (b), (c), and (d) are the time-series Landsat images, and the large dots are the STARFM paired images. (1) is the fitting curve based on the crop reference curve method, (2) is the STARFM method fitting curve, and (3) is the MODIS reference curve;
具体实施方式Detailed ways
以下结合具体实施例,对本发明进行详细说明。The present invention will be described in detail below with reference to specific embodiments.
本发明提出了基于作物参考曲线进行高时空分辨率植被指数数据融合的方法,包括如下步骤:The present invention proposes a method for high temporal and spatial resolution vegetation index data fusion based on a crop reference curve, including the following steps:
S1:本实例的研究区域位于美国东海岸的Choptank河流域,包括马里兰州、特拉华州和新泽西州的部分地区,该地区的土地利用方式主要为58%的农业用地、33%的森林和仅9%的城市建设用地,最常见的作物种植制度包括玉米-大豆轮作,以及大豆-冬小麦的双季种植。以2013年和2014年作物分类图CDL数据作为可靠的作物分布数据,然后设定一个25*25像元大小的移动窗口,通过移动像元窗口,使得窗口中95%以上的像元属于作物分类图CDL中的单一作物类别时,则认为该窗口为纯净像元窗口,同时获取该CDL纯净像元窗口的位置信息,本研究实例主要选取了玉米、大豆、双季作物(冬小麦和大豆)和森林等四类地物的纯净像元窗口;S1: The study area of this example is located in the Choptank River Basin on the east coast of the United States, including parts of Maryland, Delaware, and New Jersey. The land use pattern in this area is mainly 58% agricultural land, 33% forest and With only 9% of urban built-up land, the most common cropping systems include corn-soybean rotation and double-cropping soybean-wheat. Taking the 2013 and 2014 crop classification map CDL data as reliable crop distribution data, and then setting a moving window with a size of 25*25 pixels, by moving the pixel window, more than 95% of the pixels in the window belong to crop classification When there is a single crop category in the CDL, the window is considered to be a pure pixel window, and the location information of the CDL pure pixel window is obtained. In this research example, corn, soybean, double crop (winter wheat and soybean) and Pure pixel windows of four types of objects such as forests;
S2:利用MRT(MODIS Reprojection Tool)工具对低空间分辨率的MODIS数据(MCD43A4 collection 6,分辨率为500m,时间范围为2013年1月1日至2014年12月31日,影像行列为h12v05)进行重采样和重投影等预处理,使其与高空间分辨率的Landsat数据和作物分类图CDL数据具有同样的空间分辨率和投影信息,重采样方法为双线性内插法(bilinear interpolation),重投影为UTM(UNIVERSAL TRANSVERSE MERCARTOR GRIDSYSTEM,通用横轴墨卡托格网系统)投影,并对MODIS数据和Landsat数据进行自动几何配准(automatic image matching method),再通过计算得到MODIS时间序列植被指数NDVI数据;同时,本研究使用的高空间分辨率Landsat数据包含2013年和2014年可用的16期Landsat7数据和18期Landsat8数据,行列号为33、14;其中由于某些期数的Landsat7影像有明显的条带问题,因此利用GNSPI(Geostatistical Neighborhood Similar PixelInterpolator)插值法对具有条带间隙的Landsat7影像进行插值处理,得到完整覆盖研究区的数据,最后计算得到Landsat时间序列NDVI数据;S2: Use the MRT (MODIS Reprojection Tool) tool to analyze the low spatial resolution MODIS data (MCD43A4 collection 6, the resolution is 500m, the time range is from January 1, 2013 to December 31, 2014, and the image row is h12v05) Perform preprocessing such as resampling and reprojection to make it have the same spatial resolution and projection information as the high spatial resolution Landsat data and crop classification map CDL data, and the resampling method is bilinear interpolation. , the reprojection is UTM (UNIVERSAL TRANSVERSE MERCARTOR GRIDSYSTEM) projection, and the MODIS data and Landsat data are subjected to automatic geometric registration (automatic image matching method), and then the MODIS time series vegetation is obtained by calculation Exponential NDVI data; meanwhile, the high spatial resolution Landsat data used in this study contains 16 periods of Landsat7 data and 18 periods of Landsat8 data available in 2013 and 2014, with row and column numbers 33 and 14; There is an obvious banding problem, so the GNSPI (Geostatistical Neighborhood Similar PixelInterpolator) interpolation method is used to interpolate the Landsat7 images with band gaps to obtain data that completely covers the study area, and finally the Landsat time series NDVI data is obtained by calculation;
S3:利用步骤S1中得到的CDL纯净像元窗口的位置信息,选取MODIS时间序列植被指数NDVI数据上与该CDL纯净像元窗口中间的部分像元区域(16*16像元)相对应的位置,提取得到该位置包含的像元的NDVI平均值,因此根据不同类型作物的纯净像元窗口数的多少即可得到不同类型作物的多条MODIS时间序列NDVI曲线。在本研究实例中,2013年得到23条玉米曲线、1条大豆曲线、5条双季作物(冬小麦和大豆)曲线、26条森林曲线,2014年得到24条玉米曲线、3条大豆曲线、10条双季作物(冬小麦和大豆)曲线、23条森林曲线;由于其中部分曲线依然存在异常值,本实例采用线性插值法消除了该异常值,再将这些曲线作为不同作物的MODIS作物参考曲线构建成MODIS作物参考曲线样本库,图1为2014年四种典型地物的MODIS参考曲线图;S3: Using the position information of the CDL pure pixel window obtained in step S1, select the position corresponding to the partial pixel area (16*16 pixels) in the middle of the CDL pure pixel window on the MODIS time series vegetation index NDVI data , and extract the average NDVI value of the pixels contained in the position. Therefore, according to the number of pure pixel windows of different types of crops, multiple MODIS time series NDVI curves of different types of crops can be obtained. In this research example, 23 corn curves, 1 soybean curve, 5 double crop (winter wheat and soybean) curves, and 26 forest curves were obtained in 2013, and 24 corn curves, 3 soybean curves, 10 There are two double crop (winter wheat and soybean) curves and 23 forest curves; since some of the curves still have outliers, this example uses linear interpolation to eliminate the outliers, and then uses these curves as MODIS crop reference curves for different crops. A MODIS crop reference curve sample library, Figure 1 is the MODIS reference curve diagram of four typical features in 2014;
S4:利用步骤S2中计算得到的MODIS时间序列植被指数NDVI数据的原始值,得到MODIS影像每一个像元的时间序列植被指数NDVI曲线,称之为该像元的MODIS本地曲线。由于Landsat影像像元和对应的MDOSI影像像元可能均是纯净像元,两者的NDVI曲线本身就具有很好的相关性,或者两者均为混合像元但依然可能具有较好的相关性,因此本研究综合考虑了MODIS本地曲线以及步骤S3中得到的MODIS作物参考曲线样本库,将两者结合起来一起作为候选曲线参与到曲线匹配中;S4: Using the original value of the MODIS time series vegetation index NDVI data calculated in step S2, the time series vegetation index NDVI curve of each pixel of the MODIS image is obtained, which is called the MODIS local curve of the pixel. Since the Landsat image pixels and the corresponding MDOSI image pixels may both be pure pixels, the NDVI curves of the two have a good correlation, or both are mixed pixels but may still have a good correlation. , so this study comprehensively considered the MODIS local curve and the MODIS crop reference curve sample library obtained in step S3, and combined the two as a candidate curve to participate in the curve matching;
S5:利用步骤S2中计算得到的Landsat时间序列NDVI数据,分析该数据所有影像像元与步骤S3中得到的MODIS作物参考曲线样本库中的所有曲线以及步骤S4中得到的MODIS本地曲线的相关指数R2大小,将相关指数R2最大的曲线作为Landsat时间序列NDVI数据的影像像元的MODIS最佳参考曲线,然后通过公式(1)来进一步拟合步骤S2中的Landsat时间序列NDVI数据和MODIS最佳参考曲线,得到Landsat拟合曲线。S5: Using the Landsat time series NDVI data calculated in step S2, analyze the correlation index between all image pixels of the data and all the curves in the MODIS crop reference curve sample library obtained in step S3 and the MODIS local curve obtained in step S4 R 2 size, take the curve with the largest correlation index R 2 as the best MODIS reference curve of the image pixel of Landsat time series NDVI data, and then use formula (1) to further fit the Landsat time series NDVI data and MODIS in step S2 The best reference curve is obtained to obtain the Landsat fitting curve.
L(x)=a*M(x+x0)+b (1)L(x)=a*M(x+x0)+b (1)
式中x表示一年中的某一天,L(x)为Landasat时间序列NDVI曲线函数,M(x)为MODIS最佳参考曲线函数,x0表示两种曲线之间可能存在的时间上的偏移量,范围在±30天之间,a和b为利用最小二乘法计算得到的拟合参数;where x represents a certain day of the year, L(x) is the Landasat time series NDVI curve function, M(x) is the MODIS optimal reference curve function, and x0 represents the possible time offset between the two curves The range is between ±30 days, a and b are the fitting parameters calculated by the least squares method;
S6:通过计算步骤S2中的Landsat时间序列NDVI影像像元值与对应位置MODIS所有候选曲线像元值之间的相关指数R2,分析两者之间的相关指数R2大小并选取MODIS最佳参考曲线。对于每一条MODIS作物参考曲线,均有60个相关指数R2,其取值范围集中在0.11至0.92之间,然后选取相关指数最大的候选曲线作为该MODIS作物参考曲线的待匹配曲线,再比较所有MODIS作物参考曲线对应的待匹配曲线和Landsat时间序列NDVI数据之间的相关指数大小,以及MODIS本地曲线和Landsat时间序列NDVI数据之间的相关指数大小,其取值范围集中在0.78至0.92之间。如果MODIS本地曲线相关指数R2值最大,则直接将MODIS本地曲线作为最佳参考曲线;如果相关指数R2最大值出现在MODIS作物参考曲线的待匹配曲线中,则计算所有候选曲线相关指数R2的平均值,选取其中高于R2平均值的候选曲线并进行再次平均,将最后得到的平均曲线作为最佳参考曲线。如图2所示,黑色圆点为步骤S2计算得到的Landsat时间序列NDVI值,曲线(1)为步骤S3得到的MODIS参考曲线,曲线(2)为经过步骤S5和S6拟合得到的MODIS最佳参考曲线;S6: By calculating the
S7:利用步骤S5和步骤S6可以确认最佳参考曲线,此时最佳时间偏移量x0为0,同时得到对应的拟合参数a与b,然后利用MODIS最佳参考曲线以及相对应的拟合参数得到Landsat初始拟合曲线。如图2所示,曲线(3)为初始拟合曲线,此时初始拟合曲线和目标像元区域的Landsat时间序列NDVI值具有较好的拟合关系,但依然有部分Landsat原始NDVI值不能很好的拟合到初始拟合曲线上;S7: Use steps S5 and S6 to confirm the best reference curve. At this time, the best time offset x0 is 0, and the corresponding fitting parameters a and b are obtained at the same time, and then the MODIS best reference curve and the corresponding fitting parameters are obtained. Fit the parameters to get the Landsat initial fitting curve. As shown in Figure 2, curve (3) is the initial fitting curve. At this time, the initial fitting curve has a good fitting relationship with the Landsat time series NDVI values of the target pixel area, but there are still some original Landsat NDVI values that cannot be Fits well to the initial fitting curve;
S8:通过计算原始Landsat时间序列NDVI像元值(晴空像元)与步骤S7得到Landast初始拟合曲线上对应像元NDVI拟合值之间的差值,采用线性插值法将线性插值的结果拟合到初始拟合曲线上,以减小两者之间的差异,最后利用IDL编程平台中的高斯函数来进一步平滑优化后的拟合曲线,使该曲线尽可能的包含所有可用的原始Landsat时间序列NDVI值,则称该曲线为最终拟合曲线,如图2所示,曲线(4)为Landsat最终拟合曲线,此时Landsat时间序列NDVI值和Landsat最终拟合曲线有很好的拟合关系。S8: Calculate the difference between the NDVI pixel value (clear sky pixel) of the original Landsat time series and the NDVI fitting value of the corresponding pixel on the Landast initial fitting curve obtained in step S7, and use the linear interpolation method to fit the linear interpolation result. Combined to the initial fitting curve to reduce the difference between the two, and finally use the Gaussian function in the IDL programming platform to further smooth the optimized fitting curve, so that the curve contains all the available original Landsat time as much as possible The sequence NDVI value is called the final fitting curve. As shown in Figure 2, curve (4) is the Landsat final fitting curve. At this time, the Landsat time series NDVI value and the Landsat final fitting curve have a good fit relation.
为了比较本研究基于作物参考曲线的数据重建方法的效果,本文同时利用时空融合经典算法STARFM进行了对比实验,该算法需要多对晴空条件下获取的配对影像进行拟合。如图3所示为研究区2013年基于作物参考曲线和基于STARFM算法得到的三种不同作物的NDVI拟合曲线,其中曲线(3)为MODIS参考曲线,黑色大圆点为STARFM算法可用的无云配对影像,曲线(2)为基于STARFM算法得到的拟合曲线,黑色小圆点为本研究采用的基于作物参考曲线重建方法可用的所有Landsat影像,曲线(1)为基于作物参考曲线重建方法得到的拟合曲线。可以发现,粗分辨率MODIS影像受分辨率与混合像元的影响,经典算法STARFM则受云覆盖等影响导致缺少可用的配对影像,数据重建效果不理想,均不能反映不同作物在不同生长期的物候变化特征。而本研究采用的数据重建方法则极大的避免了云覆盖的影响,同时得到的高时空分辨率数据能很好的反映不同作物的关键物候变化特征。In order to compare the effect of the data reconstruction method based on the crop reference curve in this study, this paper also uses the classic spatiotemporal fusion algorithm STARFM to carry out comparative experiments, which requires multiple pairs of paired images acquired under clear sky conditions to be fitted. Figure 3 shows the NDVI fitting curves of three different crops based on the crop reference curve and the STARFM algorithm in the study area in 2013, in which curve (3) is the MODIS reference curve, and the black big dots are the available data for the STARFM algorithm. Cloud paired images, curve (2) is the fitting curve based on the STARFM algorithm, black dots are all available Landsat images based on the crop reference curve reconstruction method used in this study, and curve (1) is the crop reference curve reconstruction method The resulting fitted curve. It can be found that the coarse-resolution MODIS image is affected by resolution and mixed pixels, while the classical algorithm STARFM is affected by cloud coverage, which leads to the lack of available paired images. phenological change characteristics. The data reconstruction method used in this study can greatly avoid the influence of cloud cover, and the obtained high temporal and spatial resolution data can well reflect the key phenological changes of different crops.
综上所述,本研究通过已知作物分类数据设置纯净像元区域,并利用纯净像元概念得到基于低空间分辨率的作物参考曲线,然后通过平移拉伸等拟合方式将高空间分辨率影像和作物参考曲线进行拟合转换和二次优化调整,很好地将低空间分辨率作物参考曲线的时间维信息转换到高空间分辨率影像上,实现了基于作物参考曲线的高时空分辨率植被指数数据融合重建,能够很好地解决原有数据时空融合算法对于混合像元和云覆盖等因素对于空间异质性较高区域数据融合的干扰和限制问题,对于不同复杂程度田块的农田系统遥感监测具有重要意义。To sum up, this study uses the known crop classification data to set the pure pixel area, and uses the concept of pure pixel to obtain the crop reference curve based on low spatial resolution, and then fits the high spatial resolution through translation stretching and other fitting methods. The image and crop reference curve are fitted, converted and adjusted by secondary optimization, and the temporal dimension information of the low spatial resolution crop reference curve is well converted to the high spatial resolution image, and the high spatial and temporal resolution based on the crop reference curve is realized. The fusion and reconstruction of vegetation index data can well solve the interference and limitation of the original data spatiotemporal fusion algorithm for mixed pixels and cloud coverage and other factors for data fusion in areas with high spatial heterogeneity. System remote sensing monitoring is of great significance.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that, for those skilled in the art, improvements or changes can be made according to the above description, and all these improvements and changes should fall within the protection scope of the appended claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911217214.3A CN110909821B (en) | 2019-12-03 | 2019-12-03 | A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911217214.3A CN110909821B (en) | 2019-12-03 | 2019-12-03 | A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110909821A CN110909821A (en) | 2020-03-24 |
CN110909821B true CN110909821B (en) | 2020-07-28 |
Family
ID=69821743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911217214.3A Expired - Fee Related CN110909821B (en) | 2019-12-03 | 2019-12-03 | A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110909821B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113643409B (en) * | 2021-08-24 | 2022-03-18 | 中国农业大学 | Method, device and storage medium for characterizing vegetation production rate |
CN115147510A (en) * | 2022-07-07 | 2022-10-04 | 南京国准数据有限责任公司 | Simple and robust land satellite vegetation index long-time sequence reconstruction method |
CN115062863B (en) * | 2022-07-13 | 2023-08-25 | 中国农业科学院农业资源与农业区划研究所 | Apple flowering phase prediction method based on crop reference curve and accumulated temperature correction |
CN118411601B (en) * | 2024-04-24 | 2024-11-12 | 中国农业科学院农业资源与农业区划研究所 | A vegetation index prediction method for crops |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102831310A (en) * | 2012-08-17 | 2012-12-19 | 北京师范大学 | Method for building high-spatial resolution NDVI (normalized difference vegetation index) time series data |
CN103678914A (en) * | 2013-12-16 | 2014-03-26 | 中国科学院遥感与数字地球研究所 | Alpine grassland soil respiration estimation method based on satellite remote sensing data |
CN103954957A (en) * | 2014-05-22 | 2014-07-30 | 北京空间机电研究所 | Remote-sensing image atmosphere proximity effect correction method based on atmosphere separation MTF |
CN105046648A (en) * | 2015-06-25 | 2015-11-11 | 北京师范大学 | Method for constructing high temporal-spatial remote sensing data |
WO2017129940A1 (en) * | 2016-01-29 | 2017-08-03 | Global Surface Intelligence Limited | System and method for earth observation and analysis |
CN107103584A (en) * | 2017-04-11 | 2017-08-29 | 北京师范大学 | A kind of production high-spatial and temporal resolution NDVI weighted based on space-time method |
CN107783106A (en) * | 2016-08-25 | 2018-03-09 | 大连楼兰科技股份有限公司 | Data fusion method between unmanned plane and barrier |
CN108613933A (en) * | 2018-06-13 | 2018-10-02 | 中南林业科技大学 | Forest land arid space-time dynamic monitoring method based on multi-sources RS data fusion |
CN109358162A (en) * | 2018-11-06 | 2019-02-19 | 福州大学 | A New Construction Method of Remote Sensing Ecological Index Based on Spatial Geometry |
CN109543630A (en) * | 2018-11-28 | 2019-03-29 | 苏州中科天启遥感科技有限公司 | Remote sensing image forest land extracting method and system, storage medium, electronic equipment based on deep learning |
CN110363246A (en) * | 2019-07-18 | 2019-10-22 | 滨州学院 | A Fusion Method of Vegetation Index NDVI with High Temporal and Spatial Resolution |
US10489689B1 (en) * | 2016-03-30 | 2019-11-26 | Descartes Labs, Inc. | Iterative relabeling using spectral neighborhoods |
CN110503137A (en) * | 2019-07-29 | 2019-11-26 | 电子科技大学 | Determination Method of Basic Image Pairs for Spatio-temporal Fusion of Remote Sensing Imagery Based on Cross Fusion |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150146928A1 (en) * | 2013-11-27 | 2015-05-28 | Electronics And Telecommunications Research Institute | Apparatus and method for tracking motion based on hybrid camera |
US10372705B2 (en) * | 2015-07-07 | 2019-08-06 | International Business Machines Corporation | Parallel querying of adjustable resolution geospatial database |
CN108241871A (en) * | 2017-12-27 | 2018-07-03 | 华北水利水电大学 | Laser point cloud and image fusion data classification method based on multi-features |
CN108982369B (en) * | 2018-04-28 | 2020-09-01 | 中国农业大学 | Plot scale crop growth monitoring method integrating GF-1WFV and MODIS data |
-
2019
- 2019-12-03 CN CN201911217214.3A patent/CN110909821B/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102831310A (en) * | 2012-08-17 | 2012-12-19 | 北京师范大学 | Method for building high-spatial resolution NDVI (normalized difference vegetation index) time series data |
CN103678914A (en) * | 2013-12-16 | 2014-03-26 | 中国科学院遥感与数字地球研究所 | Alpine grassland soil respiration estimation method based on satellite remote sensing data |
CN103954957A (en) * | 2014-05-22 | 2014-07-30 | 北京空间机电研究所 | Remote-sensing image atmosphere proximity effect correction method based on atmosphere separation MTF |
CN105046648A (en) * | 2015-06-25 | 2015-11-11 | 北京师范大学 | Method for constructing high temporal-spatial remote sensing data |
WO2017129940A1 (en) * | 2016-01-29 | 2017-08-03 | Global Surface Intelligence Limited | System and method for earth observation and analysis |
US10489689B1 (en) * | 2016-03-30 | 2019-11-26 | Descartes Labs, Inc. | Iterative relabeling using spectral neighborhoods |
CN107783106A (en) * | 2016-08-25 | 2018-03-09 | 大连楼兰科技股份有限公司 | Data fusion method between unmanned plane and barrier |
CN107103584A (en) * | 2017-04-11 | 2017-08-29 | 北京师范大学 | A kind of production high-spatial and temporal resolution NDVI weighted based on space-time method |
CN108613933A (en) * | 2018-06-13 | 2018-10-02 | 中南林业科技大学 | Forest land arid space-time dynamic monitoring method based on multi-sources RS data fusion |
CN109358162A (en) * | 2018-11-06 | 2019-02-19 | 福州大学 | A New Construction Method of Remote Sensing Ecological Index Based on Spatial Geometry |
CN109543630A (en) * | 2018-11-28 | 2019-03-29 | 苏州中科天启遥感科技有限公司 | Remote sensing image forest land extracting method and system, storage medium, electronic equipment based on deep learning |
CN110363246A (en) * | 2019-07-18 | 2019-10-22 | 滨州学院 | A Fusion Method of Vegetation Index NDVI with High Temporal and Spatial Resolution |
CN110503137A (en) * | 2019-07-29 | 2019-11-26 | 电子科技大学 | Determination Method of Basic Image Pairs for Spatio-temporal Fusion of Remote Sensing Imagery Based on Cross Fusion |
Non-Patent Citations (3)
Title |
---|
A new data fusion method based on Landsat and MODIS NDVI data for high-spatial-resolution forest mapping;Hilker,T.,Wulder;《IEEE Transactions On Geoscience And Remote Sensing》;20091231;第1613-1627页 * |
Landsat8和MODIS融合构建高时空分辨率;谢登峰;《遥感学报》;20150312;第791-805页 * |
MODIS植被指数的美国玉米单产遥感估测;任建强,陈仲新;《遥感学报》;20151231;第568-577页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110909821A (en) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110909821B (en) | A method for high spatiotemporal resolution vegetation index data fusion based on crop reference curve | |
CN106780091B (en) | Remote sensing extraction method of agricultural disaster information based on spatiotemporal statistical characteristics of vegetation index | |
Chen et al. | Spatially and temporally weighted regression: A novel method to produce continuous cloud-free Landsat imagery | |
Shen et al. | A spatiotemporal fusion based cloud removal method for remote sensing images with land cover changes | |
CN109840553B (en) | Extraction method and system of cultivated land crop type, storage medium and electronic equipment | |
Zhou et al. | For-backward LSTM-based missing data reconstruction for time-series Landsat images | |
CN103489171B (en) | Based on the even color method of the even light of the robotization of remote sensing image on a large scale in standard color storehouse | |
Wang et al. | A comprehensive review of spatial-temporal-spectral information reconstruction techniques | |
Jiang et al. | Unmixing-based spatiotemporal image fusion accounting for complex land cover changes | |
Jing et al. | A rigorously-incremental spatiotemporal data fusion method for fusing remote sensing images | |
CN114387531B (en) | Surface temperature downscaling method based on improved geographic weighted regression model | |
TAO et al. | Fusing multi-source data to map spatio-temporal dynamics of winter rape on the Jianghan Plain and Dongting Lake Plain, China | |
CN108335320A (en) | The spatial registration method and spatial registration system of multi-source Remote Sensing Images | |
CN109840539B (en) | Remote sensing space-time data fusion method based on ground block pattern spots | |
Schneider et al. | Matching of high-resolution optical data to a shaded DEM | |
Sakieh et al. | An integrated spectral-textural approach for environmental change monitoring and assessment: analyzing the dynamics of green covers in a highly developing region | |
Sui et al. | Processing of multitemporal data and change detection | |
Zhao et al. | SRSF-GAN: A super-resolution-based spatial fusion with GAN for satellite images with different spatial and temporal resolutions | |
CN111523451A (en) | A Method for Constructing High Spatiotemporal Resolution NDVI Data | |
Tawade et al. | Remote sensing image fusion using machine learning and deep learning: a systematic review | |
Holecz et al. | Combining moderate-resolution time-series RS data from SAR and optical sources for rice crop characterisation: examples from Bangladesh | |
Chang et al. | Building Height Extraction Based on Joint Optimal Selection of Regions and Multiindex Evaluation Mechanism | |
Pan et al. | RBP-MTL: Agricultural parcel vectorization via region-boundary-parcel decoupled multitask learning | |
CN118313239B (en) | A method and system for reconstructing land surface temperature at a continuous hundred-meter scale in all-weather space and time | |
Ding et al. | A spatial downscaling approach for land surface temperature by considering descriptor weight |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200728 Termination date: 20201203 |
|
CF01 | Termination of patent right due to non-payment of annual fee |