CN107099558B - 一种同时生物合成1,3-丙二醇和乙偶姻的新方法 - Google Patents

一种同时生物合成1,3-丙二醇和乙偶姻的新方法 Download PDF

Info

Publication number
CN107099558B
CN107099558B CN201710275343.2A CN201710275343A CN107099558B CN 107099558 B CN107099558 B CN 107099558B CN 201710275343 A CN201710275343 A CN 201710275343A CN 107099558 B CN107099558 B CN 107099558B
Authority
CN
China
Prior art keywords
pdhc
gene
fdnghi
glycerol
acetoin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710275343.2A
Other languages
English (en)
Other versions
CN107099558A (zh
Inventor
宫衡
徐丹凤
傅水林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201710275343.2A priority Critical patent/CN107099558B/zh
Publication of CN107099558A publication Critical patent/CN107099558A/zh
Application granted granted Critical
Publication of CN107099558B publication Critical patent/CN107099558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05006Formate dehydrogenase-N (1.1.5.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/04Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
    • C12Y102/04001Pyruvate dehydrogenase (acetyl-transferring) (1.2.4.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种更有效的利用甘油方法,即:将克雷伯氏肺炎杆菌(Klebsiella pneum oniae)中编码甲酸脱氢酶和丙酮酸脱氢酶复合体的基因敲除,利用获得的重组菌,同时生产1,3-丙二醇和乙偶姻。与现有的技术相比,利用本发明生物转化甘油时,不但能同时生产两种高附加值产品,也显著改善了产品分离精制的效率。

Description

一种同时生物合成1,3-丙二醇和乙偶姻的新方法
技术领域
本发明属于生物工程技术领域,具体地说,即:通过敲除克雷伯氏肺炎杆菌中编码甲酸脱氢酶和丙酮酸脱氢酶复合体的基因,同时生产1,3-丙二醇和乙偶姻。
背景技术
随着化石燃料的日益枯竭,可再生新能源引起了越来越多的关注,其中生物柴油因具有可循环性,可降解性及清洁无污染的优势进而日益引起关注。生物柴油主要来自于动植物油脂,通过酯交换或热化学工艺制成制备。所以在生物柴油的生产过程中,会产生大量的副产物甘油,产量约占生物柴油总产量的10%,因此需要有效的方法利用好这些富余甘油。目前,在甘油的利用的方法中,考虑最广泛的就是以甘油为碳源,采用微生物代谢生产高附加值的化合物。其中以克雷伯氏肺炎杆菌(Klebsiela pneum oniae)利用甘油生产一些大宗化学品,如1,3-丙二醇(1,3-propanediol,1,3-PD)等备受关注。
1,3-PD是一种重要的平台化合物,有多种用途:如1,3-PD可作为单体合成新型聚醋——聚对苯二甲酸丙二醇醋(PTT)。研究表明K.pneumoniae利用甘油生产1,3-PD时,主要副产物为2,3-丁二醇。由于2,3-丁二醇的沸点与1,3-PD相近,因而给后续1,3-PD的精制分离过程造成了很大的困难。
在K.pneumoniae中2,3-丁二醇合成来自于乙偶姻(acetoin,AC)。事实上,同1,3-PD一样,AC也是一种重要的平台化合物,此外AC的沸点要比1,3-PD低得多,因而利用K.pneumoniae共发酵生产1,3-PD与AC显然是一种更经济的甘油利用方法。但是在K.pneumoniae中AC一般不积累,而是合成了副产物2,3-丁二醇。本发明公开了一种K.pneumoniae利用甘油同时生产1,3-PD和AC的方法。该方法通过敲除克雷伯氏杆菌中编码甲酸脱氢酶和丙酮酸脱氢酶复合体的基因,阻断副产物2,3-丁二醇的合成,同现有技术相比不但能同时生产两种高附加值产品,也显著改善了产品分离精制的效率。
在K.pneumoniae中参与转化AC合成2,3-丁二醇的酶有多种,如2,3-丁二醇脱氢酶、甘油脱氢酶等,有些酶还是微生物利用甘油生物合成1,3-PD的关键酶,所以1,3-PD的生物合成总是伴随着副产物2,3-丁二醇的合成。本发明发现,在敲除克雷伯氏肺炎杆菌编码丙酮酸脱氢酶复合体(pyruvate dehydrogenase complex,PDHC)的基因后,显著抑制了菌体的生长和产物1,3-PD的合成,副产物2,3-BD几乎不积累;在此基础上进一步敲除编码一种甲酸脱氢酶(Formate dehydrogenase-N,也称FdnGHI、FDH-N)的基因后,菌体生长恢复,1,3-PD的生物合成也大部分恢复,但是AC大量积累,2,3-BD同样没有积累,达到了利用甘油同时生产1,3-PD与AC的目的。经过检索国家知识产权局(www.sipo.gov.cn)、世界产权组织(www.wipo.int)、欧洲专利局(www.espacenet.com)和美国专利商标局(www.uspto.gov)也没有发现与本专利保护请求相同的公开专利或授权专利。
发明内容
本申请的发明人在研究中发现,敲除K.pneumoniae编码PDHC和FdnGHI的基因后,重组菌能利用甘油同时生产1,3-PD和AC。所以,本发明目的在于提供一种更有效的利用甘油方法,即:将K.pneumoniae中编码PDHC和FdnGHI的基因敲除,利用甘油同时生产高附加值的1,3-PD和AC。与现有的技术相比,利用本发明生物转化甘油时,不但能同时生产两种高附加值产品,也显著改善了产品分离精制的效率。
本发明是通过以下技术方案实现的:将克雷伯氏肺炎杆菌的编码PDHC和FdnGHI的基因敲除,同时生产生产1,3-PD和AC。本发明包括种子培养以及发酵罐发酵转化甘油生成1,3-PD和AC。
根据本发明,所述编码丙酮酸脱氢酶复合体(pyruvate dehydrogenase complex,EC 1.2.4.1)的基因为:aceE,aceF和lpdA三个基因。这三个基因在基因组上成簇排列,分别负责编码丙酮酸脱氢酶复合体组分E1、E2和E3。
根据本发明,所述编码甲酸脱氢酶(Formate dehydrogenase-N,EC1.1.5.6)的基因为:fdnG、fdnH和fdnI三个基因。这三个基因在基因组上成簇排列,分别负责编码甲酸脱氢酶的三个亚基。
根据本发明,用于转化甘油生成1,3-PD和AC的菌株为克雷伯氏肺炎杆菌(K.pneumoniae)。相比现有的转化甘油生产1,3-PD的方法,本发明的方法的优点是:同时生产两种高附加值产品,且产品易于分离纯化。
附图说明
图1:1,3-丙二醇、乙偶姻,1,3-丙二醇、2,3-丁二醇气相色谱图
具体实施方式
以下结合具体实施例,对本发明作进一步详细说明。应理解,以下实施例仅用于说明本发明,而非用于限定本发明的范围。
实例中,斜面培养基的配方为:K2HPO43H2O 7g/L,(NH4)2SO4 1g/L,KH2PO4 2g/L,MgCl2 7H2O 0.1g/L,酵母膏7g/L,微量元素各0.3mL,调整pH 7.0,琼脂2g/L。
种子培养基的配方为:K2HPO4 3H2O 7g/L,(NH4)2SO4 1g/L,KH2PO4 2g/L,MgCl27H2O 0.1g/L,酵母膏7g/L,微量元素各0.3mL,调整pH 7.0后加入NaCl调节渗透压。
发酵罐培养基的配方为:KCl 0.75g/L,NaH2PO4 1.38g/L,(NH4)2SO4 5.35g/L,Na2SO4 0.28g/L,MgSO4 6H2O 0.26g/L,柠檬酸0.42g/L,酵母粉2g/L,微量元素各0.3mL,调整pH 7.0。
微量元素的配方为:ZnCl2 34.2g/L,FeCl3 6H2O 2.7g/L,MnCl2 4H2O10g/L,CuCl22H2O 0.85g/L,CoCl2 2H2O 23.8g/L,H3BO3 0.31g/L,Na2MoO4 0.25g/L。
发酵实验具体为:将菌株接入250ml的摇瓶(装液量50ml)进行种子培养20小时,后接入5L发酵罐中(发酵液装液量2L),按照后续所示的工艺条件控制发酵过程。初始甘油浓度60g/L,发酵温度35℃;通气量1.0vvm;搅拌转速20rpm;在发酵过程中通过加入NaOH溶液控制pH值为5.5~7.5。在发酵的各个时期通过补入不同浓度甘油溶液控制甘油浓度在10~60g/L,发酵24小时结束。
实施例中,测定发酵液中菌体干重的方法为:取1.0mL发酵液稀释7 ̄10倍,以去离子水为对照,在721分光光度计上于620nm读取OD。取不同菌浓(即不同620nm吸光值)的菌液10mL,经离心收集菌体,并用去离子水洗涤二遍洗涤,将再次离心收集后的菌体于80℃烘箱中干燥至恒重。称量菌体作出菌体干重与OD620的标准曲线,并回归出关系式。以后菌体的干重根据测定的菌液的OD620值由标准曲线回归关系式计算得出。发酵液中1,3-PD、2,3-丁二醇和AC的测定采用气相色谱法。
产1,3-PD的菌株采用克雷伯氏肺炎杆菌CCTCC M2014574,以下简称M2014574。
实施例1、敲除编码PDHC和FdnGHI的基因后形成,重组菌体利用甘油同时合成了1,3-PD和AC
将M2014574菌株于LB培养基(0.5%酵母提取物,1%胰蛋白胨,1%NaCl,pH 7.0)中37℃培养过夜,抽提基因组。以抽提好的M2014574基因组为模板,依据NCBI登录的克雷伯氏肺炎杆菌MGH 78578的基因组序列(LOCUS:NC_009648)上:aceE基因(locus_tag:KPN_00118)的上游与lpdA基因(locus_tag:KPN_00120)的下游设计引物。PCR反应结束后胶回收目的条带并测序,测序后对目的条带进行基因分析,与MGH 78578上对应的片段基因的相似度为99%。用同源重组办法,敲除M2014574基因组的aceE-aceF-lpdA三个连续的基因(7208bp),获得的重组菌为M2014574△PDHC。
同样以抽提好的M2014574基因组为模板,依据NCBI登录的克雷伯氏肺炎杆菌MGH78578的基因组序列(LOCUS:NC_009648)上:fdnG基因(locus_tag:KPN_01867)的上游与fdnI基因(locus_tag:KPN_01865)的下游设计引物。PCR反应结束后胶回收目的条带并测序,测序后对目的条带进行基因分析,与MGH 78578上对应的片段基因的相似度为99%。用同源重组办法,敲除M2014574基因组的fdnG-fdnH-fdnI三个连续的基因(3957bp),获得的重组菌为M2014574△FdnGHI。用同源重组办法,敲除M2014574△PDHC基因组的fdnG-fdnH-fdnI三个连续的基因(3957bp),获得的重组菌为M2014574△PDHC△FdnGHI。
将M2014574与M2014574△PDHC△FdnGHI分别接种于250ml的三角瓶中进行种子培养,于5L的发酵罐上发酵24小时,结果如表1所。从表1中可以看出M2014574原来主要产物是1,3-PD和副产物2,3-丁二醇,而敲除编码PDHC和FdnGHI的基因的菌株M2014574△PDHC△FdnGHI生产不受影响,但是产物发生了变化:不产2,3-丁二醇,发酵甘油生产两种高附加值的平台化合物1,3-PD和AC。M2014574△PDHC△FdnGHI同出发菌株M2014574相比,虽然1,3-PD有所下降,但是下降不多,反之生产了40.21g/L的AC,提高了甘油发酵的综合效益。
表1:同时敲除编码PDHC和FdnGHI的基因后的结果
Figure BDA0001278248730000061
实施例2、单独敲除编码PDHC或FdnGHI的基因的菌株不能产生本发明的效果
以出发菌株M2014574构建单独敲除编码PDHC或FdnGHI的菌株,具体方法见实例1,单独敲除编码PDHC的基因的菌株为M2014574△PDHC,单独敲除编码FdnGHI的基因的菌株为M2014574△FdnGHI。
将M2014574、M2014574△PDHC和M2014574△FdnGHI分别接种于250ml的三角瓶中进行种子培养,于5L的发酵罐上发酵24小时,结果如表2所。从表2中可以看出,单独敲除编码PDHC的基因后,虽然不产生2,3-丁二醇,但是菌体生长严重抑制,1,3-丙二醇显著下降,AC也没有生产。而单独敲除编码FdnGHI的基因后,M2014574△FdnGHI菌株的发酵特性几乎和出发菌株一样。所以只有同时敲除编码PDHC和FdnGHI的基因,才能实现本发明的效果。
表2:单独敲除编码PDHC和FdnGHI的基因后的结果
Figure BDA0001278248730000071
实施例3、在克雷伯氏肺炎杆菌基因组中有三种甲酸脱氢酶,只有敲除其中特定的一种,也即编码FdnGHI的基因,才能起到本发明的效果。
在K.pneumoniae中存在三种甲酸脱脱氢酶(Formate dehydrogenases,FDHs),分别为:1)FdhF,也即FDH-H,由基因fdhF编码;2)FdoGHI,也即FDH-O,含三个亚基,分别由基因fdoG、fdoH与fdoI编码;3)FdnGHI也即FDH-N,含三个亚基,分别由fdnG、fdnH与fdnI编码。
以抽提好的M2014574基因组为模板,依据NCBI登录的克雷伯氏肺炎杆菌MGH78578的基因组序列(LOCUS:NC_009648)上:fdhF基因(locus_tag:KPN_04482)的上游与下游设计引物。PCR反应结束后胶回收目的条带并测序,测序后对目的条带进行基因分析,与MGH 78578上对应的片段基因的相似度为99%。用同源重组办法,敲除敲除M2014574△PDHC基因组的fdnF基因(1680bp),获得的重组菌为M2014574△PDHC△FdhF。
以抽提好的M2014574基因组为模板,依据NCBI登录的克雷伯氏肺炎杆菌MGH78578的基因组序列(LOCUS:NC_009648)上:fdoG基因(locus_tag:KPN_04190)的上游与fdoI基因(locus_tag:KPN_04188)的下游设计引物。PCR反应结束后胶回收目的条带并测序,测序后对目的条带进行基因分析,与MGH 78578上对应的片段基因的相似度为99%。用同源重组办法,敲除M2014574△PDHC基因组的fdoG-fdoH-fdoI三个连续的基因(3962bp),获得的重组菌为M2014574△PDHC△FdoGHI。
重组菌M2014574△PDHC△FdnGHI的获取方法见实例1。
将M2014574、M2014574△PDHC△FdnGHI、M2014574△PDHC△FdhF和M2014574△PDHC△FdoGHI分别接种于250ml的三角瓶中进行种子培养,于5L的发酵罐上发酵24小时,结果如表3所。从表3可以看出,在敲除编码PDHC的基因后,敲除另外两种编码甲酸脱氢酶(FdhF和FdoGHI)的基因,对发酵几乎不产生影响,重组菌的发酵效果和单独敲除PDHC基因的重组菌发酵特性相同。只有在敲除编码PDHC的基因后进一步敲除编码特定的甲酸脱氢酶(FdnGHI)的基因后,才会出现菌体生长恢复,同时大量积累1,3-PD和AC的效果。
表3:在敲除PDHC后分别敲除三种甲酸脱氢酶基因的效果
Figure BDA0001278248730000081
Figure BDA0001278248730000091
实施例4、同时生产1,3-PD和AC,相比生产1,3-PD和2,3-丁二醇更利于产品的分离精制
目前后续产品的精制都是采用精馏工艺,物质之间沸点的差异决定了精馏的成本的高低与高纯度产品获得的难易。1,3-PD、2,3-丁二醇与乙偶姻三个物质的沸点分别为:214、180与148℃,因此同时生产1,3-PD与AC显然要容易分离得多。
图1为1,3-PD与AC,1,3-PD与2,3-丁二醇的气相图谱,可以形象的说明1,3-PD与AC的分离更容易。图中的气相色谱条件为:气相色谱仪型号为上分GC112A,色谱柱是AT SE-54(30cm×0.53mm×1.0μm)的毛细管柱,使用的检测器为FID氢火焰离子化检测器,载气为氮气,气相色谱设定温度为:柱箱110℃,进样器250℃,检测器250℃。

Claims (1)

1.一种转化甘油同时生物合成1,3-丙二醇和乙偶姻的方法,其特征在于:将克雷伯氏肺炎杆菌(Klebsiela pneumoniae)中编码甲酸脱氢酶FdnGHI和丙酮酸脱氢酶复合体PDHC的基因敲除,利用获得的重组菌,同时生产1,3-丙二醇和乙偶姻;所述的编码甲酸脱氢酶FdnGHI的基因为:fdnG、fdnH和fdnI三个基因,这三个基因在基因组上成簇排列,分别负责编码EC编号为EC 1.1.5.6的甲酸脱氢酶的三个亚基;所述编码丙酮酸脱氢酶复合体PDHC的基因为:aceE,aceF和lpdA三个基因,这三个基因在基因组上成簇排列,分别负责编码EC编号为EC 1.2.4.1的丙酮酸脱氢酶复合体的三个组分。
CN201710275343.2A 2017-04-25 2017-04-25 一种同时生物合成1,3-丙二醇和乙偶姻的新方法 Active CN107099558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710275343.2A CN107099558B (zh) 2017-04-25 2017-04-25 一种同时生物合成1,3-丙二醇和乙偶姻的新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710275343.2A CN107099558B (zh) 2017-04-25 2017-04-25 一种同时生物合成1,3-丙二醇和乙偶姻的新方法

Publications (2)

Publication Number Publication Date
CN107099558A CN107099558A (zh) 2017-08-29
CN107099558B true CN107099558B (zh) 2021-06-11

Family

ID=59657557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710275343.2A Active CN107099558B (zh) 2017-04-25 2017-04-25 一种同时生物合成1,3-丙二醇和乙偶姻的新方法

Country Status (1)

Country Link
CN (1) CN107099558B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108866114B (zh) * 2018-07-26 2022-12-30 华东理工大学 一种高效合成多元醇的新方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272314A (zh) * 2008-12-30 2011-12-07 南方化学公司 无细胞生产化学品的方法
CN105441374A (zh) * 2009-10-13 2016-03-30 基因组股份公司 生产1,4-丁二醇、4-羟基丁醛、4-羟基丁酰-coa、腐胺和相关化合物的微生物及其相关方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051324A1 (en) * 2008-10-28 2010-05-06 Rice University Microaerobic cultures for converting glycerol to chemicals
US20130172547A1 (en) * 2011-12-30 2013-07-04 Renmatix, Inc. Compositions comprising c5 and c6 oligosaccharides
CN104630100A (zh) * 2015-01-23 2015-05-20 中国科学院上海高等研究院 改造的克雷伯氏肺炎杆菌及其生产r-乙偶姻的应用
CN105154476B (zh) * 2015-09-25 2018-10-19 华东理工大学 一种通过降低副产物乙酸高效生产1,3-丙二醇的方法
CN106191136B (zh) * 2016-07-11 2019-09-24 华东理工大学 一种改进1,3-丙二醇生物合成的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272314A (zh) * 2008-12-30 2011-12-07 南方化学公司 无细胞生产化学品的方法
CN105441374A (zh) * 2009-10-13 2016-03-30 基因组股份公司 生产1,4-丁二醇、4-羟基丁醛、4-羟基丁酰-coa、腐胺和相关化合物的微生物及其相关方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PdhR (Pyruvate Dehydrogenase Complex Regulator) Controls the Respiratory Electron Transport System in Escherichia coli;Hiroshi Ogasawara 等;《Journal of Bacteriology》;20070831;第185卷(第15期);第5534-5541页 *

Also Published As

Publication number Publication date
CN107099558A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
Yang et al. Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2, 3-butanediol production
Cho et al. High production of 2, 3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1
Cheng et al. Multiple growth inhibition of Klebsiella pneumoniae in 1, 3-propanediol fermentation
Petrov et al. High production of 2, 3-butanediol from glycerol by Klebsiella pneumoniae G31
Moralejo-Gárate et al. Microbial community engineering for biopolymer production from glycerol
Rymowicz et al. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica
Kubiak et al. Physiological predisposition of various Clostridium species to synthetize 1, 3-propanediol from glycerol
Liu et al. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii
Bai et al. Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli
Priya et al. Microbial production of 2, 3-butanediol through a two-stage pH and agitation strategy in 150 l bioreactor
Xin et al. Enhanced biobutanol production with high yield from crude glycerol by acetone uncoupled Clostridium sp. strain CT7
Bankar et al. Enhanced isopropanol–butanol–ethanol (IBE) production in immobilized column reactor using modified Clostridium acetobutylicum DSM792
Tee et al. Preeminent productivity of 1, 3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fermentation
CN105154476B (zh) 一种通过降低副产物乙酸高效生产1,3-丙二醇的方法
Li et al. Production of succinate from simply purified crude glycerol by engineered Escherichia coli using two-stage fermentation
Fernández-Naveira et al. Glucose bioconversion profile in the syngas-metabolizing species Clostridium carboxidivorans
Kim et al. High production of 2, 3-butanediol from glycerol without 1, 3-propanediol formation by Raoultella ornithinolytica B6
CN104651287A (zh) 一种用于合成甘油葡糖苷的工程菌和应用
Wang et al. The implementation of high fermentative 2, 3-butanediol production from xylose by simultaneous additions of yeast extract, Na2EDTA, and acetic acid
Wang et al. Simultaneous production of poly-γ-glutamic acid and 2, 3-butanediol by a newly isolated Bacillus subtilis CS13
Chilakamarry et al. Bioconversion of glycerol waste to ethanol by Escherichia coli and optimisation of process parameters
Loureiro‐Pinto et al. Valorization of crude glycerol from the biodiesel industry to 1, 3‐propanediol by Clostridium butyricum DSM 10702: influence of pretreatment with ion exchange resins
CN107099558B (zh) 一种同时生物合成1,3-丙二醇和乙偶姻的新方法
Oh et al. Fermentation strategies for 1, 3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate by-product formation
CN106191136B (zh) 一种改进1,3-丙二醇生物合成的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant