CN107098377A - 一种暴露高能(001)晶面超薄CdS纳米带的制备方法 - Google Patents

一种暴露高能(001)晶面超薄CdS纳米带的制备方法 Download PDF

Info

Publication number
CN107098377A
CN107098377A CN201710428143.6A CN201710428143A CN107098377A CN 107098377 A CN107098377 A CN 107098377A CN 201710428143 A CN201710428143 A CN 201710428143A CN 107098377 A CN107098377 A CN 107098377A
Authority
CN
China
Prior art keywords
crystal face
ultra
cds
exposure
nanobelts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710428143.6A
Other languages
English (en)
Other versions
CN107098377B (zh
Inventor
赵才贤
陈烽
张立群
詹夏
易兰花
罗和安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201710428143.6A priority Critical patent/CN107098377B/zh
Publication of CN107098377A publication Critical patent/CN107098377A/zh
Application granted granted Critical
Publication of CN107098377B publication Critical patent/CN107098377B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/17Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种暴露(001)晶面的超薄CdS纳米带的制备方法,制备过程如下:(1)将无机镉盐,去离子水,二亚乙基三胺和硫粉混均,在搅拌下进行溶剂热反应;得溶剂热产物;(2)将溶剂热产物分散于去离子水中,超声剥离,制得暴露(001)晶面的超薄CdS纳米带。本发明具有如下技术效果:1.制备出CdS纳米带主要暴露(001)高能晶面,具有电子定向传输且传输速率快、特殊的光学性能等特点;2.CdS纳米带厚度很薄,可增大了比表面积,大大缩短了光生电荷传输到催化剂表面的迁移距离,有效抑制了光生电子和空穴对发生体相复合几率;3.在波长大于420nm可见光辐照下,并不负载任何助催化剂的情况下,CdS纳米带的产氢效率高达59.7mmol/h/g催化剂,并且光照50h,催化活性无明显降低;4.本发明具有操作简单、反应温度低、重复性好等优点。

Description

一种暴露高能(001)晶面超薄CdS纳米带的制备方法
技术领域
本发明属于光催化技术领域,具体涉及一种暴露高能(001)晶面超薄CdS纳米带的制备方法。
背景技术
CdS是一种禁带宽度窄、具有优异的可见光响应特性的半导体光催化材料,具有六方纤锌矿和立方闪锌矿两种晶体结构。由于其独特的光学、电学及催化特性,被广泛应用于太阳能电池、发光二极管、激光器以及催化领域。
自2001年王中林教授报道ZnO纳米带以来,一维纳米带材料由于具有电子定向传输、较大的纵横比及各向异性等特性,被广泛关注。目前CdS纳米带的制备方法常用化学气相沉积法(Nanotechnology,2011,22(13):135702;Advanced Materials,2010,22(29):3161-3165;ACS nano,2012,6(6):5283-5290),该方法反应温度高,制备出的CdS纳米带厚度较厚约为30-200nm,宽度为数百纳米不等,长约几微米。CdS纳米带厚度、宽度过大,一方面导致催化材料的比表面积较小,另一方面将会增大光生电荷体相传输距离,增加光生电荷复合几率。这两方面都制约了CdS纳米带光催化效率的提升。
光催化材料的活性除了与晶体结构、尺寸、形貌等有关,还与晶体的表面性质有关。自2008年Yang等人成功制备出TiO2暴露高能(001)晶面以来,可控合成暴露特定晶面的半导体材料引起了众研究学者的兴趣。一般来说,根据总表面能最底优化原则,具有高表面能晶面在晶体生长过程中越易消失。因此,制备暴露高活性晶面的半导体材料仍然是一大挑战。(001)晶面是六方纤锌矿CdS半导体各晶面中表面能最高的(Nanotechnology,2008,19:225601)。目前,已有报道采用水热法合成出暴露(001)晶面的CdS纳米树叶结构(Journal of Materials Chemistry,2012,22(45):23815-23820.)、由纳米片组成的花状结构(Materials Research Bulletin,2012,47(11):3070-3077.)和采用回流法制备CdS纳米片(CN 104085915 B)。该些合成方法,反应温度均高于180℃,较高的反应温度,对设备要求高、增加能耗,不利于大规模工业化生产。因此如何在低温下制备厚度薄、暴露高能(001)晶面的CdS纳米带仍是一个大难题。
发明内容
本发明的目的在于提供一种过程简单,可得到厚度薄、主要暴露(001)高能晶面CdS纳米带的制备方法。
本发明的技术方案是:一种暴露(001)晶面的超薄CdS纳米带的制备方法,制备过程如下:
(1)将无机镉盐,去离子水,二亚乙基三胺和硫粉混均,所述无机镉盐与二亚乙基三胺物质的量之比为1:100~600,去离子水与二亚乙基三胺物质的量之比为1:200~1000,硫粉与二亚乙基三胺物质的量之比为1:30~200;在搅拌下进行溶剂热反应;得溶剂热产物;
(2)将溶剂热产物分散于去离子水中,超声剥离,制得暴露(001)晶面的超薄CdS纳米带。
所述无机镉盐是Cd(NO3)2、CdCl2、Cd(CH3COO)2、Cd(NO3)2·4H2O、CdCl2·2.5H2O或Cd(CH3COO)2·2H2O之任一种或二种以上之混合物;所述溶剂热反应温度为60~120℃,反应时间为24~72h,搅拌速率为30~600转/分钟。
所述暴露(001)晶面的超薄CdS纳米带的厚度为1~4nm,宽度为5~20nm,长度为80~120nm。
所述超声剥离过程溶液的PH值为8~10.5,超声剥离时间为1~10h。
本发明具有如下技术效果:1.制备出CdS纳米带主要暴露(001)高能晶面,CdS纳米带的厚度仅约1~4nm;一维结构的CdS纳米带,相比于零维、二维和三维结构,具有电子定向传输且传输速率快、特殊的光学性能等特点;2.CdS纳米带厚度很薄:一方面可增大了比表面积,提供了更多反应活性位;另一方面大大缩短了光生电荷传输到催化剂表面的迁移距离,有效抑制了光生电子和空穴对发生体相复合几率;此外,还可暴露出更多的高活性(001)晶面,有利用于CdS纳米带光催化活性的提高;3.在波长大于420nm可见光辐照下,并在不负载任何助催化剂的情况下,CdS纳米带的产氢效率高达59.7mmol/h/g催化剂,并且光照50h,催化活性无明显降低,表明该催化剂具有优异的光解水产氢活性及稳定性;4.本发明具有操作简单、反应温度低、重复性好等优点。
附图说明
图1为实施例2制备的超薄暴露高能(001)晶面CdS纳米带的XRD图及纤锌矿型CdS半导体标准PDF卡片(41-1049)。
图2为实施例2制备的超薄暴露高能(001)晶面CdS纳米带透射电镜(TEM)图。
图3为实施例2制备的超薄暴露高能(001)晶面CdS纳米带透射电镜(TEM)图。
图4为实施例2制备的超薄暴露高能(001)晶面CdS纳米带快速傅立变换(FFT)及反傅立叶变换图。
图5为实施例2制备的超薄暴露高能(001)晶面CdS纳米带快速傅立变换(FFT)及反傅立叶变换图。
图6为实施例2制备的超薄暴露高能(001)晶面CdS纳米带的氮气等温吸附脱附曲线图。
图7为对比例制备的CdS纳米带透射电镜(TEM)图。
图8为实施例2制备的超薄暴露高能(001)晶面CdS纳米带在波长大于420nm可见光辐照下的光解水产氢时间关系曲线。
具体实施方式
以下通过具体的实施例对发明的技术方案作进一步描述。
实施例1:
将10.0mmol Cd(NO3)2,33.4mmol S粉,5.0mmol去离子,1000.0mmol二亚乙基三胺充分搅拌分散均匀,随后置于120ml聚四氟乙烯反应釜中,在反应温度60℃、搅拌速率600转/分钟的条件下,溶剂热反应72h。自然冷却至室温后,离心收集溶剂热产物。然后将产物分散于去离子水中,调节溶液PH值为8,超声剥离10h,得到超薄暴露高能(001)晶面CdS纳米带。通过原子力显微镜测得CdS纳米带的厚度约1nm,宽约5nm,长约100nm。
实施例2:
将1.7mmol CdCl2·2.5H2O,15.0mmol S粉,1.0mmol去离子,1000.0mmol二亚乙基三胺充分搅拌分散均匀,随后置于120ml聚四氟乙烯反应釜中,在反应温度80℃、搅拌速率300转/分钟的条件下,溶剂热反应48h。自然冷却至室温后,离心收集溶剂热产物。然后将产物分散于去离子水中,调节溶液pH值为9.0,超声剥离2h,得到超薄暴露高能(001)晶面CdS纳米带。通过原子力显微镜测得CdS纳米带的厚度约1nm,宽约10nm,长约100nm。
如图1所示,CdS半导体标准PDF卡片的(002)和(101)晶面衍射峰强度差别不大,而采用本发明方法所制备的CdS纳米带的(001)晶面衍射峰强度远高于(101)晶面,表明CdS纳米带可能择优暴露(001)晶面。
如图2所示,所制备的纳米带宽约约10nm,长约100nm。
如图3所示,高分辨TEM图晶格条纹进一步表明,CdS纳米带的宽度约10nm。为了更好地确定纳米带的暴露晶面,选取图中虚线方框区域进行快速傅立变换(FFT)及反傅立叶变换得到图4及图5。
如图4所示,明亮的晶格点阵表明该CdS纳米带为单晶,其各晶面夹角均约为60°,分别对应于(100),(010)及晶面,表明CdS纳米带择优暴露(001)晶面。
如图5所示,晶格条纹0.36nm可分别归属于(100),(010)及晶面,且其晶面夹角均约为120°,进一步证实CdS纳米带择优暴露(001)晶面。
如图6所示,根据BET公式,计算可得比表面积为105.0m2/g。
如图7所示,在未加去离子水和搅拌的条件下,制备的CdS形貌为纳米片(对比例)。对比实施例2及对比例,可以推断,去离子水及搅拌在纳米带的形成过程起到了关键作用。
如图8所示,催化剂用量为2mg,Na2S+Na2SO3为牺牲剂。产氢速率高达59.7mmol/h/g催化剂,并且光照50h,催化活性无明显降低,表明该催化剂具有优异的光解水产氢活性及稳定性。
实施例3:
将3.0mmol CdCl2,1.0mmol Cd(CH3COO)2、5.0mmol S粉,3.0mmol去离子,1000.0mmol二亚乙基三胺充分搅拌分散均匀,随后置于120ml聚四氟乙烯反应釜中,在反应温度100℃、搅拌速率30转/分钟的条件下,溶剂热反应72h。自然冷却至室温后,离心收集溶剂热产物。然后将产物分散于去离子水中,调节溶液pH值为10.5,超声剥离6h,得到超薄暴露高能(001)晶面CdS纳米带。通过原子力显微镜测得纳米带的厚度约3nm,宽约15nm,长约100nm。
实施例4:
将1.0mmol Cd(NO3)2·4H2O,1.0mmol Cd(CH3COO)2·2H2O,10.0mmol S粉,5.0mmol去离子,1000.0mmol二亚乙基三胺充分搅拌分散均匀,随后置于120ml聚四氟乙烯反应釜中,在反应温度120℃、搅拌速率200转/分钟的条件下,溶剂热反应36h。自然冷却至室温后,离心收集溶剂热产物。然后将产物分散于去离子水中,调节溶液pH值为10.0,超声剥离1h,得到超薄暴露高能(001)晶面CdS纳米带。通过原子力显微镜测得纳米带的厚度约4nm,宽约20nm,长约100nm。
对比例:
将1.7mmol CdCl2·2.5H2O,15.0mmol S粉,1000.0mmol二亚乙基三胺充分搅拌分散均匀,随后置于120ml聚四氟乙烯反应釜中,在反应温度80℃、不搅拌(搅拌速率0转/分钟)的条件下,溶剂热反应48h。自然冷却至室温后,离心收集溶剂热产物。然后将产物分散于去离子水中,调节溶液pH值为9.0,超声剥离2h,得到产物为CdS纳米片。
在相同条件下,对比例所制备的CdS纳米片光解水产氢速率约36.0mmol/h/g催化剂,仅约为CdS纳米带产氢速率(59.7mmol/h/g)的60%。表明本发明方法制备的CdS纳米具有良好的光催化活性,本发明方法具有明显优势。

Claims (4)

1.一种暴露(001)晶面的超薄CdS纳米带的制备方法,其特征在于:制备过程如下:
(1)将无机镉盐,去离子水,二亚乙基三胺和硫粉混均,所述无机镉盐与二亚乙基三胺物质的量之比为1:100~600,去离子水与二亚乙基三胺物质的量之比为1:200~1000,硫粉与二亚乙基三胺物质的量之比为1:30~200;在搅拌下进行溶剂热反应;得溶剂热产物;
(2)将溶剂热产物分散于去离子水中,超声剥离,制得暴露(001)晶面的超薄CdS纳米带。
2.根据权利要求1所述的一种暴露(001)晶面的超薄CdS纳米带的制备方法,其特征在于:所述无机镉盐是Cd(NO3)2、CdCl2、Cd(CH3COO)2、Cd(NO3)2·4H2O、CdCl2·2.5H2O或Cd(CH3COO)2·2H2O之任一种或二种以上之混合物;所述溶剂热反应温度为60~120℃,反应时间为24~72h,搅拌速率为30~600转/分钟。
3.根据权利要求1所述的一种暴露(001)晶面的超薄CdS纳米带的制备方法,其特征在于:所述暴露(001)晶面的超薄CdS纳米带的厚度为1~4nm,宽度为5~20nm,长度为80~120nm。
4.根据权利要求1所述一种暴露(001)晶面的超薄CdS纳米带的制备方法,其特征在于:所述超声剥离过程溶液的PH值为8~10.5,超声剥离时间为1~10h。
CN201710428143.6A 2017-06-08 2017-06-08 一种暴露高能(001)晶面超薄CdS纳米带的制备方法 Expired - Fee Related CN107098377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710428143.6A CN107098377B (zh) 2017-06-08 2017-06-08 一种暴露高能(001)晶面超薄CdS纳米带的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710428143.6A CN107098377B (zh) 2017-06-08 2017-06-08 一种暴露高能(001)晶面超薄CdS纳米带的制备方法

Publications (2)

Publication Number Publication Date
CN107098377A true CN107098377A (zh) 2017-08-29
CN107098377B CN107098377B (zh) 2018-06-19

Family

ID=59660679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710428143.6A Expired - Fee Related CN107098377B (zh) 2017-06-08 2017-06-08 一种暴露高能(001)晶面超薄CdS纳米带的制备方法

Country Status (1)

Country Link
CN (1) CN107098377B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106044848A (zh) * 2016-05-26 2016-10-26 福州大学 一种一维硫化镉纳米棒催化剂及其制备和应用
CN106698500A (zh) * 2015-11-16 2017-05-24 天津大学 一种硫化镉超薄纳米片状材料的制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698500A (zh) * 2015-11-16 2017-05-24 天津大学 一种硫化镉超薄纳米片状材料的制备方法及其应用
CN106044848A (zh) * 2016-05-26 2016-10-26 福州大学 一种一维硫化镉纳米棒催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOU XU ET AL.: ""Synthesis of ultrathin CdS nanosheets as efficient visible-light0driven water splitting photocatalysts for hydrogen evolution"", 《CHEM.COMMUN.》 *

Also Published As

Publication number Publication date
CN107098377B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
Li et al. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 pn heterojunction photocatalysts for enhanced photocatalytic activity
Liu et al. A novel CeO2/Bi4Ti3O12 composite heterojunction structure with an enhanced photocatalytic activity for bisphenol A
CN107349937B (zh) 一种石墨烯基双金属硫化物纳米复合光催化剂的制备方法
CN103272639B (zh) 一种共聚合改性的石墨相氮化碳纳米片可见光催化剂
Mageshwari et al. Photocatalytic activity of hierarchical CuO microspheres synthesized by facile reflux condensation method
CN107149932B (zh) 晶面比例可控的钒酸铋光催化剂的合成及催化剂和应用
CN103752334B (zh) 离子液体促进合成石墨相氮化碳纳米片可见光催化剂
Manchala et al. Fabrication of a novel ZnIn 2 S 4/gC 3 N 4/graphene ternary nanocomposite with enhanced charge separation for efficient photocatalytic H 2 evolution under solar light illumination
Lin et al. A facile route to (ZnS) x (CuInS 2) 1− x hierarchical microspheres with excellent water-splitting ability
Villoria et al. Photocatalytic Hydrogen Production on Cd1− x Zn x S Solid Solutions under Visible Light: Influence of Thermal Treatment
Wang et al. Synthesis of N-doped TiO2 mesosponge by solvothermal transformation of anodic TiO2 nanotubes and enhanced photoelectrochemical performance
Su et al. Surface treatment effect on the photocatalytic hydrogen generation of CdS/ZnS core-shell microstructures
Bai et al. Photocatalytic hydrogen generation over porous ZnIn2S4 microspheres synthesized via a CPBr-assisted hydrothermal method
Tang et al. An exploration on in-situ synthesis of europium doped g-C3N4 for photocatalytic water splitting
CN102600857A (zh) 一种碳球负载的CuO-BiVO4异质结复合光催化剂的制备方法
Wang et al. Preparation of a novel recyclable cocatalyst wool–Pd for enhancement of photocatalytic H2 evolution on CdS
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
Huang et al. Nickel sulfide modified TiO2 nanotubes with highly efficient photocatalytic H2 evolution activity
CN105879884A (zh) 一维ZnS/CdS-C纳米复合材料及其制备方法
CN107814408B (zh) 一种富含S空缺位的SnS2超薄纳米片的制备方法
Jia et al. PtNi x Co y concave nanocubes: synthesis and application in photocatalytic hydrogen generation
CN107803170A (zh) 一种二氧化钛/氧化镍双壳空心球的制备方法
Divya et al. Improving the photocatalytic performance of TiO2 via hybridizing with graphene
CN110075906A (zh) 一种卷曲状g-C3N4及制备方法和用途
CN107651704B (zh) 一种由暴露(001)晶面超薄纳米页构筑的分级结构硫化镉纳米花及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180619

Termination date: 20210608