CN107096516A - 一种水质检测用固相微萃取涂层光纤及其制备方法 - Google Patents
一种水质检测用固相微萃取涂层光纤及其制备方法 Download PDFInfo
- Publication number
- CN107096516A CN107096516A CN201710351378.XA CN201710351378A CN107096516A CN 107096516 A CN107096516 A CN 107096516A CN 201710351378 A CN201710351378 A CN 201710351378A CN 107096516 A CN107096516 A CN 107096516A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- water quality
- solid
- phase micro
- quality detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/286—Phases chemically bonded to a substrate, e.g. to silica or to polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明公开了一种水质检测用固相微萃取涂层光纤的制备方法,包括如下步骤:S1、将P123、乙醇溶液混合均匀,加入硅基介孔材料,在50‑60℃下超声溶解得到混合液;S2、将不锈钢丝进行表面处理后,放入含有混合液的离心管中,离心,取出不锈钢丝,在室温下将乙醇完全挥发,然后置于110‑130℃条件下真空干燥得到水质检测用固相微萃取涂层光纤;本发明还公开了一种水质检测用固相微萃取涂层光纤,适用于水中苯系物和重金属检测。本发明以P123作为模板剂,与硅基介孔材料原位复合形成固相微萃取涂层材料,提高了的萃取光纤的选择性,提高了检测灵敏度。
Description
技术领域
本发明涉及固相微萃取涂层光纤技术领域,尤其涉及一种水质检测用固相微萃取涂层光纤及其制备方法。
背景技术
固相微萃取(SPME)技术是一种集采样、萃取、浓缩和进样于一体的样品前处理与富集技术,已被广泛应用于环境、食品、生物等领域。SPME具有简单、快速、灵敏度高、选择性好、环境友好且便于直接与检测器联用、可实现在线检测等优点。涂层是SPME技术的核心,涂层材料对SPME的选择性和灵敏度起到决定性的作用。已报道的商品化涂层包括聚二甲基硅氧烷、聚二甲基硅氧烷/二乙烯基苯、聚丙烯酸酯等。但是,商品化涂层由于价格昂贵、选择性差等缺点,使用范围比较有限。因而制备萃取效果优良、使用范围广的SPME涂层材料成为水质检测研究的重点。
发明内容
本发明提出了一种水质检测用固相微萃取涂层光纤及其制备方法,本发明以P123作为模板剂,与硅基介孔材料原位复合形成固相微萃取涂层材料,提高了的萃取光纤的选择性,提高了检测灵敏度。
本发明提出的一种水质检测用固相微萃取涂层光纤的制备方法,包括如下步骤:
S1、将P123、乙醇溶液混合均匀,加入硅基介孔材料,在50-60℃下超声溶解得到混合液;
S2、将不锈钢丝进行表面处理后,放入含有混合液的离心管中,离心,取出不锈钢丝,在室温下将乙醇完全挥发,然后置于110-130℃条件下真空干燥得到水质检测用固相微萃取涂层光纤。
优选地,S1中,P123和硅基介孔材料的重量比为1:2-3。
优选地,S1中,P123和乙醇溶液的重量体积比为20-35:100;优选地,乙醇溶液中乙醇浓度为80-95wt%。
优选地,S1中,硅基介孔材料为MCM-48分子筛。
优选地,S2中,不锈钢丝表面处理的具体操作为:将不锈钢丝的一端在丙酮中浸泽10-15min,用高纯水洗涤,在室温下晾干。
优选地,S2中,离心时间为40-60s。
优选地,S2中,真空干燥时间为10-14h。
本发明提出的一种水质检测用固相微萃取涂层光纤,由水质检测用固相微萃取涂层光纤的制备方法制得。
优选地,所述水质检测用固相微萃取涂层光纤可用于水中重金属检测。
优选地,所述水质检测用固相微萃取涂层光纤可用于水中苯系物检测。
本发明中固相微萃取涂层光纤可结合气相色谱、液相色谱、气相色谱-质谱联用、电感耦合等离子体发射光谱仪检测、电感耦合等离子体质谱仪检测或原子吸收分光光度计检测进行水质检测,固相微萃取涂层光纤解析温度为220-290℃。
本发明以P123作为模板剂,加入硅基介孔材料原位复合形成固相微萃取涂层材料,硅基介孔材料具有良好的选择性,其孔径与Hg、Pb、Cr、Cd重金属离子相适配、能够很好的吸附的此类重金属离子,吸附力强,吸附量大,显著提高了检测的灵敏度,同时硅基介孔材料对苯系物也具有很好的吸附性能,亦可适用于水中苯系物的检测;P123与硅基介孔材料在不锈钢表面发生硅烷化反应,提高了涂层与不锈钢基体的粘合力,延长了涂层光纤的使用时间,节约了资源。
具体实施方式
本发明提出的一种水质检测用固相微萃取涂层光纤的制备方法,包括如下步骤:
S1、将P123、乙醇溶液混合均匀,加入硅基介孔材料,在50-60℃下超声溶解得到混合液;
S2、将不锈钢丝进行表面处理后,放入含有混合液的离心管中,离心,取出不锈钢丝,在室温下将乙醇完全挥发,然后置于110-130℃条件下真空干燥得到水质检测用固相微萃取涂层光纤。
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种水质检测用固相微萃取涂层光纤,由如下步骤制得:
S1、称取25gP123,加入100ml浓度为80wt%的乙醇溶液混合均匀,加入50gMCM-48分子筛,在50℃下超声5min溶解得到混合液;
S2、将不锈钢丝的一端在丙酮中浸泽10min,用高纯水洗涤,在室温下晾干,放入含有混合液的离心管中,调节离心机转速为3000r/min离心60s,取出不锈钢丝,用玻璃板划掉多余的混合液,在室温下将乙醇完全挥发,然后置于130℃条件下真空干燥14h得到水质检测用固相微萃取涂层光纤。
将实施例1中制得的水质检测用固相微萃取涂层光纤结合气相色谱,控制解析温度为250℃,对水样中苯系物含量进行检测,检测结果如下表所示:
从检测结果可以看出,本发明对苯系物的检测具有良好的富集效果,提高了检测灵敏度。
实施例2
一种水质检测用固相微萃取涂层光纤,由如下步骤制得:
S1、称取20gP123,加入100ml浓度为90wt%的乙醇溶液混合均匀,加入60gMCM-48分子筛,在60℃下超声3min溶解得到混合液;
S2、将不锈钢丝的一端在丙酮中浸泽15min,用高纯水洗涤,在室温下晾干,放入含有混合液的离心管中,调节离心机转速为5000r/min离心40s,取出不锈钢丝,用玻璃板划掉多余的混合液,在室温下将乙醇完全挥发,然后置于110℃条件下真空干燥10h得到水质检测用固相微萃取涂层光纤。
将实施例2中制得的水质检测用固相微萃取涂层,控制解析温度为290℃,对水样中重金属含量进行检测,检测结果如下表所示:
检测种类 | 相关系数 | 检出限(mg/kg) | 重复性(%,10次) |
汞 | 0.9994 | 5.3 | 3.6 |
铅 | 0.9997 | 5.6 | 2.2 |
镉 | 0.9996 | 2.5 | 3.0 |
铬 | 0.9994 | 3.1 | 2.1 |
从测试数据可以看出,本发明对水中汞、铅、镉、铬检测具有很好的灵敏度。
实施例3
一种水质检测用固相微萃取涂层光纤,由如下步骤制得:
S1、称取35gP123,加入100ml浓度为95wt%的乙醇溶液混合均匀,加入90gMCM-48分子筛,在55℃下超声4min溶解得到混合液;
S2、将不锈钢丝的一端在丙酮中浸泽12min,用高纯水洗涤,在室温下晾干,放入含有混合液的离心管中,调节离心机转速为4000r/min离心50s,取出不锈钢丝,用玻璃板划掉多余的混合液,在室温下将乙醇完全挥发,然后置于120℃条件下真空干燥12h得到水质检测用固相微萃取涂层光纤。
实施例4
一种水质检测用固相微萃取涂层光纤,由如下步骤制得:
S1、称取25gP123,加入100ml浓度为95wt%的乙醇溶液混合均匀,加入65gMCM-48分子筛,在55℃下超声4min溶解得到混合液;
S2、将不锈钢丝的一端在丙酮中浸泽12min,用高纯水洗涤,在室温下晾干,放入含有混合液的离心管中,调节离心机转速为4000r/min离心50s,取出不锈钢丝,用玻璃板划掉多余的混合液,在室温下将乙醇完全挥发,然后置于120℃条件下真空干燥12h得到水质检测用固相微萃取涂层光纤。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (10)
1.一种水质检测用固相微萃取涂层光纤的制备方法,其特征在于,包括如下步骤:
S1、将P123、乙醇溶液混合均匀,加入硅基介孔材料,在50-60℃下超声溶解得到混合液;
S2、将不锈钢丝进行表面处理后,放入含有混合液的离心管中,离心,取出不锈钢丝,在室温下将乙醇完全挥发,然后置于110-130℃条件下真空干燥得到水质检测用固相微萃取涂层光纤。
2.根据权利要求1所述的水质检测用固相微萃取涂层光纤的制备方法,其特征在于,S1中,P123和硅基介孔材料的重量比为1:2-3。
3.根据权利要求1所述的水质检测用固相微萃取涂层光纤的制备方法,其特征在于,S1中,P123和乙醇溶液的重量体积比为20-35:100;优选地,乙醇溶液中乙醇浓度为80-95wt%。
4.根据权利要求1-3任一项所述的水质检测用固相微萃取涂层光纤的制备方法,其特征在于,S1中,硅基介孔材料为MCM-48分子筛。
5.根据权利要求1-3任一项所述的水质检测用固相微萃取涂层光纤的制备方法,其特征在于,S2中,不锈钢丝表面处理的具体操作为:将不锈钢丝的一端在丙酮中浸泽10-15min,用高纯水洗涤,在室温下晾干。
6.根据权利要求1-3任一项所述的水质检测用固相微萃取涂层光纤的制备方法,其特征在于,S2中,离心时间为40-60s。
7.根据权利要求1-3任一项所述的水质检测用固相微萃取涂层光纤的制备方法,其特征在于,S2中,真空干燥时间为10-14h。
8.一种水质检测用固相微萃取涂层光纤,其特征在于,由权利要求1-7任一项所述的水质检测用固相微萃取涂层光纤的制备方法制得。
9.根据权利要求8所述的水质检测用固相微萃取涂层光纤,其特征在于,所述水质检测用固相微萃取涂层光纤可用于水中重金属检测。
10.根据权利要求8所述的水质检测用固相微萃取涂层光纤,其特征在于,所述水质检测用固相微萃取涂层光纤可用于水中苯系物检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710351378.XA CN107096516A (zh) | 2017-05-18 | 2017-05-18 | 一种水质检测用固相微萃取涂层光纤及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710351378.XA CN107096516A (zh) | 2017-05-18 | 2017-05-18 | 一种水质检测用固相微萃取涂层光纤及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107096516A true CN107096516A (zh) | 2017-08-29 |
Family
ID=59669869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710351378.XA Pending CN107096516A (zh) | 2017-05-18 | 2017-05-18 | 一种水质检测用固相微萃取涂层光纤及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107096516A (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101091839A (zh) * | 2007-04-20 | 2007-12-26 | 厦门大学 | 一种固相微萃取萃取头及其制备方法 |
CN102068963A (zh) * | 2010-10-19 | 2011-05-25 | 天津春发食品配料有限公司 | 一种不锈钢固相微萃取纤维 |
CN102114417A (zh) * | 2010-10-19 | 2011-07-06 | 天津春发食品配料有限公司 | 一种不锈钢固相微萃取纤维的制备方法 |
CN102671425A (zh) * | 2012-05-14 | 2012-09-19 | 中国地质大学(武汉) | 多孔不锈钢针管式固相微萃取探头及其制备方法 |
CN103083942A (zh) * | 2013-02-05 | 2013-05-08 | 漳州师范学院 | 一种基于SiO2键合石墨烯的固相微萃取吸附涂层的制备方法 |
CN104084054A (zh) * | 2014-06-18 | 2014-10-08 | 南京理工大学 | 一种用于固相微萃取的担载有序介孔碳膜的制备方法 |
CN104391062A (zh) * | 2014-10-31 | 2015-03-04 | 厦门大学 | 一种在固相微萃取头上制备g-C3N4涂层的方法 |
CN105572268A (zh) * | 2015-12-16 | 2016-05-11 | 中国烟草总公司郑州烟草研究院 | 一种水样品中痕量苯系物的固相微萃取测定方法 |
-
2017
- 2017-05-18 CN CN201710351378.XA patent/CN107096516A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101091839A (zh) * | 2007-04-20 | 2007-12-26 | 厦门大学 | 一种固相微萃取萃取头及其制备方法 |
CN102068963A (zh) * | 2010-10-19 | 2011-05-25 | 天津春发食品配料有限公司 | 一种不锈钢固相微萃取纤维 |
CN102114417A (zh) * | 2010-10-19 | 2011-07-06 | 天津春发食品配料有限公司 | 一种不锈钢固相微萃取纤维的制备方法 |
CN102671425A (zh) * | 2012-05-14 | 2012-09-19 | 中国地质大学(武汉) | 多孔不锈钢针管式固相微萃取探头及其制备方法 |
CN103083942A (zh) * | 2013-02-05 | 2013-05-08 | 漳州师范学院 | 一种基于SiO2键合石墨烯的固相微萃取吸附涂层的制备方法 |
CN104084054A (zh) * | 2014-06-18 | 2014-10-08 | 南京理工大学 | 一种用于固相微萃取的担载有序介孔碳膜的制备方法 |
CN104391062A (zh) * | 2014-10-31 | 2015-03-04 | 厦门大学 | 一种在固相微萃取头上制备g-C3N4涂层的方法 |
CN105572268A (zh) * | 2015-12-16 | 2016-05-11 | 中国烟草总公司郑州烟草研究院 | 一种水样品中痕量苯系物的固相微萃取测定方法 |
Non-Patent Citations (3)
Title |
---|
XIN-ZHEN DUA ET AL: "An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction", 《ANALYTICA CHIMICA ACTA》 * |
胡林等: "《有序介孔材料与电化学传感器》", 31 December 2013, 合肥工业大学出版社 * |
饶红红等: "新型烷基官能化MCM-41固相微萃取涂层分析水样中的邻苯二甲酸二丁酯", 《西北地区第六届色谱学术报告会暨甘肃省第十一届色谱年会论文集》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Determination of aflatoxin and zearalenone analogs in edible and medicinal herbs using a group-specific immunoaffinity column coupled to ultra-high-performance liquid chromatography with tandem mass spectrometry | |
Cagliero et al. | Determination of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography–mass spectrometry | |
Ballesteros et al. | Sensitive gas chromatographic–mass spectrometric method for the determination of phthalate esters, alkylphenols, bisphenol A and their chlorinated derivatives in wastewater samples | |
Boyd et al. | Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers | |
Ghiasvand et al. | Direct determination of acrylamide in potato chips by using headspace solid-phase microextraction coupled with gas chromatography-flame ionization detection | |
Capriotti et al. | Multiclass analysis of mycotoxins in biscuits by high performance liquid chromatography–tandem mass spectrometry. Comparison of different extraction procedures | |
Zhao et al. | The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS | |
Zheng et al. | Simultaneous determination of aflatoxin B 1, B 2, G 1, G 2, ochratoxin A, and sterigmatocystin in traditional Chinese medicines by LC–MS–MS | |
Zuin et al. | Application of a novel sol–gel polydimethylsiloxane–poly (vinyl alcohol) solid-phase microextraction fiber for gas chromatographic determination of pesticide residues in herbal infusions | |
Li et al. | Purification of antibiotics from the millet extract using hybrid molecularly imprinted polymers based on deep eutectic solvents | |
Hu et al. | Comparing MALDI‐MS, RP‐LC‐MALDI‐MS and RP‐LC‐ESI‐MS glycomic profiles of permethylated N‐glycans derived from model glycoproteins and human blood serum | |
CN104535664A (zh) | 一种同时检测芝麻酱中多种霉菌毒素的方法 | |
Wen et al. | Molecularly imprinted matrix solid‐phase dispersion coupled to micellar electrokinetic chromatography for simultaneous determination of triazines in soil, fruit, and vegetable samples | |
Psillakis et al. | Downsizing vacuum-assisted headspace solid phase microextraction | |
Yin et al. | Determination of hyperoside and isoquercitrin in rat plasma by membrane‐protected micro‐solid‐phase extraction with high‐performance liquid chromatography | |
CN107677748B (zh) | 一种母乳中全氟化合物的快速筛查检测方法 | |
Mousavi et al. | Silica-based ionic liquid coating for 96-blade system for extraction of aminoacids from complex matrixes | |
Beiranvand et al. | Simple, low-cost and reliable device for vacuum-assisted headspace solid-phase microextraction of volatile and semivolatile compounds from complex solid samples | |
Zare et al. | The headspace solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples using silica fiber modified by self assembled gold nanoparticles | |
Mei et al. | Review on analysis methodology of phenoxy acid herbicide residues | |
Li et al. | Synthesis and evaluation of a magnetic molecularly imprinted polymer sorbent for determination of trace trichlorfon residue in vegetables by capillary electrophoresis | |
Volante et al. | Application of solid phase micro‐extraction (SPME) to the analysis of pesticide residues in vegetables | |
Wang et al. | Quantitative determination of 16 polycyclic aromatic hydrocarbons in soil samples using solid‐phase microextraction | |
Zhang et al. | Jacket-free stir bar sorptive extraction with bio-inspired polydopamine-functionalized immobilization of cross-linked polymer on stainless steel wire | |
Avula et al. | Quantitative determination of triterpenoids and formononetin in rhizomes of black cohosh (Actaea racemosa) and dietary supplements by using UPLC-UV/ELS detection and identification by UPLC-MS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170829 |
|
RJ01 | Rejection of invention patent application after publication |