CN107078729A - 零电压开关半桥变换器 - Google Patents

零电压开关半桥变换器 Download PDF

Info

Publication number
CN107078729A
CN107078729A CN201580045944.3A CN201580045944A CN107078729A CN 107078729 A CN107078729 A CN 107078729A CN 201580045944 A CN201580045944 A CN 201580045944A CN 107078729 A CN107078729 A CN 107078729A
Authority
CN
China
Prior art keywords
power
transformer
switch
coupled
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580045944.3A
Other languages
English (en)
Other versions
CN107078729B (zh
Inventor
毛衡春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengchun Mao
Original Assignee
Nuvolta Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvolta Technologies Inc filed Critical Nuvolta Technologies Inc
Publication of CN107078729A publication Critical patent/CN107078729A/zh
Application granted granted Critical
Publication of CN107078729B publication Critical patent/CN107078729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • H02J5/005
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • H02J7/025

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Transmitters (AREA)
  • Inverter Devices (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种功率变换器,包括:耦接至电源的原边开关网络,其中所述原边开关网络包括多个功率开关;控制器,被配置为产生用于所述多个功率开关的栅极驱动信号;耦接至输出的副边整流器;第一变压器,具有耦接至所述原边开关网络的第一绕组、耦接至所述副边整流器的第二绕组、以及耦接至所述控制器的第三绕组;以及第二变压器,具有耦接至所述原边开关网络的第四绕组、耦接至所述副边整流器的第五绕组、以及耦接至所述控制器的第六绕组;其中来自所述第三绕组和/或所述第六绕组的电压信号被处理以提供所述输出处的电压的反馈。

Description

零电压开关半桥变换器
本申请要求2014年8月25日提交的名称为“经济的高性能无线功率传输技术(Cost-effective High Performance Wireless Power Transfer Techniques)”、申请号为62/041,161的美国临时申请的权益,上述申请以引入的方式并入本文中。
技术领域
本发明涉及高性能电源,以及在具体实施方式中,涉及零电压开关(zero voltageswitching)非对称半桥变换器。
背景技术
随着技术的进一步发展,无线功率传输(WPT)已成为用于向基于电池的移动设备(例如移动电话、平板电脑、数码相机和/或MP3播放器等)供电或充电的方便有效的机制。无线功率传输系统通常包括原边(Primary side)发送器和副边(Secondary side)接收器。通过磁耦合将原边发送器磁耦合至副边接收器。磁耦合可以实施为松耦合的变压器,松耦合的变压器具有形成在原边发送器中的原边线圈和形成在副边接收器中的副边线圈。
图1示出了无线功率传输系统的框图。图1所示的无线功率传输系统是无线充电联盟(A4WP)组织规定的示例性系统。图1示出的无线功率传输系统包括功率发送器和功率接收器。通过磁耦合,功率从功率发送器传输至功率接收器。
功率发送器包括在功率输入和发送器线圈之间级联连接的发送器dc/dc变换器、功率放大器、阻抗匹配电路和谐振电路。功率发送器还包括发送器蓝牙单元,发送器蓝牙单元具有耦接至接收器蓝牙单元的第一输入/输出以及耦接至功率发送器的dc/dc变换器的第二输入/输出。功率接收器包括在接收器线圈和负载之间级联连接的谐振电路、整流器、接收器dc/dc变换器。功率接收器还包括接收器蓝牙单元,接收器蓝牙单元具有耦接至接收器dc/dc变换器的第二输入/输出。
根据A4WP的标准,功率发送器在从6.765MHz至6.795MHz(标称6.78MHz)的频带内的固定系统频率下运行。发送器将在其输入处的直流功率变换为频带内的高频交流功率。通过谐振电路(通常一个或多个电容器)耦接至功率放大器的发送器线圈形成具有谐振电路的发送器谐振回路(transmitter resonant tank)并且在系统频率产生磁场。通过磁耦合,功率被传输至接收器线圈附近。同样,功率接收器的接收器线圈和谐振电路构成接收器谐振回路。
耦接至接收器线圈的谐振电路和耦接至发送器线圈的谐振电路均可以包括一个或多个电容器。发送器谐振回路的谐振频率和接收器谐振回路的谐振频率被设计为系统频率,系统频率是由功率放大器的开关频率决定的。
为了使功率放大器的功率能力和电参数与功率发送器中的谐振回路的功率能力和电参数匹配,阻抗匹配电路耦接在功率放大器和发送器谐振电路之间,如图1所示。
在功率接收器中的整流器将来自接收器线圈的高频交流功率转换为直流功率,并通过接收器dc/dc变换器将直流功率传送到负载。在图1所示的系统中,对于发送到功率放大器的给定输入电压Vin,由于各种因素,例如发送器和接收器之间的耦合效率变化、负载变化等,整流器的输出电压Vo可能在宽范围内变化。为了将输出电压控制在可接受范围,可以采用发送器dc/dc变换器来控制发送到功率放大器的电压,并且可以采用接收器dc/dc变换器来进一步调节供给负载的电压。因为输入功率很可能来自被接插到交流电源的ac/dc适配器,发送器dc/dc变换器被实施为dc/dc变换器。类似地,接收器dc/dc变换器通常被实施为dc/dc变换器。负载可以是实际负载,例如集成电路(IC)、电池等。或者,负载可以是下游变换器,例如电池充电器、耦接至实际负载的dc/dc变换器等。
发送器蓝牙单元和接收器蓝牙单元构成在功率接收器和功率发送器之间提供通信信道的蓝牙通信子系统。例如,电压控制信号可以通过此蓝牙通信子系统传送。应该注意的是,其它通信技术,例如WiFi、Zigbee装置等,也可以用于功率发送器和功率接收器之间的通信。此外,功率接收器和功率发送器之间的带内通信也可以通过调制在功率接收器和功率发送器之间传送的功率信号来执行。
图1所示的系统包括许多级。图1所示的系统中的许多部件可能有高电压/电流应力。因此,图1所示的系统是复杂的系统,这导致高成本低效率。
发明内容
通过提高零电压开关非对称半桥变换器的效率的本发明的优选实施方式,通常解决或规避了上述的以及其它问题,并且实现了技术优点。
根据一个实施方式,一种变换器,包括:原边开关网络,耦接至电源,其中所述原边开关网络包括多个功率开关;控制器,被配置为产生用于所述多个功率开关的栅极驱动信号;副边整流器,耦接至输出;第一变压器,具有耦接至所述原边开关网络的第一绕组、耦接至所述副边整流器的第二绕组、以及耦接至所述控制器的第三绕组;和第二变压器,具有耦接至所述原边开关网络的第四绕组、耦接至所述副边整流器的第五绕组、以及耦接至所述控制器的第六绕组,其中来自所述第三绕组和/或所述第六绕组的电压信号被处理以提供在所述输出处的电压的反馈。
根据另一实施方式,一种电源设备,包括:半桥原边电路,具有耦接至电源的两个原边开关;副边电路,具有通过第一变压器耦接至所述半桥原边电路的第一支路和通过第二变压器耦接至所述半桥原边电路的第二支路,其中所述第一变压器和所述第二变压器耦接至所述电源设备的输出;以及控制器,被配置为基于从所述变压器中的一个变压器的辅助绕组检测到的电压信号来产生用于所述半桥原边电路的功率开关的栅极驱动信号。
根据又一实施方式,一种方法,包括:提供功率变换器,所述功率变换器包括具有耦接至电源的原边开关的半桥原边电路和具有通过第一变压器耦接至所述半桥原边电路的第一支路和通过第二变压器耦接至所述半桥原边电路的第二支路的副边电路,其中所述第一变压器和所述第二变压器耦接至输出;并且配置控制器以通过所述变压器中的一个变压器的辅助绕组检测所述功率变换器的输出电压。
本发明优选实施方案的优点是根据不同的负载以各种模式运行零电压开关非对称半桥变换器。
前面已经相当广泛地概述了本发明的特征和技术优点,以便于可以更好地理解以下对本发明的详细描述。下面对构成本发明的权利要求的主题的其它的特征和优点进行描述。本领域技术人员应当意识到可以容易地以本发明揭露的概念和具体实施方式为基础,修改或设计用于实现本发明的相同目的的其它结构或流程。本领域技术人员应当意识到这些等效构成没有背离所附权利要求书中阐述的本发明的精神和范围。
附图说明
为了更全面地理解本发明及其优点,参考以下结合附图的描述,其中:
图1示出了无线功率传输系统的框图;
图2示出了根据本公开各种实施方式的无线功率传输系统的功率发送器的第一实施例的框图;
图3示出了根据本公开各种实施方式的无线功率传输系统的框图;
图4示出了根据本公开各种实施方式的图3所示的无线功率传输系统的第一EMI滤波器的第一示例性实施例的示意图;
图5示出了根据本公开各种实施方式的图4所示的谐波陷波电路的第一示例性实施例的示意图;
图6示出了根据本公开各种实施方式的具有阻抗匹配电路的无线功率传输系统的示意图;
图7示出了根据本公开各种实施方式的与图6所示的无线功率传输系统相关的各种波形;
图8示出了根据本公开各种实施方式的基于可变电容技术启用的受控谐振的具有更高效率的无线功率传输系统的框图;
图9示出了根据本公开各种实施方式的由谐振调制技术控制的无线功率传输系统的框图;
图10示出了根据本公开各种实施方式的图9所示的无线功率传输系统的示意图;
图11示出了根据本公开各种实施方式的无线功率传输系统的反馈控制系统的实施例的框图;
图12示出了根据本公开各种实施方式的与具有在发送器和接收器线圈之间的弱耦合的无线功率传输系统相关的各种波形;
图13示出了根据本公开各种实施方式的与具有图12的相同耦合的无线功率传输系统相关的各种波形;
图14示出了根据本公开各种实施方式的与在发送器线圈和接收器线圈之间具有更强耦合的无线功率传输系统相关的各种波形;
图15示出了根据本公开各种实施方式的可变容量网络的示意图;
图16示出了根据本公开各种实施方式的零电压开关非对称半桥变换器的示意图;
图17示出了根据本公开各种实施方式的与图16所示的零电压开关非对称半桥变换器相关的各种波形;
图18示出了根据本公开各种实施方式的与以超轻负载模式运行的零电压开关非对称半桥变换器相关的各种波形;
图19示出了根据本公开各种实施方式的图16中采用的集成磁性结构的截面图。
除非另有说明,否则不同附图中的相应数字和符号通常是指相应的元件。附图的绘制是为了清楚地图示不同实施方式的相关方面,而不一定是按比例绘制。
具体实施方式
以下对目前优选的实施方式的制造和使用进行详细讨论。然而,应当理解的是,本发明提供了许多可应用的发明概念,其可以在各种各样的特定场景中具体化。所讨论的具体实施方式仅用于示例说明制造和使用本发明的具体方式,而并不限制本发明的范围。
本发明将描述关于特定场景中的优选实施方式,即具有多个可变电容网络的无线功率传输系统。然而,本发明也可应用于各种其它功率系统。下文中,将参考附图详细说明各种实施方式。
图2示出了根据本公开各种实施方式的无线功率传输系统的功率发送器的第一实施例的框图。功率发送器200包括在功率输入Vin和发送器线圈之间级联连接的功率变换器202、功率放大器204、可选的阻抗匹配电路206以及谐振电路208。功率发送器200还包括通信装置212和频率生成单元214。由通信装置212产生的参考时钟被供给频率生成单元214。频率生成单元214生成被供给功率放大器204的系统频率信号,如图2所示。
为了满足无线功率传输系统的严格的EMC要求,可能要求功率发送器200的功率放大器204提供正弦形状的电流或电压。要求被供给发送器线圈的这样的正弦形状的电流或电压在工业、科学及医学(Industrial,Scientific and Medical(ISM))频带内。为了将功率放大器204产生的电压或电流信号维持在ISM带内,需要高精度部件来生成系统频率信号。
图2示出了基于通信系统中的频率信号生成系统频率信号的机制。在无线功率传输系统中,可以有多个时钟可用。例如,蓝牙装置可以具有多个系统时钟,例如3.2KHz本地时钟、参考时钟、其它高精度导出的时钟、以及与其物理RF信道的RF载波频率对应的RF时钟。系统时钟和RF时钟可以用于生成参考信号Fr,如图2所示。在一些实施方式中,系统时钟具有低频率。这样的低频率信号能够传送较长的距离,而不会引起噪声问题。因此,可以采用系统时钟作为功率放大器204的参考频率。可以通过使用简单电路,例如基于计数器的倍频器、频分器等,生成图2所示的系统频率Fs。频率生成单元214可以包括上述简单电路,生成具有在指定频带内的频率的系统频率信号Fs。
在一些实施方式中,系统频率Fs具有参考频率Fr的k倍的频率,其中k为整数。在替代实施方式中,系统频率Fs具有等于参考频率Fr除以k的频率。在一些实施方式中,系统频率Fs被发送给功率放大器204,并用于控制功率放大器204的开关。
在一些实施方式中,频率生成单元214是通信装置的一部分。功率放大器的其它控制和保护功能可以通过微控制器、状态机或其它电路实施,并且可以与蓝牙功能集成到一个IC。在替代实施方式中,频率生成单元214是功率放大器204的一部分。此外,频率生成单元214可以实施为在通信装置212和功率放大器204之间的独立部分。
辐射RF发射对于在无线功率传输系统中的EMC合规性是非常重要的关注点。一个重要的考虑因素是降低由发送器线圈和接收器线圈中的电流引起的干扰。为此,采用EMI滤波器以减少转发器线圈中的电流的高频分量以及接收器线圈中的电流的高频分量。
图3示出了根据本公开各种实施方式的无线功率传输系统的框图。图3所示的无线功率传输系统300的框图类似于图1所示的框图,但是第一EMI滤波器302耦接在功率发送器的功率放大器和谐振电路之间,并且第二EMI滤波器312耦接在功率接收器的谐振电路和整流器之间。为了简单起见,这里仅仅详细描述了第一EMI滤波器302和第二EMI滤波器312。应当注意的是,图1所示的阻抗匹配电路可以放在第一EMI滤波器302之前或之后。此外,阻抗匹配电路可以是第一EMI滤波器302的一部分。
在一些应用中,仅在功率发送器或者仅在功率接收器中有EMI滤波器也是可行的。在一些实施方式中,图3所示的EMI滤波器可以具有不同的配置,例如低通滤波器、带通滤波器以及其它合适的拓扑结构。在一些实施方式中,图3所示的EMI滤波器可包括形成具有一个或多个谐振频率的谐振电路的电感器和电容器。将参照图4和5描述EMI滤波器的详细结构。
图4示出了根据本公开各种实施方式的图3所示的无线功率传输系统的第一EMI滤波器的第一示例性实施例的示意图。图4示出了功率发送器耦合至功率接收器。为了简洁起见,并没有示出功率接收器的详细示意图。功率发送器包括功率放大器402、EMI滤波器404以及包括串联连接在Vin和发送器线圈Lt之间的Crt的谐振电路。
在一些实施方式中,功率放大器402被实施为如图4所示的D类功率放大器。功率放大器402包括在Vin的两端子之间串联连接的开关S1和S2。开关S1和S2的共同节点连接到EMI滤波器404的输入。应当注意的是未示出阻抗匹配电路。根据不同的应用和设计需要,阻抗匹配电路可以放置在EMI滤波器404之前或之后。
EMI滤波器404包括电感器L1、L2、L3和L4以及电容器C1、C2、C3和C4。如图4所示,L1和C1并联连接。L2和C2并联连接。L3和C3串联连接。L4和C4串联连接。在一些实施方式中,L1和C1构成第一谐波势阱电路(harmonic trap circuit);L2和C2构成第二谐波势阱电路;L3和C3构成第一谐波陷波电路(harmonic notch circuit);L4和C4构成第二谐波陷波电路。
应当注意的是,图4示出了在每个谐波抑制电路中仅仅包括一个电容器。这仅仅是示例。图4所示的各个谐波抑制电路可以包括数百个这样的电容器。这里示出的电容器数量仅限于为了清楚地说明各个实施方式的创造性方面。本发明不限于任何特定数量的电容器。
谐波势阱电路和谐波陷波电路的谐振频率可以被设置为将抑制谐波的频率。在一些实施方式中,谐波势阱电路和相应的谐波陷波电路可以具有相同的谐振频率。例如,在图4中,包括L1和C1的第一谐波势阱电路以及包括L3和C3的第一谐波陷波电路可以被设计用于抑制三次谐波。由于三次谐波是主导谐波,与其它高次谐波相比需要更多的滤波。使用第一滤波势阱电路和第一滤波陷波电路两者抑制三次滤波帮助EMI滤波器实现更好的谐波抑制。
在一些实施方式中,包括L2和C2的第二谐波势阱电路可以被设置用于抑制五次谐波。包括L4和C4的第二谐波陷波电路可以被设置用于抑制七次谐波。这样,将显著减少三次、五次及七次谐波电流,而且还可以抑制其它高次谐波。结果,转发器线圈Lt中的电流将会基本是正弦的。应当注意的是,为了实现更好的系统性能,期望在图4中示出的任何谐波势阱电路具有低电感路径并且在图4中示出的任何谐波陷波电路具有低电容路径。这样的配置帮助减少对在基本频率运行的无线传输系统的影响。应当注意的是,基本频率等于或约等于无线功率传输系统的系统频率。
在实际的滤波器实施中,确保EMI滤波器的关键谐振频率与它们的规定频率匹配是非常重要的。例如,谐波势阱电路和谐波陷波电路的谐振频率接近期望值是合适的。为了以最小成本和努力实现这一点,图4中示出的一些电感器和电容器可以用合适的半导体制造过程集成到一个封装中。可以在半导体制造过程中微调(trim,修整)电感器和/或电容器的值,从而实现所需的谐振频率。将参照图5在下文中描述详细的微调过程。
图5示出了根据本公开各种实施方式的图4所示的谐波陷波电路的第一示例性实施例的示意图。图4所示的谐波陷波电路包括L3和C3。在图5所示的谐波陷波电路的第一实施例中,C3可以由多个电容器替代。如图5中所示,C3是包括C10、C11、C12、C13和C14的可微调(trimmable)电容器。
在一些实施方式中,L3和C3可以在相同的衬底上制造。使用第一半导体制造过程在半导体衬底上制造电容器C3。在包含电容器C3的半导体衬底上制造电感器L3。在替代实施方式中,在单独的半导体衬底上制造L3,然后将其堆叠在包括电容器C3的半导体衬底上。此外,在被耦接至包含电容器C3的半导体衬底的单独衬底上制造L3。此外,L3可以为耦接至包含电容器C3的封装的分离元件。以上制造过程是本领域公知的,因此不在本文进行更详细的讨论。
在一些实施方式中,图5所示的所有电容器是被制造在半导体衬底上的电容器。在替代实施方式中,至少一个电容器(例如电容器C10)是耦接至半导体衬底(其它电容器制造于该半导体衬底上)上的分离电容器。分离电容器的电容大于制造于半导体衬底上的电容器的总电容。
如图5所示,电容器C10和电感器L3串联连接。电容器C11和第一微调器件F11串联连接并且进一步与电容器C10并联连接。同样,电容器C12和第二微调器件F12串联连接并且进一步与电容器C10并联连接;电容器C13和第三微调器件F13串联连接并且进一步与电容器C10并联连接;电容器C14和第四微调器件F14串联连接并且进一步与电容器C10并联连接。应当认识到,尽管图5示出了包括四个微调器件以及它们的相应电容器的可微调电容器C3,但是可微调电容器C3可以容纳任何数量的微调器件及它们的相应电容器。
在可微调电容器C3的制造过程中,各个微调器件最初处于短路状态。取决于设计需要,图5所示的微调器件可以变为开路,从而改变可微调电容器C3的总电容。在一些实施方式中,图5所示的微调器件可以实施为任何合适的半导体元件,例如金属连线(“metaltrace”)、熔断器、低值电阻器或通过向其施加电能或者通过机械力(例如激光切割)而具有从短路(低电阻)状态到开路(高电阻)状态的值变化的任何类似的部件。
在制造过程中,各种因素可能影响L3和C10的最终值。此外,耦接在L3和C10之间的互连部件可能导致LC谐振网络的谐振频率的进一步不准确。通过改变微调器件的状态,可以通过选择与C10并联连接的电容器的数量来提高谐振频率的精度。
在一些实施方式中,图5所示的电容器遵循倍数关系,以便简化微调过程。具体地,C11的电容等于C10的电容的一半;C12的电容等于C11的电容的一半;C13的电容等于C12的电容的一半;C14的电容等于C13的电容的一半。
这些微调器件的值可以在制造过程中通过评估电容器C3和电感器L3的实际值或通过评估LC网络的阻抗来决定。例如,在L3和C3已经被制造到封装上之后,可以使用并联连接的所有电容器C10到C14来测试图5所示的点a和点b之间的阻抗,以找到LC串联谐振电路的谐振频率。通过将测量出的谐振频率与期望的谐振频率进行比较,可以计算出待微调掉的电容的百分比。然后,相应的微调器件可以变成开路状态以获得C3的适当电容。
应当注意,上面参照图5描述的微调处理仅仅是示例。本领域技术人员将会理解,微调过程可以适用于图4所示的其它EMI元件。
诸如多个谐波势阱电路和谐波陷波电路的复杂LC网络,或者甚至图4所示的EMI滤波器可以以类似的方式借助于半导体制造过程被集成到封装中。为了获得期望的谐振频率,可以以类似于图5所示的方式微调多个电容器。
应当注意,当微调处理可应用于并联的多个分支时,重要的是并联连接不应在封装内部连接。例如,如果图4所示的EMI滤波器的C3和/或C4需要微调,则图4中所示的点A和点B应分别连接到封装的两个单独的互连引脚,而不是在封装内部短路。通过在封装外部连接这些点,可以正确地测量每个分量的值以及每个分支(例如,由L3和C3组成的一个分支以及由L4和C4组成的另一分支)的阻抗。在一些实施方式中,这两个互连引脚可以通过稍后在系统板上的金属连线连接在一起。以这种方式,滤波器功能将在系统级执行,而滤波器元件的并联分支可以被分别微调,因为这两个分支在微调处理期间彼此分离。
应当注意,图4和图5中所示的EMI滤波器拓扑仅是示例,其不应不适当地限制权利要求的范围。本领域普通技术人员将认识到许多变化、替代和修改。还应当注意,图4和图5中所示的EMI滤波器的全部或部分可以通过使用合适的制造过程与功率放大器和/或线圈集成。
图6示出了根据本公开的各种实施方式的具有阻抗匹配电路的无线功率传输系统的示意图。无线功率传输系统600包括发送器602和接收器612。发送器602包括由串联连接的S1和S2形成的功率放大器604、阻抗匹配电路606、由耦接在Vin和发送器线圈Lt之间的Crt形成的发送器谐振电路。接收器612包括由Crr形成的接收器谐振电路、由D1和D2形成的整流器以及耦接在接收器线圈Lr和负载之间的输出电容器Co。
阻抗匹配电路606包括第一电感器L1、第二电感器L2和第一电容器C1。如图6所示,第一电感器L1和第二电感器L2串联连接。第一电容器C1连接到第一电感器L1和第二电感器L2的共同节点。
在一些实施方式中,基于无线功率传输系统600的阻抗匹配要求来计算L1、L2和C1的值。然而,如果仅基于计算出的值选择这些分量,则S1和S2可能不能实现软开关(softswitching)。结果,功率放大器中的功率损耗可能过高。在一些实施方式中,C1的值可以被调整为稍微远离C1的计算值的值。通过调整C1的值,功率放大器604可实现软开关,并且对阻抗匹配电路606的阻抗匹配功能具有最小的影响。
图7示出了根据本公开的各种实施方式的与图6所示的无线功率传输系统相关的各种波形。图7的水平轴表示时间间隔。水平轴的单位是纳秒。可以有四个垂直轴。第一垂直轴Y1表示开关S2的漏极到源极两端的电压(Vsw),开关S2的栅极驱动电压(Vs2g)和输出电压Vo。第二垂直轴Y2表示流经第一电感器L1的电流(Isw)和第一电容器C1两端的电压(Vc1)。第三垂直轴Y3表示流经发送器线圈Lt的电流(It)和电容器Crt两端的电压(Vcrt)。第四垂直轴Y4表示流经接收器线圈Lr的电流(Ir)和电容器Crr两端的电压(Vcrr)。
从Vsw的波形可以清楚地看出,功率开关(例如,功率开关S2)在大约等于零的电压下导通。结果,实现软开关。Vs2g是S2的栅极驱动电压。如图7所示,Vs2g在Vsw减小到大约等于零的电压之后开始上升。应当注意,上述软开关是通过响应于不同的运行条件(例如不同的输出功率和/或不同的输入电压)来调整C1的电容来实现的。此外,C1的电容的调节也与发送器线圈的电感、接收器线圈的电感和/或发送器线圈和接收器线圈之间的耦合的变化相关。
为了在宽范围的运行条件下维持软开关而不在发送器中的功率部件上引起过大的电流和电压应力,最好自适应地改变C1的电容。本申请的同一发明人的名为“高效率高频谐振功率转换(High Efficiency High Frequency Resonant Power Conversion)”的美国专利申请14/177,049公开了自适应地改变电容的技术。这样的技术可以应用于本申请,以便实时改变C1的电容。换句话说,C1的电容可以根据不同的系统需要动态地调整或调制。
图8示出了根据本公开的各种实施方式的基于由可变电容技术的受控谐振的具有更高效率的无线功率传输系统的框图。除了使用发送器控制器802和接收器控制器812分别调整发送器谐振电路和接收器谐振电路的电容之外,图8所示的无线功率传输系统800的结构与图3所示的结构类似。
发送器控制器802从发送器中的输入功率变换器、功率放大器、发送器谐振回路和蓝牙通信单元取得信息。基于该信息,发送器控制器802能够通过调制被耦接至发送器线圈的发送器谐振电路中的电容和/或电感来调整功率发送器的运行。此外,发送器控制器802能够动态地改变功率放大器中的开关的时序,并改变供给功率放大器的输入电压Vin。
接收器控制器812从接收器中的输出功率变换器、整流器Vo的输出电压、接收器谐振电路和蓝牙通信单元取得信息。基于该信息,接收器控制器能够通过调制被耦接到接收器线圈的接收器谐振回路中的电容和/或电感来调节接收器的运行。
以这种方式,本地控制器(例如,发送器控制器802和接收器控制器812)提供快速控制动作,而蓝牙通信单元可以提供缓慢的控制和调节功能。应当注意,阻抗匹配电路对于图8中所示的系统是可选的,并且在大多数时间可能不需要,因此,为了简洁起见在图8中未示出。
具有上述电容调制技术的一个有利特征是发送器谐振电路和接收器谐振电路的谐振频率可以动态地微调,使得谐振频率等于或大致等于无线功率传输系统的系统频率(例如,在基于A4WP的系统中为6.78MHz)。结果,提高了无线功率传输系统800的效率。
具有上述电容调制技术的另一个有利特征是可以改进包括在功率发送器和功率接收器之间的功率传输的功率处理。例如,可以通过调制电容来调节输出电压Vo。这种调整后的输出电压有助于节省图8所示的输出功率变换器和/或输入功率变换器。结果,可以降低系统成本。下面将参照图9至图15描述该有利特征的详细实施例。
图9示出了根据本公开的各种实施方式的由谐振调制技术控制的无线功率传输系统的框图。无线功率传输系统900类似于图8所示的系统,除了由于将谐振调制技术应用于无线功率传输系统而将图8所示的输入功率变换器和输出功率变换器两者去除之外。
在无线功率传输系统900中,通过调制发送器谐振电路和接收器谐振电路中的谐振频率值来实现功率开关的功率控制、输出电压调节和软开关运行。使用谐振调制技术来动态地调整谐振回路的阻抗,从而控制无线功率传输系统900的无功功率和有功功率。
调整有功功率和无功功率以维持系统的最佳运行是很重要的。特别地,提供给功率发送器的功率接收器的阻抗可以通过调制功率接收器的阻抗来调节。因此,功率接收器的阻抗的调制起到类似于阻抗匹配电路的功能的作用。换句话说,可以通过调制功率接收器的阻抗来替换接收器中的阻抗匹配电路(未示出)。结果,不需要在功率接收器和/或功率发送器中具有单独的阻抗匹配电路。
图10示出了根据本公开的各种实施方式的图9所示的无线功率传输系统的示意图。无线功率传输系统1000包括通过磁耦合耦合在一起的功率发送器1002和功率接收器1012。功率发送器1002和功率接收器1012之间的耦合的强度由耦合系数k量化。在一些实施方案中,k在约0.05至约0.9的范围内。虽然在图10中仅示出了一个接收器,但是多个接收器可以耦合至功率发送器1002。
功率发送器1002包括在Vin和发送器线圈Lt之间串联连接的功率放大器1004、发送器EMI滤波器1006、发送器谐振电路1008。功率放大器1004被实施为包括开关S1和S2的D类功率放大器。图10所示的功率放大器1004是电压馈送半桥拓扑。应当注意,图10所示的功率放大器1004的功率拓扑仅仅是示例。本领域技术人员将认识到,可以有许多替代、变化和修改。例如,可以采用其它合适的电压馈送拓扑,例如全桥变换器、推挽变换器。此外,还可以使用诸如E类和电流馈送推挽拓扑的电流馈送拓扑。
发送器EMI滤波器1006包括电感器L1、L2、L3和L4以及电容器C1、C2、C3和C4。如图10所示,L1和C1并联连接。L2和C2并联连接。L3和C3串联连接。L4和C4串联连接。在一些实施方式中,L1和C1形成第一谐波势阱电路;L2和C2形成第二谐波势阱电路;L3和C3形成第一谐波陷波电路;L4和C4形成第二谐波陷波电路。
发送器谐振电路1008包括谐振电容器Crt。Crt可以实施为具有可变电容的电容器。例如,Crt可以实施为如美国专利申请14/177,049中所述的电容器和开关网络。可以通过根据不同的系统运行条件控制被施加到电容器和开关网络中的开关的栅极信号来调制Crt的电容。电容器和开关网络中的电容器和开关的布置被设计为使得电容器和开关网络能够产生大量的电容变化步长,其在宽范围内提供Crt的电容的几乎连续的变化。
功率接收器1012包括在负载和接收器线圈Lr之间串联连接的整流器1014、接收器EMI滤波器1016、接收器谐振电路1018。接收器EMI滤波器1016包括电感器L5、L6和L7以及电容器C5、C6和C7。如图10所示,L5和C5并联连接。L6和C6串联连接。L7和C7串联连接。在一些实施方式中,L5和C5在接收器EMI滤波器1016中形成谐波势阱电路;L6和C6在接收器EMI滤波器1016中形成第一谐波陷波电路;L7和C7在接收器EMI滤波器1016中形成第二谐波陷波电路。
整流器1014包括二极管D1和D2。在替代实施方式中,D1和D2也可以实施为同步整流器。例如,控制MOSFET来模拟二极管功能。此外,整流器1014可以由诸如双极结型晶体管(BJT)器件、超级结晶体管(SJT)器件、绝缘栅双极晶体管(IGBT)器件和/或基于氮化镓(GaN)的功率器件等其它类型的可控器件形成。整流器1014的详细运行和结构在本领域中是公知的,因此这里不再讨论。
接收器谐振电路1018包括谐振电容器Crr。Crt可以实施为具有可变电容的电容器。例如,Crr可以实施为如美国专利申请14/177,049中所述的电容器和开关网络。可以通过根据不同的系统运行条件控制被施加到电容器和开关网络中的开关的栅极信号来调制Crr的电容。电容器和开关网络中的电容器和开关的布置被设计为使得电容器和开关网络能够产生大量的电容变化步长,其在宽范围内提供Crr的电容的几乎连续的变化。
Lt和Lr分别是发送器1002的发送器线圈和接收器1012的接收器线圈。在运行中,Lt和Lr物理上接近地放置,使得它们的磁场耦合在一起。Lt和Lr之间的耦合取决于这两个线圈的相对位置和取向,因此在实际的无线功率传输系统中可以在宽范围内变化。
负载可以是诸如集成电路(IC)、电池等的实际负载。或者,负载可以是下游变换器,例如电池充电器,耦合到实际负载的dc/dc变换器等。
在一些实施方式中,输出电压Vo是稳定的电压。在替代实施方式中,输出电压Vo维持在一个被指定的范围内。无线功率系统1000的输出功率等于输出电压Vo乘以输出电流Io。在一些实施方式中,输出电流Io以及输出功率Po可以根据不同的运行条件在宽范围内变化,而输出电压Vo是稳定的电压或在窄范围内变化(例如,+/-10%的调整后电压)。
如以上参照图10所述,Crt和Crr都可以根据不同的系统运行条件而被调制。因此,可以存在从调制Crt和Crr导出的两个控制变量。一个控制变量可以用于控制输出电压以及输出功率。另一控制变量可以用于改善无线功率传输系统的性能,例如提高效率、降低电压和电流应力和/或最大化功率传输等。
可以通过提高无线功率传输系统的效率来实现性能改进。由于无线功率传输系统是一个复杂的系统,因此提高这种复杂系统的效率是一个缓慢而困难的过程。在一些实施方式中,可以通过基于以下两个原理运行功率放大器来实现更好的效率。
根据实现软开关的第一原理,如果在S1和S2两端的电压等于或近似等于零时S1和S2导通,则S1和S2都可以实现软开关。根据第二原理,当在S1和S2的导通过程(turn-ontransition)期间功率放大器1004的电流Isw保持为低时,可以进一步改善无线功率传输系统的效率,因为较低的Isw有助于减少开关损耗以及S1和S2的导通损耗。换句话说,为了实现更好的软开关条件,Isw应当在一定程度上滞后电压Vsw。例如,无线功率传输系统应该在功率放大器1004的输出端口处具有仅仅足够的感性无功功率,使得S1和S2两端的电压可以在S1和S2的导通过程之前降低到等于或近似等于零的电平。
根据第一原理,可以通过监控功率开关S1两端的电压和/或功率开关S2两端的电压来实现效率提高。更具体地,监控功率开关(例如,S2)两端的电压包括:在导通栅极驱动信号施加到功率开关的栅极之前,确定功率开关两端的电压是否降低到等于或近似等于零的电压。
根据D类功率放大器的工作原理,上开关S1和下开关S2的控制时序应当是对称的。然而,可能期望只监控D类功率放大器的一个开关两端的电压(例如,下开关S2两端的电压)。为了确保可靠和鲁棒的运行,S1和S2的控制时序可以被调整为稍微不对称,使得S1容易实现软开关。因此,就不需要监控S1的电压。例如,可以使开关周期中的S1的导通时段略长于S2的导通时段。结果,当S2在相同的运行模式期间仍然还在经历硬开关时,S1就可以实现零电压导通。换句话说,当S2实现零电压开关时,S1也实现零电压开关,因为上述系统配置确保S1与S2相比更容易实现零电压开关。
应当注意,监控S2两端的电压以实现S1和S2的零电压开关仅仅是示例。本领域技术人员将认识到,在替代实施方式中,实现S1和S2的零电压开关可以通过监控S1两端的电压来实现。
根据实现软开关的第二原理,可以通过监视图10所示的Isw来实现效率提高。在一些实施方式中,Isw的峰值或均方根值可以用作实现软开关的指示符。或者,在接通/断开S1和/或S2的瞬间的Isw的值也可以用作电流测量信号,以实现更好的软开关。
在一些实施方式中,可以通过在Isw等于或近似等于零时接通S1和S2来提高效率。为了最小化开关噪声对监控S2的软开关条件的影响,可能最好测量在即将断开S1之前的瞬间或紧接着接通S2之后的瞬间的Isw的瞬时值。此外,可以将合适的偏移添加到测量出的电流信号中,使得可以获得对在开关接通瞬间和/或开关断开瞬间的电流的更好的掌握。
根据不同的设计和应用,由于功率放大器中或周围的噪声环境,可能难以在高频下获得准确、干净的电流测量。作为替代,通过监控Isw的软开关可以用监测开关过程中S1或S2两端的电压来代替。假设S2两端的电压(Vsw)用于此目的,并且S2的导通过程用作示例,则可能有三种情况要考虑。下面将详细描述这三种情况。
在第一种情况下,参考回图7,在S2导通之前,Vsw减小到近似等于零的电压。如图7所示,恰好在S2导通之前或在S2的体二极管开始导通的时间段内,Vsw的导数是高的。应注意,Vsw的实际值应为负。Vsw的绝对值近似等于零。这样的Vsw的高导数值表明在S2的导通或S1的断开时Isw太高。换句话说,感性无功功率在系统中相对较高。应当注意,在该过程期间Isw应该是正的,以实现S2的软开关。图12示出Isw相对高并且体二极管导通的时段(S2的体二极管)相对长。Crt或Crr可以被调节以减小功率放大器的输出端口处的感性无功功率。例如,可以减小Crt的电容,以便减小功率放大器的输出端口处的感性无功功率。
在第二种情况下,在S1导通之前,Vsw被减小到近似等于零的电压,并且在S2被导通或S2的体二极管开始导通之前,Vsw的导数为低或近似等于零。这样的Vsw的低导数表明电流Isw处于用于实现软开关的正确值。不需要进一步调节Crt和/或Crr。与第二种情况相关的波形在图13和图14中示出。
在第三种情况下,当S1导通时,Vsw的值比较大(significant value),没有实现软开关。这表明在开关瞬间电流Isw太小(甚至可能为负),并且功率放大器的输出端口处的无功功率太小或者是电容性的。应调整Crt或Crr以增加功率放大器输出端口处的感性无功功率。例如,应当增加Crt的电容,以便增加功率放大器的输出端口处的感性无功功率。
应当注意,S1的导通和S2的导通之间的死区时间也可以被调整以实现更好的软开关结果。如果需要,这可以与上述电容调制技术同步地执行。
如上所述,电压信号Vsw的导数可以用于指示是已经实现软开关还是需要基于电容调制技术的调整。电压信号Vsw的导数可以通过软件方式和/或硬件方式获得。软件方式可以被实施为数字微分器等。硬件方式可以被实施为RC网络、RC网络和运算放大器的组合等。上述软件方式和硬件方式在行业中是众所周知的,因此这里不再详细讨论以避免重复。
在一些实施方式中,如果开关两端的电压(例如,Vsw)的值及其导数在开关接通的瞬间都处于等于或近似等于零的值,则已实现更好的软开关条件。因此,可以通过添加软开关观察器(未示出,但在图11中示出)来确定更好的软开关条件,以监控开关两端的电压(例如,Vsw)和/或流经开关的电流(例如Isw)。基于上述电容调制方案(三种情况),可以相应地调节Crt和/或Crr的值。
软开关观察器的输出可以确定系统是否应当增加或减小Crt和/或Crr的电容。此外,调整步骤取决于软开关观察器的输出。例如,调整步骤可以取决于在S2的前一接通瞬间的Isw的值或Vsw的导数。可以包括滤波器,以根据在S2的最后几个接通瞬间的Isw的值和/或Vsw的导数滤除可能的噪声。
软开关观察器的输出可以以下面的方式构造。首先,当功率放大器已经实现软开关并且不需要进一步调整时,软开关观察器的输出生成零。第二,当功率放大器已经实现软开关,但是无线功率传输系统的感性无功功率太高(当开关接通时开关电流过高)时,软开关观察器的输出生成正值。由软开关观察器生成的正值的值指示调节速度和/或调节步长。第三,当功率放大器尚未实现软开关,无线功率传输系统的感性无功功率太低并且需要增加时,软开关观察器的输出生成负值。负值的绝对值指示调整速度和/或调整步长。
在一些实施方式中,对Isw进行采样可以与功率放大器的功率开关的切换同步。也可以基于进行采样时的运行条件进一步分析采样信号。例如,可以考虑当进行采样时开关是否是软开关接通的。此外,可以在采样处理或分析处理中采用滤波功能,以进一步减少噪声并获得适当的输出。
应当注意,软开关观察器的输出可以以各种方式构建。例如,可以将偏移添加到软开关观察器的输出,使得系统避免处理软开关观察器的输出处的负值。还应当注意,上述Crt和/或Crr的调节可以以数字方式或以模拟方式实现。
上述电容调制技术可以应用于其它功率放大器拓扑,例如推挽功率放大器、E类功率放大器等。通过在开关的接通瞬间或断开瞬间的电流信息直接评估和调节功率放大器中的功率开关的软开关条件,可以针对运行条件变化(例如输入电压变化、输出负载变化、温度变化、开关寄生电容变化和开关参数变化,以及电路参数变化,包括电感和电容变化以及耦合变化)实现更好的软开关条件。
当软开关观察器生成其表示电容调制步长和速度的输出时,还可以考虑EMI滤波器(例如,发送器EMI滤波器和接收器EMI滤波器)和其它辅助电路(例如,阻抗匹配电路)对开关的软开关的影响。总之,通过上述电容调制技术,该系统不仅实现了功率开关的软开关(从而实现了更低的功率损耗、更高的器件可靠性和更低的噪声),而且还确保了无功功率和电流应力处于最小值,同时提供所需的输出功率。具有上述电容调制技术的一个有利特征是可以在设计中同时实现高性能和低成本。
在图10所示的系统中,可以存在具有两个控制变量(即Crt的电容和Crr的电容)的反馈控制系统。可以通过调整这两个控制变量来控制控制系统的两个输出。在一些实施方式中,控制系统的一个输出是接收器的输出电压或输出功率。控制系统的另一个输出是功率开关的软开关条件。
在一些实施方式中,反馈控制机制可以用于确定控制变量的值。根据反馈控制机制,控制系统输出可以用作反馈控制器的输入。Crr的调制改变被反映在发送器中的接收器功率电路的阻抗的实部和虚部,因此影响无线功率传输系统中的有功功率和无功功率。Crt的调制仅改变发送器电源电路中的阻抗的虚部。此外,Crt的调制改变流经发送器线圈的电流的大小,从而影响无线功率传输系统中的无功功率和有功功率。Crt的电容和/或Crr的电容的变化将引起导致Vo或Po的变化的有功功率变化和导致软开关条件的变化的无功功率变化。因此,该反馈控制系统中存在两个输出。在一些实施方式中,可以采用双输入和双输出控制器来实现上述反馈控制功能。这种双输入和双输出控制器可以利用通过蓝牙通信信道传送的信息来构建。在替代实施方式中,可以通过使用发送器和/或接收器(多个接收器)中的多个本地控制器来实施快速控制机制。
图11示出了根据本公开的各种实施方式的无线功率传输系统的反馈控制系统的实施例的框图。无线功率传输系统1100包括通过磁耦合耦合在一起的功率发送器1102和功率接收器1112。应当注意,尽管图11示出了一个功率接收器耦合到功率发送器1102,但是多个功率接收器可以可替换地包括在无线功率传输系统1100中。
功率发送器1102包括软开关观察器1104、控制和保护单元1106和发送器蓝牙通信单元1108。如图11所示,软开关观察器1104可以接收两个输入信号,即Isw和Vsw,并且生成被耦合到控制和保护单元1106的第二输入的输出。软开关观察器1104还可以使用在发送器控制系统中内部生成的S1和S2的栅极时序信息。控制和保护单元1106具有接收Vin的第一输入、接收流经发送器线圈的电流It的第三输入和接收Crt两端的电压Vcrt的第四输入。控制和保护单元1106具有连接到发送器蓝牙通信单元1108的输入/输出。控制和保护单元1106具有用于控制S1和S2的栅极时序的第一输出和用于调制Crt的电容的第二输出。
功率接收器1112包括电压/功率调节器1114、保护单元1116和接收器蓝牙通信单元1118。如图11所示,电压/功率调节器1114可以接收两个输入信号,即Vo和Io。电压/功率调节器1114还可以从接收器蓝牙通信单元1118和/或保护单元1116接收信号。电压/功率调节器1114产生馈送到保护单元1116的第一输入的输出信号。保护单元1116具有接收流经接收器线圈的电流Ir的第二输入和接收Crr两端的电压Vcrr的第三输入。保护单元1116具有连接到接收器蓝牙通信单元1118的输入/输出。保护单元1116可以具有用于当整流器被实施为同步整流器时控制D1和D2的栅极时序的第一输出,以及用于调制Crr的电容的第二输出。应当注意,只有当由D1和D2形成的整流器被同步整流器代替时,D1和D2的栅极时序才适用于D1和D1。如图11所示,接收器蓝牙通信单元1118可以与发送器蓝牙通信单元1108通信。
如图11所示,软开关观察器1104接收检测到的信号Isw和/或Vsw。软开关观察器1104基于在输入处接收的信息(例如,Vsw和/或Isw)来决定是否需要进行调整以实现软开关条件。控制和保护单元1106可以包括控制器。控制器接收来自软开关观察器1104的输出信号,以及输入电压Vin、流经发送器线圈Lt的电流和Crt两端的电压。基于接收到的信号,控制和保护单元1106中的控制器可以在必要时同时调节Crt的电容和/或S1和S2的时序。Crt的电容和/或S1和S2的时序的调整有助于实现S1和S2的更好的软开关。
控制和保护单元1106中的控制器可以包括反馈补偿器,例如比例积分微分(PID)补偿器。PID补偿器被配置为使得软开关观察器1104的输出生成等于零的值或表示软开关条件的固定值。
控制和保护单元1106中的控制器可以实施为数字控制器。数字控制器可以以硬件、软件、其任何组合等实现。例如,控制器可以被实施为具有一些滤波功能的加法器,具有一些滤波器功能的查找表,以将软开关观察器1104的输出转换为电容值(或可变电容网络中的可控开关的状态)。控制器还可以考虑Vin并且以前馈方式相应地调整Crt的电容值。
在一些实施方式中,Crt还可以用于在各异常运行条件(例如过电压、过电流、超温和任何其它故障情况)保护功率发送器1102。例如,系统可以保持监控流经发送器线圈的电流和/或谐振电容器Crt两端的电压。当发生过电流或过电压时,可以通过改变Crt的电容值来保护系统。根据设计需要和不同的应用,Crt的值可以调整为小或大的值,使得功率和电流快速降低。
发送器蓝牙通信单元1108可以在功率发送器1102和功率接收器1112之间传递信息。此外,功率发送器1102和功率接收器1112之间的通信有助于在功率发送器1102和功率接收器1112中缓慢地调整控制参数和功能。
在功率接收器1112中,电压/功率调节器1114基于检测到的信号Vo和/或Io将输出电压或功率调节到期望值。该调节可以由电压/功率调节器1114内部的反馈补偿器(例如PID补偿器)来执行。此外,也可以同时使用用于控制Io和/或Vo的前馈控制机制。
应当注意,上述控制机制仅仅是示例。可存在用于实施电压/功率调节器1114的控制方案的许多替代、修改和变化。例如,可通过搜索机制以搜索Crr的电容的适当值来完成此调节。这种适当的值有助于功率接收器1112实现更好的结果。
还应当注意,在搜索机制期间获得的Crr电容可以不止一个。换句话说,Crr的多个值可以在复杂系统中给出类似的结果(例如,输出功率或输出电压)。在Crr的这些值中,适当的一个是具有接近系统频率的谐振频率的电容。在整个说明书中,这种谐振频率可称为接收器谐振点。
在一些实施方式中,针对Crr的任何搜索动作的搜索机制可以通过接收器谐振点处的或接近接收器谐振点处的值开始并且定期执行新的搜索以避免深入地进入错误的搜索方向。类似地,电压/功率调节器1114中的反馈补偿器的初始输出可以被设置为与合适的Crr值相对应的值。合适的Crr值可导致接近接收器谐振点的谐振频率。此外,调节器可以定期复位至初始值。
在一些实施方式中,Io可以从整流器、在功率接收器的输出端口、和/或从负载检测。在一些实施方式中,在负载和功率接收器之间可以存在通信信道。功率接收器的控制机制可以通过负载和功率接收器之间的通信信道与负载中任何变化相协调。
电压/功率调节器1114的输出用于调制Crr的电容值。在一些实施方式中,Crr的电容的调制也可以用于保护接收器免于遭受各种异常运行条件,例如过电压、过电流、超温和其它异常。例如,流经接收器线圈的电流、谐振电容器Crr两端的电压、输出电压Vo和/或输出电流Io可以由功率接收器1112监控。当出现故障(例如,过电流或过电压)时,可以通过改变Crr的电容值来保护系统。根据设计需要和不同的应用,Crr的电容值可以调整为小或大的值,使得功率和电流快速降低。
接收器蓝牙通信单元1118可以在功率发送器1102和功率接收器1112之间传递信息。此外,功率发送器1102和功率接收器1112之间的通信有助于在功率发送器1102和功率接收器1112中缓慢地调整控制参数和功能。
为了避免发送器控制和接收器控制之间的严重相互作用,发送器和接收器中的局部反馈控制环路应当具有不同的控制速度。例如,发送器可以利用第一控制带宽来调制Crt。接收器可以利用第二控制带宽来调制Crr。为了避免这两个控制环路之间的干扰,控制系统应该被设计为使得第一控制带宽高于第二控制带宽。
可以实现Crt电容调制和Crr电容调制的协调,而不使大量信息通过慢速蓝牙通信信道。然而,如果需要,调整和校准信息可以通过蓝牙通信信道以进一步改善本地控制环路的性能。
图12示出了根据本公开的各种实施方式的与具有发送器线圈和接收器线圈之间的弱耦合的无线功率传输系统相关的各种波形。在一些实施方式中,耦合系数为约10%。
图12的水平轴表示时间间隔。水平轴的单位是微秒。可以有四个垂直轴。第一垂直轴Y1表示开关S2的漏极到源极两端的电压(Vsw)、开关S2的栅极驱动电压(Vs2g)、以及输出电压Vo。第二垂直轴Y2表示流经第一电感器L1的电流(Isw)。第三垂直轴Y3表示流经发送器线圈Lt的电流(It)和电容器Crt两端的电压(Vcrt)。第四垂直轴Y4表示流经接收器线圈Lr的电流(Ir)和电容器Crr两端的电压(Vcrr)。
如图12所示,输出电压Vo保持在5V左右,以便与USB规范兼容。从t1到t2,Vsw大致等于-1V。Vsw的负电压表示S2的体二极管的导通。从t3到t4,Vsw为在电压轨上方的约一个二极管电压降(例如,稳态下的Vsw)。一个二极管压降表示S1的体二极管的导通。由于两个体二极管在接通它们各自的开关之前导通,所以S1和S2都实现软开关。然而,体二极管的导通时间太长。结果,无线功率传输系统的效率可能不如在软开关运行条件下所期望的那么好。
图13示出了根据本公开的各种实施方式的与具有与图12的耦合相同的耦合的无线功率传输系统相关的各种波形。在一些实施方式中,无线功率传输系统的输出功率为约33W。耦合系数为约10%。与图12所示的系统相比,Crt和Crr的电容值被调节以实现输出电压调节(Vo稍微大于5V)和S1和S2的更好的软开关。
如图13所示,Vsw的波形表示S1和S2都通过软开关接通。S1的接通时间不等于S2的接通时间。在S1和S2的这种不对称运行下,与S2相比,S1更容易进入软开关。t1到t2的Vsw的波形表示在S1接通之前,S1的体二极管导通一小段时间。与图11中的S1的体二极管导通相比,图13所示的导通时间较短。结果,实现了更好的软开关条件。应当注意,在S1和S2的导通过程期间,电流Isw远低于其峰值,如图13所示。这样的低电流有助于减小S1和S2的开关损耗。
图14示出了根据本公开的各种实施方式的与在发送器线圈和接收器线圈之间具有更强耦合的无线功率传输系统相关的各种波形。在一些实施方式中,无线功率传输系统的输出功率为约33W。耦合系数为约25%。
与图12所示的系统相比,Crt和Crr的电容值被调节以实现输出电压调节(Vo稍微大于5V)和S1和S2的更好的软开关。如图14所示,Vsw的波形表示S1和S2都通过软开关接通。S1的接通时间近似等于S2的接通时间。换句话说,功率放大器处于对称运行。Vsw的波形表示S1的体二极管和S2的体二极管几乎不导通。结果,实现了更好的软开关条件。应当注意,在S1和S2的导通过程期间,电流Isw近似等于零,如图14所示。这样的低开关电流有助于减小S1和S2的开关损耗。
具有电容调制技术的一个有利特征是通过调节Crt和Crr的电容可以实现更好的软开关和准确的(tight)输出调节。更具体地,Crr的调节用于调整输出电压或功率。Crt的调节用于维持更好的软开关条件,如图13和图14所示。总之,电容调制技术有助于提高系统效率并降低系统成本。
在一些实施方式中,Crt和/或Crr的调制可适用于无线功率传输系统的软启动过程。例如,Crr的初始值可以被设置为导致非常低或零的输出功率的值。Crr的初始值通常远离当Crr与Lr谐振时产生接收器谐振点的值。
Crr的电容值朝产生接收器谐振点的电容值逐渐变化。同时,整流器的输出功率也逐渐增加。输出功率的逐渐增加满足无线功率传输系统的软启动过程。在一些实施方式中,Crr可以停止在适当值。该适当值的选择与输出功率和/或电压调节相协调。
Crr的逐渐变化也可以用于识别接收器的实际谐振点。例如,当接收器在接收器谐振点运行时,对于给定的发送器电流,输出功率达到其最高电平(例如,Po与It的均方根值的比率被最大化)。该比率还可以用于找出发送器线圈和接收器线圈之间的实际互感,因为互感和反射电阻之间存在明确的关系。
在一些实施方式中,互感信息可以用于提高系统性能。接收器谐振点信息可以用于限制电容调制的范围。期望在正常运行中仅在接收器谐振点的一侧调制Crr。例如,期望仅允许将Crr调制为小于产生接收器谐振点的电容的值。当发送器线圈和接收器线圈的相对位置改变时,无线功率传输系统中的接收器和发送器之间的互感可能改变。此外,诸如放置在附近的金属或磁性物体等其它因素可能改变它们在接收器和发送器之间的相对位置。为了解决由相对位置的变化引起的问题,可以定期地或当在接收器周围发生任何相关的相对位置变化时重新测试接收器谐振点和互感。
互感对外部物体很敏感,因此互感的测试可以是识别接近接收器或发送器的异物存在的好方法。类似地,上述测试互感的方法可以用于测试发送器谐振点。在耦合到发送器的每个接收器的谐振电容减小到近似等于零的水平时,接收器线圈不会产生大的电流来与发送器的磁场相互作用。然而,由放置于接收器周围的磁性部件和/或金属部件引起的发送器线圈的电感的变化仍然存在。通过缓慢地扫描Crt的值并测量发送器电流或与发送器的谐振回路相关的阻抗,可以识别Crt和Lt谐振的发送器谐振点。
在无线功率传输系统的运行的一些阶段期间,发送器需要识别有效接收器的存在,而不将大量功率传输到接收器。在这种系统中,Crr可以设置得非常低或甚至为零,因此传送到接收器输出的功率非常低,但是Lr两端的电压可以足够高,使得不同的功率路径(也耦合到Lr)可以传递足够的能量来唤醒接收器的控制器并且启用接收器和发送器之间的通信。
图15示出了根据本公开的各种实施方式的可变电容网络的示意图。可变电容网络1500用于调节Crr的电容。换句话说,图10中所示的Crr可以由图15中所示的可变电容网络1500代替。应当注意,为了实现电容调制,图10中所示的Crt可以由类似于图15所示的可变电容网络代替。
可变电容网络1500包括二极管Dx、由Rx1和Rx2形成的分压器、与Rx2并联连接的第一电容器Cr0和多个电容器开关网络。如图15所示,可以有五个电容器-开关网络。第一电容器-开关网络包括串联连接并且还与Rx1并联连接的电容器Cx0和开关Sx0,如图15所示。同样,第二电容器-开关网络包括串联连接并且还与Rx1并联连接的电容器Cx1和开关Sx1;第三电容-开关网络包括串联连接并且还与Rx1并联连接的电容器Cx2和开关Sx2;第四电容器-开关网络包括串联连接并且还与Rx1并联连接的电容器Cx3和开关Sx3;第五电容器-开关网络包括串联连接并且还与Rx1并联连接的电容器Cx4和开关Sx4。
应当认识到,尽管图15示出了具有五个电容器-开关网络的可变电容网络1500,但是可变电容网络1500可以容纳任何数量的电容器-开关网络。还应该注意,取决于不同的设计需要和应用,第一电容器-开关网络可以由电容器代替。
二极管Dx用作钳位二极管。在一些实施方式中,二极管Dx可以由具有反并联体二极管(例如MOSFET)的单向开关替代。开关Sx0、Sx1、Sx2、Sx3和Sx4用于控制可变电容网络1500的总电容。通过控制开关Sx0、Sx1、Sx2、Sx3和Sx4的接通/断开状态,可以相应地获得各种电容。例如,当所有开关Sx0至Sx4断开时,可变电容网络1500的等效电容近似等于零。另一方面,当所有开关Sx0至Sx4闭合时,可变电容网络1500的等效电容达到其最大电容值。
在一些实施方式中,二极管Dx可以实施为开关。当该开关闭合时,该可变电容网络的等效电容可近似等于Cr0的电容。
Rx1和Rx2用于确保在正常工作期间流经Dx的电流较小。可以通过选择Rx1和Rx2的值来调节流经Dx的电流的值。在一些实施方式中,Rx1和Rx2可以是两个单独的部件。在替代实施方式中,Rx1和Rx2可以来自相应电容器(例如,Cr0和Cx0)和开关(例如Sx0)的并联寄生电阻。
如上所述,通过保持所有开关断开,可变电容网络1500的电容可以减小到近似等于零的水平。这样的特征可以帮助无线功率传输系统(例如,图10所示的无线功率传输系统)实现灵活的保护和/或待机控制机制。更具体地,在无线功率传输系统(例如,图10所示的无线功率传输系统)中,通过减小可变电容网络1500的电容,接收器的输出功率可以相应地下降,而不管多少电流流经发送器线圈。
在接收器(例如,图10中所示的接收器)的待机模式中,通过控制可变电容网络1500将Crr的电容设置为最小值(近似等于零)。由于Crr的电容非常小,接收器线圈、接收器谐振电路和整流器中的电流显著减少。结果,几乎没有功率从接收器传送到被耦接至接收器的负载。如果只有一个接收器磁耦合到发送器并且一个接收器设置为在上述待机模式下运行,则流经发送器的电流非常小,因为一个接收器在待机模式下运行。在这种待机模式下,发送器中的无功功率能够为S1和S2维持更好的软开关条件。
在一些实施方式中,可以通过以比系统频率低得多的频率以交替方式向无线功率传输系统应用活跃模式和待机模式来进一步改善无线功率传输系统的效率。这类似于常规PWM电源中的脉冲模式运行。在活跃模式期间,将接收器谐振电容和发送器谐振电容两者设置为适当的值(例如,具有接近谐振点的谐振频率的电容值)。这样,一些功率从发送器传送到接收器。在待机模式期间,将接收器谐振电容器或发送器谐振电容器的电容调节到远离它们各自的谐振点的值。结果,在发送器和接收器之间传输的功率很小。此外,可以通过在活跃模式期间控制占空比来调整输出功率和/或电压。应当注意,在待机模式运行期间可以执行一些其它合适的效率改进方法,例如测量、校准、检测等。结果,可以进一步提高系统性能。
上述的待机模式控制机制可以应用于具有多个接收器的系统。在一些实施方式中,多个接收器磁耦合到发送器,并且来自所有接收器的总功率需求的总和超过发送器的功率能力,上述的待机模式运行可用于调整和限制传送到每个接收器或一些接收器的功率。结果,发送器可以在其安全运行区域内工作,同时以可接受的方式向接收器传送功率。
或者,发送器可以通过图10所示的蓝牙通信系统指示一些或所有接收器修改它们的功率需求。响应于来自发送器的指令,相关的接收器可以通过调制它们的谐振电容Crr来减少它们的功率需求。此外,因为接收器中的Crr的电容的调制改变了发送器中的接收器的反射阻抗,所以可以通过调制接收器中的Crr的电容来调节接收器之间的功率分配。
总之,通过在接收器中采用电容调制技术,可以以平滑的方式分别控制每个接收器的输出功率和/或电压。将任何接收器中的功率降低到近似等于零的水平而不影响其它接收器的运行的能力提供了实现更好的系统运行和保护控制机制的灵活性。特别地,接收器中的Crr的电容的调制可以用于实现如前所述的接收器的更好的软启动过程和/或更好的软停止过程。因此,通过采用电容调制技术,磁耦合到发送器的接收器的添加或去除可以对被磁耦合到发送器的其它接收器具有最小的运行影响。
在许多应用中,功率放大器(例如,图10中所示的功率放大器)的输入电压Vin可以不具有固定电压。例如,如果Vin是来自ac/dc电源或dc/dc电源的输出,则可以通过协调ac/dc电源或dc/dc电源与无线功率传输系统(例如,图10所示的无线功率传输系统)的运行来有利地改变Vin。
在一些实施方式中,ac/dc电源或dc/dc电源可以是无线功率传输系统的一部分,以便于上述协调过程。具体地,在协调过程期间,Vin可以用于控制无线功率传输系统的接收器的输出功率和/或输出电压。因此,可能有又一个控制变量。该附加控制变量可以用于进一步改善无线功率传输系统的性能。例如,在具有附加控制变量之后,接收器中的Crr的电容的调制可以用于将接收器谐振回路的谐振频率微调到近似等于系统频率的频率。结果,可以减小发送器线圈中的电流。
在一些实施方式中,可能多个接收器磁耦合到发送器。上述接收器的谐振频率的微调过程可以应用于具有最大功率需求的那个或需要最高发送器电流的那个。
此外,在具有附加控制变量Vin之后,在具有单个接收器的无线功率传输系统中,Crr的电容值可以被固定为适当的值(例如,具有接收器谐振点附近的谐振频率的值),以维持良好的性能。这种Crr的固定电容有助于简化接收器设计,从而降低无线功率传输系统的成本。应当注意,在具有附加控制变量之后,仍然有必要调制发送器中的Crt的电容以维持用于功率开关S1和S2的更好的软开关条件。附加控制变量Vin的存在可以有助于减小Crt的电容的变化范围。
在一些实施方式中,附加控制变量Vin也可以用于限制发送器线圈Lt中的电流。因为流经发送器线圈Lt的电流在确定线圈温度、功率损耗、系统EMI性能、发送器线圈周围的磁场强度等方面具有重要作用,所以期望将发送器线圈电流限制到较低的值。在一些实施方式中,当无线功率传输系统需要更多功率时,附加控制变量Vin可以用于增加对于给定的一组电路参数可用的总功率。另一方面,当无线功率传输系统的功率需求下降时,可以相应地减小Vin,以实现更好的系统效率。以这种方式,附加控制变量Vin有助于在宽范围的输出功率和各种耦合条件下维持更好的运行条件。此外,当为了保护目的而需要关闭无线功率传输系统时,可以将Vin降低到非常低的值或零,以平稳地关闭无线功率传输系统。
在一些实施方式中,输出电压Vo可以用作一个附加控制变量,用于进一步改善无线功率传输系统的性能。例如,如果输出电压Vo不直接用于为敏感负载供电(例如,通过电池充电器将电力传送到电池,或者通过一个或多个功率变换器将电力传送到负载),则可以在一定范围内调节Vo以实现更好的系统运行条件。更具体地,控制变量V0可以用于更好地补偿耦合系数变化。当接收器和发送器之间的耦合较强时,当发送器和接收器之间的耦合强时,将输出电压Vo设置为更高的值。另一方面,当接收器和发送器之间的耦合较弱时,响应于发送器和接收器之间的弱耦合,将输出电压Vo设置为更低的值。基于Vo调节的控制机制有助于减小发送器线圈中的最大电流以及Crt和Crr的电容范围。
在一些实施方式中,在一定范围内的可变输出电压Vo是可接受的。为了限制功率部件上的应力,Vo可以对应于输出功率变化而变化。此外,当接收器所需的功率较高时,可以为接收器设置较高的Vo。这样,接收器线圈和其它部件中的电流以及负载中的电流被限制到合理的值,以实现更好的性能,从而降低系统的成本。
在一些实施方式中,当来自接收器的功率需求非常低时,可能期望在间歇(Burst)模式运行中运行发送器和/或接收器。间歇模式可以通过将活跃模式与待机模式组合来实现。例如,当来自接收器的所需功率低于某一阈值时,系统在正常有功功率传输模式下持续一定时间,然后进入待机模式持续一段时间。可以通过多种方法创建待机模式,包括将被馈送到功率放大器的输入电压减小到非常低的电压电平,将Crt的电容改变为低很多的值或高很多的值,和/或将Crt的电容改变为低很多的值或高很多的值。应当注意,谐振分量的更高值或谐振分量的更低值可以帮助系统实现待机模式,因为当谐振频率远离系统频率时输出功率较低。
上述间歇模式也适用于具有被磁耦合到发送器的多个接收器的无线功率传输系统。特别地,任何接收器可以通过调制该接收器的Crr的电容来进入间歇模式运行而不中断其它接收器的运行。此外,如果需要被磁耦合到发送器的所有接收器产生低功率并以间歇模式运行,则可通过调制Crt的电容将发送器置于间歇模式运行。在这种间歇模式运行下,仍然可以通过选择接收器中的谐振电容器的正确值或通过调节接收器的有功功率传输模式的占空比来调整每个接收器相对于其它接收器的输出功率。
在无线功率传输系统中,发送器和接收器中的电压和电流都受到发送器和接收器中的谐振电容的改变的影响。发送器和接收器中的电容调制可以用于提供发送器和接收器之间的带内通信信道。为了实现这种带内通信信道,需要建立适当的通信协议以便于无线功率传输系统中的带内通信。无线功率传输系统的发送器和接收器中的电流、电压和/或功率可以用作传送用于带内通信的信息的手段。
应当注意,如果允许无线功率传输系统的运行频率改变,则可以使用无线功率传输系统的运行频率作为控制变量。运行频率变化可以用于以与上述基于Vin变化的控制机制类似的方式来控制和保护无线功率传输系统。
上述控制机制可以应用于无线功率传输系统中的软启动过程。例如,在软启动过程期间,无线功率传输系统可以在包括活跃模式和待机模式两者的混合模式下运行。具体地,活跃模式和待机模式以交替方式应用于无线功率传输系统。此外,在软启动过程期间,活跃模式的占空比逐渐增加。以这种方式,平均输出功率由活跃模式运行的占空比控制。
在软启动过程期间,电容调制技术可以用于在活跃模式运行期间控制无线功率传输系统的输出功率。例如,通过调制电容,在软启动过程的早期阶段将活跃模式中的输出功率设置为更低的电平,并且随着软启动过程朝着完成进行,输出功率逐渐增加。以这种方式,可以使启动过程甚至比仅具有电容调制或占空比控制的过程更平缓。应当注意,也可以使用诸如逐渐增加输入电压、逐渐改变开关频率等的其它控制变量来实现平滑的软启动过程。其它控制变量可以单独地或与电容调制和/或占空比控制组合地采用。此外,应当注意,如果需要,用于上述软启动过程的所有控制方法可以适用于软停止过程。
为了降低系统成本,可以将无线功率传输系统的不同部分集成到多个IC中。集成度应该考虑功率大小和/或系统设计要求来确定。对于一些应用,发送器的控制系统和/或接收器的控制系统可以集成到一个IC中,其还可以包括图15中所示的电容调制电路和一些可变电容网络。对于一些应用,功率放大器、接收器整流器、EMI滤波器和电容调制电路、以及一些可变电容网络可以分别集成到它们各自的IC中。
在一些实施方式中,根据不同的应用和设计需要,包括功率放大器、接收器整流器、EMI滤波器、电容调制电路和一些可变电容网络的多个IC可以通过合适的半导体制造过程(例如将多个IC垂直堆叠在彼此的顶部等)集成到一个IC。
在一些实施方式中,根据不同的应用和设计需要,除了发送器线圈之外的整个发送器可以被集成到一个IC中,并且除接收器线圈之外的整个接收器可以被集成到另一个IC中。
在一些实施方式中,根据不同的应用和设计需要,包括发送器线圈的整个发送器可以集成到一个IC中。包括接收器线圈的整个接收器可以集成到另一IC中。
总之,上面已经描述了调制无线功率传输系统的发送器中的无功分量(例如Crt的电容)和接收器中的无功分量(例如Crr的电容)。电容调制技术通过调制发送器和接收器中的谐振过程来帮助改善无线功率传输系统的性能。
在一些无线功率传输系统中,可以是耦接到谐振电容器的线圈的一个或多个附加的中间谐振器被放置在发送器线圈和接收器线圈之间。上述谐振调制技术也可应用于一个或多个中间谐振器,以便以类似于用于调制发送器中的谐振分量(例如调制Crt的电容)或接收器中的谐振分量(例如调制Crr的电容)的方式获得更好的结果。
调制电容或电感以调整功率处理可以用在其它配置中。例如,如果发送器被实施为电流源,则耦合到发送器的接收器的谐振电容器的电容可以被调制以调整接收器的输出。
在具有多个输出的电源中,上述电容调制技术也可以用于调整一些输出。例如,电源可以具有类似于图10所示的结构,除了多个接收器被强耦合到发送器。换句话说,发送器可以是电源的原边,并且多个接收器可以形成电源的副边。在运行中,原边中的电容和/或开关频率可以用于维持用于原边开关的更好的软开关条件或者用于调节多个输出中的一个。副边中的电容调制可以用于调整其它输出。
在一些实施方式中,功率变换器的输入连接到交流电源(例如,110V交流电压)。功率变换器将来自墙上插座的110V交流电压转换成适合于无线功率传输系统的功率放大器的直流电压。功率变换器可以实施为包括ac/dc整流器和dc/dc变换器的ac/dc电源适配器。或者,如果输入电源是直流电源,则功率变换器可以被实施为dc/dc变换器。上面讨论的技术可以用于设计dc/dc变换器。对于一些低功率应用,可以替代使用下面参照图16描述的拓扑。
图16示出了根据本公开的各种实施方式的零电压开关非对称半桥变换器的示意图。零电压开关非对称半桥变换器1600包括包含S1、S2、C1和C2的原边电路、包括D1、D2和Co的副边电路、耦合在原边和副边之间的第一变压器T1以及耦合在原边和副边之间的第二变压器T2。零电压开关非对称半桥变换器1600还包括控制器1602(其具有产生S1的栅极驱动信号的第一输入/输出端子)、第二输入/输出端子(其产生S2的栅极驱动信号的)、第三输入/端子(其接收流经T1的变压器绕组的原边的检出电流信号Ip)、第四输入/输出端子(其接收S1的漏极到源极的检出电压信号Vsw)、第五输入/输出端子(其耦接到第一变压器T1的绕组)和第六输入/输出端(其耦接到第二变压器T2的绕组)。
在一些实施方式中,S1和S2由两个互补栅极驱动信号控制。例如,S1具有D的导通占空比,并且S2具有1-D的占空比。应当注意,在每个开关周期中,在S1的导通时段和S2的导通时段之间可能存在短的死区时间。
第一变压器T1包括原边绕组T1p、副边绕组T1s和辅助绕组T1a。第二变压器T2包括原边绕组T2p、副边绕组T2s和辅助绕组T2a。如图16所示,T2p和T1p串联连接在S1和S2的共同节点与C1和C2的共同节点之间。T1与D1串联;T2s与D2串联连接。T1a耦接到控制器1602的第五输入/输出,并且T2a耦接到控制器1602的第六输入/输出。
D1和D2形成被耦接在T1和T2与输出之间的整流器。D1和D2可以实施为同步整流器。C1、C2、S1和S2形成半桥配置。Co是输出电容器,以进一步衰减输出电压Vo的纹波。
当S1导通时,正电压施加到T2p,D2导通,因为它是正向偏置的。功率通过T2s传送到输出端。在此期间,向T1p施加负电压。结果,D1被反向偏置。反向偏置D1防止T1s向输出端提供功率。第一变压器T1像电感器一样工作。特别地,第一变压器T1的原边绕组已经被充电,并且能量存储在第一变压器T1中。在DTs(Ts是开关周期的持续时间,D是S1的占空比)的导通时段之后,S1断开。负电流Ip在S1两端充电电容,并且在S2两端放电电容。结果,Vsw朝向正轨(positive rail)移动。S2两端的电压近似等于零,因为Vsw近似等于正轨。这样,在短暂的转换时间之后,可以利用零电压开关来接通S2。
当S2接通时,正电压施加到T1p。响应于施加到T1p的正电压,D1开始导通,并且能量从T1传送到输出端。在此期间,D2反向偏置。反向偏置的D2防止T2s向输出端传送功率。第二变压器T2像电感器一样工作。特别地,第二变压器T2的原边绕组已经被充电,并且能量存储在第一变压器T2中。存储的能量将在下一个开关周期中传送到输出端。
在略小于(1-D)Ts的导通时段之后,S2断开。现在为正的Ip在S1两端放电电容。在跨S1的电容器已经放电之后,Vsw朝向负轨道移动。在短暂的转换时间后,S1可以通过零电压开关接通。以这种方式,S1和S2都可以用零电压开关接通,这有助于实现零电压开关非对称半桥变换器1600的高效率和低EMI运行。
T1和T2的匝数比和励磁电感可以设计成使得在宽范围的运行条件下可以维持S1和S2的零电压开关。如前所述的软开关观察器可以用于识别是否已经实现了可接受的软开关条件。如果不是,则可以调节开关频率以改善软开关条件。例如,Vsw的波形和/或Isw的波形能表明功率开关是否已经实现零电压开关(零电压接通)。如果功率开关确实有软开关,则S1和S2的开关频率可以降低。如果S1和S2都实现了软开关,并且在S1和S2的接通瞬间,Isw太高或者Vsw的导数的幅值(magnitude)太高,则应当改变S1和S2的开关频率。通过在合理的范围内调节开关频率,可以实现效率的良好折衷。
在一些实施方式中,零电压开关非对称半桥变换器1600在连续导通模式下运行。在连续导通模式期间,在从S2的接通到S2的断开的期间,电流流经D1。另一方面,在从S1的接通到S1的断开的期间,电流流经D2。零电压开关非对称半桥变换器1600的输出电压可以由以下等式表示:
其中K1是第一变压器T1的匝数比(例如,K1等于T1p的匝数除以T1s的匝数);K2是第二变压器T2的匝数比(例如,K2等于T2p的匝数除以T2s的匝数)。D是S1的占空比。
在一些实施方式中,K1等于K2,或者D非常小。上述等式(1)可以简化为以下等式:
等式(2)表示在这样的条件下(例如,K1等于K2或小占空比),零电压开关非对称半桥变换器1600表现得像传统的单变压器非对称半桥变换器,其在本领域中是公知的,因此这里不讨论。
在一些实施方式中,占空比D小,K1远大于K2(K1>>K2)。上述等式(1)可以简化为以下等式:
等式(3)表示在这样的条件下(例如,D较小并且K1>>K2),零电压开关非对称半桥变换器1600表现为类似于本领域中公知的常规正激式变换器,因此这里不讨论。
在一些实施方式中,零电压开关非对称半桥变换器1600在轻负载模式下运行。响应于轻负载模式,D减小,并且零电压开关非对称半桥变换器1600进入不连续导通模式。
在不连续导通模式下,图16所示的变压器中的一个可以不将很多能量传送到输出。结果,耦接到其副边绕组的相应二极管停止传导电流,因为尽管相应的原边开关仍导通,但先前流经二极管的电流下降到近似等于零的水平。在这种不连续导通模式下,变换器的行为像本领域公知的反激变换器,因此这里不再讨论。
应当注意,在不连续导通模式期间,可以降低零电压开关非对称半桥变换器1600的开关频率,以进一步降低功率损耗。
在一些实施方式中,零电压开关非对称半桥变换器1600在超轻负载模式下运行。应当注意,在上述轻负载模式和本文所述的超轻负载模式之间可存在阈值。该阈值的选择取决于不同的应用和设计需要。
对应于超轻负载模式,功率开关S1和S2可不再在互补模式下工作。相反,S2可以仅在短时间内接通。此外,可以不必向S2施加高电压栅极驱动信号。例如,S2的接通时间可以限于S2的体二极管的导通。更具体地,S2可以不接通,并且S2的体二极管可以不传导电流。例如,当放电电流非常小时,S2两端的电容可以放电到一定程度,但不完全放电。
参考图18所示的模拟结果解释这种模式中的运行。对于短时间段,S1接通并以正常运行模式运行。在S1的接通时间期间,第一变压器T1和第二变压器T2都被充电,并且Ip是负电流,但振幅增加。然而,由于原边绕组两端的电压(其是C1两端的电压)远低于S1的接通时间期间的输入电压Vin,所以D1和D2在S1的接通时间期间都不导通。在S1断开之后,存储在变压器T1和T2中的一些能量通过D1被传送到输出端。如果Ip具有足够高的幅度以完全跨S2放电电容,则S2的体二极管可以导通短时间。然而,在以下图18所示的模拟中,因为变压器T1和T2中的能量低,所以D2不会导通,因为反向电压被施加到二极管D2。
在运行中,辅助绕组T1a上的电压可以被采样为表示或表明输出电压Vo的信号。当D1中的电流下降到零或接近零时,D1停止传导电流,T1和T2的励磁电感与跨S1和S2的电容谐振。结果,Vsw在该时间内是振荡波形。下面参见图18。在该运行模式期间,通过D2的导通和/或Vsw的振荡来维持T1和T2的磁通平衡。S2的导通时间,S1的导通时间和/或开关频率可以用于调整输出电压和/或输出功率。
应当注意,S2不需要在每个开关周期中被接通。S2可以在需要更多能量时接通。此外,当S2接通时,S2的接通和/或断开可以与S1的接通和/或断开同步。通过这种方式,S1和S2中的至少一个在零电压开关下导通或者在开关两端的电压显著降低下导通。
在这种超轻负载运行模式中,S1或S2可能不能实现软开关。然而,因为施加到不具有软开关的开关的电压低,所以开关损耗以及导通损耗也可以较低。结果,总功率损耗保持在非常低的水平。如果需要,当输出功率低于合适的阈值时,图16所示的零电压开关非对称半桥变换器1600可以以间歇模式运行。间歇模式有助于进一步降低在非常轻负载或无负载时的功率损耗。
图16中所示的控制器1602可以根据上述不同的运行模式来配置。结果,图16所示的零电压开关式非对称半桥变换器1600可以实现更好的性能。
为了进一步降低图16所示的零电压开关式非对称半桥变换器1600的成本,可以采用原边控制器。特别地,输出电压和/或电流调整电路被放置在变压器T1和T2的原边。当D1传导电流时,可以在T1的绕组上检测到输出电压。同样,当D2传导电流时,可以在T2的绕组上检测到输出电压。因此,T1的辅助绕组和/或T2的辅助绕组可以用于将输出电压Vo的信息提供给用于调节输出电压的控制系统。
如图16所示,辅助绕组T1a和T2a都耦合到控制器1602。可以在每个开关周期采样来自T1a和/或T2a的电压信息,并且采样值用作输出电压Vo的反馈值。然而,在一些运行模式中,D1或D2可能不导通,或者D1或D2的导通时间不足以实现Vo的信息的可靠采样。在这种情况下,可能不能直接使用采样电压。相反,需要分析来自T1a和t2a的电压波形。例如,如果二极管中的一个不导通(可以通过分析该二极管的波形来识别),则相应的采样电压不应用于Vo调整。
在一些实施方式中,这两个二极管都不能导通足够长的时间以允许输出电压的可靠采样。偏移可以被添加到先前采样的反馈值以形成新的反馈值。此外,可以在原边检测输出电流信息。可以通过检测电流Isw来检测输出电流,检测流经直流链路电流的电流,例如图16所示的电流检测电阻器Rs两端的电压Vir。检测的电流信息可以被发送到控制器1602中。控制器1602可以基于从原边检测的电流信息提供各种功能,例如限流和/或过流保护。在原边调节输出电流的能力对于诸如LED照明等的一些应用可能是重要的。
图17示出了根据本公开的各种实施方式的与图16所示的零电压开关非对称半桥变换器相关的各种波形。图17的水平轴表示时间间隔。水平轴的单位是微秒。可以有七个垂直轴。第一垂直轴Y1表示跨开关S1的漏极-源极的电压(Vsw)。第二垂直轴Y2表示流经第一变压器T1的电流(Ip)。第三垂直轴Y3表示第二变压器T2的原边绕组两端的电压(Vt2)。第四垂直轴Y4表示流经二极管D2的电流(Id2)。第五垂直轴Y5表示第一变压器T1的原边绕组两端的电压(Vt1)。第六垂直轴Y6表示流经二极管D1的电流(Id1)。第七垂直轴Y7表示输出电压(Vo)。
在一些实施方式中,零电压开关非对称半桥变换器的输入电压约为350V。输出电压Vo被调整在约19V。输出功率约为40W。零电压开关非对称半桥变换器的运行和相应的波形已经在上面参照图16进行了描述,因此这里不再进一步详细讨论。
图18示出了根据本公开的各种实施方式的与在超轻负载模式下运行的零电压开关非对称半桥变换器相关的各种波形。输入电压约为350V,输出电压约为5V。上面参照图16描述了零电压开关非对称半桥变换器的超轻负载运行和相应波形,因此,这里不再进一步详细讨论。
图19示出了根据本公开的各种实施方式的在图16中采用的集成磁性结构的截面图。图16所示的第一变压器T1和第二变压器T2可以实施为两个单独的变压器。在替代实施方式中,这两个变压器可以实施在具有如图19所示的单个磁芯的集成磁结构中。
如图19所示,T1围绕磁芯的一个支路(leg)实现。T2被实施在磁芯的另一个支路中。在这两个支路中的每一个中存在气隙,使得一些能量可以存储在气隙中。根据不同的应用和设计需要,可以相应地选择气隙的高度。
磁芯的第三支路或中心支路为变压器T1和T2中的磁通量提供另一条路径。可以在第三支路中添加可选的气隙。该可选的气隙可以用于调节变压器T1和T2之间的耦合。
根据图16所示的拓扑,与其它拓扑相比,T1和T2的伏秒数(volts-second rating)可以降低到更低的水平。这种低伏秒数有助于减少T1p和T2p的匝数。T1和T2的绕组于是可以在PCB上实施。此外,每个变压器中的绕组之间的耦合被严格控制。这种严格受控的耦合有助于改善PSR应用中的控制性能,并使EMC设计更简单。
虽然已经详细描述了本发明的实施方式及其优点,但是应当理解,在不脱离由所附权利要求限定的本发明的精神和范围的情况下,可以进行各种改变、替换和更改。
此外,本申请的范围不旨在限于说明书中描述的过程、机器、制造、物质组成、装置、方法和步骤的特定实施方式。本领域普通技术人员从本发明的公开内容中将容易地理解,可以根据本发明利用目前存在或将来开发的执行与根据本文描述的相应实施方式基本上相同的功能或实现基本相同的结果的过程、机器、制造、物质组成、装置、方法和步骤。因此,所附权利要求旨在将这些过程、机器、制造、物质组成、装置、方法或步骤包括在其范围内。

Claims (19)

1.一种变换器,包括:
原边开关网络,耦接至电源,其中所述原边开关网络包括多个功率开关;
控制器,被配置为产生用于所述多个功率开关的栅极驱动信号;
副边整流器,耦接至输出;
第一变压器,具有耦接至所述原边开关网络的第一绕组、耦接至所述副边整流器的第二绕组、以及耦接至所述控制器的第三绕组;以及
第二变压器,具有耦接至所述原边开关网络的第四绕组、耦接至所述副边整流器的第五绕组、以及耦接至所述控制器的第六绕组,其中来自所述第三绕组和/或所述第六绕组的电压信号被处理以提供在所述输出处的电压的反馈。
2.如权利要求1所述的变换器,其特征在于:
所述原边开关网络包括串联连接在所述电源的两个端子上的第一开关和第二开关、以及耦接在所述变压器中的一个变压器与所述电源之间的电容器。
3.如权利要求2所述的变换器,其特征在于:
所述第一绕组和所述第四绕组串联连接在所述第一开关和所述第二开关的共同节点与所述电容器之间。
4.如权利要求1所述的变换器,其特征在于:
所述副边整流器包括第一二极管和第二二极管,并且其中:
所述第二绕组与所述第一二极管串联连接;以及
所述第五绕组与所述第二二极管串联连接。
5.如权利要求1所述的变换器,其特征在于:
所述控制器被配置为通过所述多个开关的互补控制来调整所述输出处的电压,并且在正常运行期间用零电压开关来接通开关。
6.如权利要求5所述的变换器,其特征在于:
调节所述多个功率开关的开关频率以改善开关的零电压开关。
7.如权利要求1所述的变换器,其特征在于:
所述第一变压器和所述第二变压器构成集成磁性装置。
8.一种电源设备,包括:
半桥原边电路,具有耦接至电源的两个原边开关;
副边电路,具有通过第一变压器耦接至所述半桥原边电路的第一支路和通过第二变压器耦接至所述半桥原边电路的第二支路,其中所述第一变压器和所述第二变压器耦接至所述电源设备的输出;以及
控制器,被配置为基于从所述变压器中的一个变压器的辅助绕组检测到的电压信号来产生用于所述半桥原边电路的功率开关的栅极驱动信号。
9.如权利要求8所述的电源设备,其特征在于:
所述控制器被配置为通过一个原边开关的占空比来调整所述输出处的电压。
如权利要求9所述的电源设备,其特征在于:
所述第一变压器和所述第二变压器构成集成磁性装置,所述集成磁性装置包括具有第一气隙的第一磁性支路、具有第二气隙的第二磁性支路、以及第三磁性支路,其中:
所述第一变压器被应用在所述第一磁性支路周围;
所述第二变压器被应用在所述第二磁性支路周围;以及
所述第三磁性支路提供用于所述第一变压器和所述第二变压器的共享磁通量路径。
10.如权利要求10所述的电源设备,其特征在于:
所述第三磁性支路具有第三气隙。
11.一种方法,包括:
提供功率变换器,所述功率变换器包括:具有耦接至电源的原边开关的半桥原边电路、以及具有通过第一变压器耦接至所述半桥原边电路的第一支路和通过第二变压器耦接至所述半桥原边电路的第二支路的副边电路,其中所述第一变压器和所述第二变压器耦接至输出;以及
配置控制器以通过所述变压器中的一个变压器的辅助绕组检测所述功率变换器的输出电压。
12.如权利要求12所述的方法,其特征在于,还包括:
配置所述功率变换器,使得所述功率变换器的输入电压和所述输出电压满足:
<mrow> <msub> <mi>V</mi> <mi>O</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mi>V</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>K</mi> <mn>1</mn> <mo>+</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>K</mi> <mn>2</mn> <mo>-</mo> <mi>K</mi> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
其中K1是所述第一变压器的匝数比;K2是所述第二变压器的匝数比;D是所述功率变换器的占空比。
13.如权利要求13所述的方法,其特征在于,还包括:
在第一运行模式期间将所述功率变换器配置为以类似于正激式变换器的方式运行。
14.如权利要求12所述的方法,其特征在于,还包括:
在第二运行模式期间将所述功率变换器配置为以类似于非对称半桥变换器的方式运行。
15.如权利要求12所述的方法,其特征在于,还包括:
在第三运行模式期间将所述功率变换器配置为以类似于反激变换器的方式在不连续模式下运行,其中不以互补方式控制所述原边开关。
16.如权利要求12所述的方法,其特征在于,还包括:
在超轻负载模式期间,配置所述功率变换器,使得:
用占空比控制原边开关;以及
在一些开关周期期间其它开关不由专用栅极信号接通。
17.如权利要求17所述的方法,其特征在于,还包括:
当在开关周期期间两个原边开关都被开关时,控制所述原边开关使得利用零电压开关接通所述原边开关中的一个原边开关。
18.如权利要求17所述的方法,其特征在于:
所述变压器中的一个变压器停止将能量传输到所述输出。
19.如权利要求12所述的方法,其特征在于,还包括:
通过所述变压器的至少一个辅助绕组上的电压信号检测所述功率变换器的输出电压;以及
基于所检测到的输出电压来调整所述功率变换器的输出电压。
CN201580045944.3A 2014-08-25 2015-08-25 零电压开关半桥变换器 Active CN107078729B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462041161P 2014-08-25 2014-08-25
US62/041,161 2014-08-25
PCT/US2015/046802 WO2016033112A1 (en) 2014-08-25 2015-08-25 Zero voltage switching half-bridge converters

Publications (2)

Publication Number Publication Date
CN107078729A true CN107078729A (zh) 2017-08-18
CN107078729B CN107078729B (zh) 2021-07-09

Family

ID=55349105

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580045901.5A Pending CN107005091A (zh) 2014-08-25 2015-08-24 无线功率传输系统以及无线功率传输方法
CN201580045944.3A Active CN107078729B (zh) 2014-08-25 2015-08-25 零电压开关半桥变换器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201580045901.5A Pending CN107005091A (zh) 2014-08-25 2015-08-24 无线功率传输系统以及无线功率传输方法

Country Status (4)

Country Link
US (4) US9929595B2 (zh)
CN (2) CN107005091A (zh)
GB (2) GB2542739B8 (zh)
WO (2) WO2016032981A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742863A (zh) * 2018-12-27 2019-05-10 华为技术有限公司 一种无线充电系统的接收端、发射端及无线充电系统
CN111740631A (zh) * 2019-03-19 2020-10-02 台达电子工业股份有限公司 谐振变换器及其变压器的制造方法
CN112994504A (zh) * 2021-05-13 2021-06-18 深圳赫兹创新技术有限公司 一种应用于无线充电系统的原边功率反馈电路以及方法
CN113098354A (zh) * 2021-04-29 2021-07-09 臻驱科技(上海)有限公司 一种电机控制器的过调制区域控制方法及系统
CN113162245A (zh) * 2021-03-23 2021-07-23 Oppo广东移动通信有限公司 充电电路、芯片和设备
EP4128535A4 (en) * 2020-03-05 2024-05-29 Yank Technologies, Inc. ISOLATED SWITCHING AMPLIFIER SYSTEM

Families Citing this family (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088222B2 (en) * 2011-11-17 2015-07-21 Qualcomm Incorporated Systems, methods, and apparatus for a high power factor single phase rectifier
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10141791B2 (en) * 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
CN106415547B (zh) * 2014-03-31 2020-03-20 瑞典爱立信有限公司 开关模式电源输出滤波器配置
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9680531B2 (en) * 2014-08-01 2017-06-13 Qualcomm Incorporated System and method for detecting inadequate wireless coupling and improving in-band signaling in wireless power transfer systems
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
KR102056404B1 (ko) * 2014-09-11 2019-12-16 주식회사 위츠 무선전력 송신 장치 및 그 제어방법
US10317484B2 (en) * 2014-10-09 2019-06-11 General Electric Company Method and system for contactless power transfer in a gate driver unit
WO2016080044A1 (ja) * 2014-11-17 2016-05-26 株式会社村田製作所 ワイヤレス給電装置
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
GB2535976C (en) * 2015-02-02 2017-03-29 Drayson Tech (Europe) Ltd Inverter for inductive power transfer
GB2535978B (en) * 2015-02-04 2018-04-11 Drayson Tech Europe Ltd Rectifier for wireless power transfer
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9640976B2 (en) * 2015-02-26 2017-05-02 Ut-Battelle, Llc Overvoltage protection system for wireless power transfer systems
US9774211B2 (en) * 2015-05-14 2017-09-26 Intel Corporation Voltage regulation in wireless power
TWI580150B (zh) * 2015-05-15 2017-04-21 立錡科技股份有限公司 諧振式無線電源接收電路及其控制電路與無線電源轉換方法
US20180159378A1 (en) * 2015-05-19 2018-06-07 Powerbyproxi Inductive power receiver
WO2017007932A1 (en) * 2015-07-08 2017-01-12 Patrick Mercier Wireless power transfer device and method with dual-frequency operation
US10186908B2 (en) * 2015-08-04 2019-01-22 Ningbo Weie Electronic Technology Co., Ltd. Efficient power transmitting terminal, contactless power transmission device and power transmission method
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
CN105119391B (zh) * 2015-09-27 2019-01-01 宁波微鹅电子科技有限公司 一种高效率的电能发射端和无线电能传输装置
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
KR101755122B1 (ko) * 2015-11-02 2017-07-06 현대자동차주식회사 Dc-ac 컨버터 제어 방법과 이를 사용하는 그라운드 어셈블리 및 무선 전력 전송 방법
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US11303156B2 (en) * 2015-12-18 2022-04-12 General Electric Company Contactless power transfer system and method for controlling the same
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10277054B2 (en) 2015-12-24 2019-04-30 Energous Corporation Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US20170207664A1 (en) * 2016-01-19 2017-07-20 Garrity Power Services Llc Universal wireless power system coil apparatus
WO2017134870A1 (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 電力変換装置および非接触給電システム
DE102016103447A1 (de) 2016-02-26 2017-08-31 Epcos Ag Filterbauelement und Verwendung eines Filterbauelements
US10454312B2 (en) 2016-03-15 2019-10-22 X2 Power Technologies Limited Wireless power transfer control apparatus and method
CN105868490B (zh) * 2016-04-12 2018-09-18 温州大学 模块化多电平变换器多目标特定谐波抑制脉宽调制方法
US10110184B2 (en) * 2016-04-13 2018-10-23 Skyworks Solutions, Inc. Power amplification system with reactance compensation
US9979316B2 (en) 2016-05-05 2018-05-22 Witricity Corporation Impedance compensation based on ratio of bus voltage and amplifier fundamental AC output voltage
CN105932789B (zh) * 2016-05-10 2021-04-27 京东方科技集团股份有限公司 变压器及电源板
US10637272B2 (en) * 2016-05-19 2020-04-28 Shenzhen Yichong Wireless Power Technology Co. Ltd Wireless charging systems and methods with adaptive efficiency optimization
CN105958534B (zh) * 2016-06-04 2018-04-13 重庆大学 一种双馈风电系统不对称高电压故障穿越控制方法
CN107492436B (zh) * 2016-06-11 2019-11-22 宁波微鹅电子科技有限公司 一种感应线圈结构和无线电能传输系统
US10547208B2 (en) 2016-06-23 2020-01-28 Qualcomm Incorporated Wireless power transmit resonator
KR102518430B1 (ko) 2016-07-18 2023-04-10 삼성전자주식회사 디스플레이 장치 및 그 장치의 구동방법, 그리고 전자장치
KR20190038587A (ko) * 2016-08-26 2019-04-08 누커런트, 인코포레이티드 무선 커넥터 시스템
JP6538628B2 (ja) * 2016-09-05 2019-07-03 株式会社東芝 フィルタ回路及びワイヤレス電力伝送システム
US10389159B2 (en) * 2016-10-01 2019-08-20 Intel Corporation Wireless charging system and method
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10727767B2 (en) 2016-11-23 2020-07-28 Kimidrive Llc Packet-based networking of variable frequency drives
CN106788307A (zh) * 2016-12-02 2017-05-31 北京北广科技股份有限公司 一种谐波抑制电路
KR102226403B1 (ko) 2016-12-12 2021-03-12 에너저스 코포레이션 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법
IT201600130095A1 (it) * 2016-12-22 2018-06-22 Eggtronic Eng S R L Sistema per il trasferimento wireless di potenza elettrica
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10742071B2 (en) 2017-01-19 2020-08-11 Qualcomm Incorporated Wireless power transfer for stationary applications
US10615617B2 (en) * 2017-02-07 2020-04-07 Infineon Technologies Ag Supply voltage selection circuitry
KR20180093451A (ko) * 2017-02-13 2018-08-22 삼성전자주식회사 전력 소모를 감소한 역전압 모니터링 회로 및 이를 포함하는 반도체 장치
CN107947380A (zh) * 2017-02-16 2018-04-20 成都市易冲无线科技有限公司 一种基于3.6到20v调压适配器的无线充电电源系统及方法
US10291075B2 (en) 2017-02-22 2019-05-14 Qualcomm Incorporated Over voltage protection detection
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
CN108736579A (zh) * 2017-04-21 2018-11-02 宁波微鹅电子科技有限公司 无线电能发射电路
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10389162B2 (en) 2017-05-19 2019-08-20 Qualcomm Incorporated Power receiving unit reflected reactance and tuning methods
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
CN108808886A (zh) * 2018-01-10 2018-11-13 深圳市思坎普科技有限公司 无线供电系统的发射设备、无线供电系统和无线照明系统
US10438648B2 (en) * 2018-01-11 2019-10-08 Micron Technology, Inc. Apparatuses and methods for maintaining a duty cycle error counter
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
EP3759724A4 (en) * 2018-02-28 2021-11-24 Massachusetts Institute of Technology CORNESS POWER TRANSFORMER
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
KR102066501B1 (ko) * 2018-04-09 2020-01-16 인하대학교 산학협력단 전력변환장치
US10205381B1 (en) * 2018-05-10 2019-02-12 Vlt, Inc. Start-up control in power systems using fixed-ratio power conversion
JP7102944B2 (ja) * 2018-05-29 2022-07-20 オムロン株式会社 非接触給電装置
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11368055B2 (en) 2018-08-30 2022-06-21 Apple Inc. Wireless power system with debounced charging indicator
EP3629465A1 (en) * 2018-09-26 2020-04-01 Siemens Aktiengesellschaft Electrical power conversion system
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
CN109687599A (zh) * 2018-12-21 2019-04-26 伏诺瓦(天津)科技有限公司 无线充电浪涌保护器监测终端
CN112655132B (zh) * 2019-01-04 2024-06-04 华为技术有限公司 一种充电电路及无线充电控制方法
US11631998B2 (en) * 2019-01-10 2023-04-18 Hengchun Mao High performance wireless power transfer and power conversion technologies
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
EP3921945A1 (en) 2019-02-06 2021-12-15 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
JP7169897B2 (ja) * 2019-02-12 2022-11-11 株式会社日立製作所 受電ユニット、送電ユニット及び無線給電装置
US10998776B2 (en) 2019-04-11 2021-05-04 Apple Inc. Wireless power system with in-band communications
US11482921B2 (en) * 2019-05-03 2022-10-25 Witricity Corporation Active harmonics cancellation
KR20220034789A (ko) * 2019-06-18 2022-03-18 휴메인, 인코포레이티드 의복을 통해 신체-착용 디바이스들을 무선으로 충전하기 위한 휴대용 배터리 팩
TWI688195B (zh) * 2019-06-19 2020-03-11 宏碁股份有限公司 電源供應器
CN110460165B (zh) * 2019-07-30 2021-04-23 中国科学技术大学 一种无线充电发射器及其控制方法
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation SYSTEMS AND METHODS FOR PROTECTING WIRELESS POWER RECEIVERS USING MULTIPLE RECTIFIER AND ESTABLISHING IN-BAND COMMUNICATIONS USING MULTIPLE RECTIFIER
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11711009B2 (en) 2019-10-24 2023-07-25 The Trustees Of Columbia University In The City Of New York Methods, systems, and devices for soft switching of power converters
CN110971012A (zh) * 2019-12-02 2020-04-07 广东工业大学 一种e类无线电能传输装置及启动控制方法
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corporation CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11722013B1 (en) 2020-05-29 2023-08-08 Humane, Inc. Portable battery pack for wirelessly charging and communicating with portable electronic device through clothing
TWI740619B (zh) * 2020-08-21 2021-09-21 國立臺灣科技大學 用於電源轉換器的控制電路及控制方法
US11545943B2 (en) * 2020-12-04 2023-01-03 Mks Instruments, Inc. Switched capacitor modulator
US12016113B2 (en) * 2020-12-22 2024-06-18 Intel Corporation Mitigating PDN induced RF interference using a stepped impedance filter
KR102531187B1 (ko) * 2020-12-28 2023-05-10 경희대학교 산학협력단 공동 공진에 기반하여 주변 전파 노출을 최소화하는 무선전력 전송 장치
CN113141062B (zh) * 2021-04-23 2023-01-31 新疆大学 无线电能传输系统及其移相键控通信前馈补偿方法
CN113472368B (zh) * 2021-06-30 2022-04-22 杭州电子科技大学 一种发射线圈的多频点最大功率控制电路
US11967836B2 (en) 2021-09-07 2024-04-23 Apple Inc. Harmonic current monitoring in a wireless power system
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
WO2023167854A1 (en) * 2022-03-03 2023-09-07 COMET Technologies USA, Inc. Retuning for impedance matching network control
US20230369899A1 (en) * 2022-05-13 2023-11-16 Energous Corporation Integrated wireless-power-transmission platform designed to operate in multiple bands, and multi-band antennas for use therewith
CN114865888B (zh) * 2022-07-11 2022-10-04 广东电网有限责任公司肇庆供电局 一种用于储能变换器的功率前馈电感参数辩识方法和系统
TWI815705B (zh) * 2022-10-20 2023-09-11 立錡科技股份有限公司 無線電力傳輸裝置及其操作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080186743A1 (en) * 2004-04-30 2008-08-07 Hon Hai Precision Industry Co., Ltd. DC transformer with an output inductance integrated on a magnetic core thereof and a DC/DC converter employing the same
CN101697456A (zh) * 2009-10-29 2010-04-21 浙江大学 以双功率变压器实现整流管电压箝位的整流电路
CN101834541A (zh) * 2010-06-02 2010-09-15 英飞特电子(杭州)有限公司 一种高功率因数恒流电路
CN103813589A (zh) * 2014-01-24 2014-05-21 东南大学 一种具有多输出均流的隔离式大功率led驱动电源
US20140225439A1 (en) * 2013-02-14 2014-08-14 Hengchun Mao High Efficiency High Frequency Resonant Power Conversion

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471376A (en) * 1993-03-05 1995-11-28 Digital Equipment Corporation Low-loss active voltage-clamp circuit for single-ended forward PWM converter
FR2738417B1 (fr) * 1995-08-30 1997-11-07 Gaia Converter Convertisseur de tension continue a commutation douce
US5771163A (en) * 1996-11-19 1998-06-23 Sansha Electric Manufacturing Company, Limited AC-DC converter apparatus
US5781421A (en) * 1996-12-16 1998-07-14 General Electric Company High-frequency, high-efficiency converter with recirculating energy control for high-density power conversion
US5781451A (en) 1997-01-21 1998-07-14 Xerox Corporation Method and apparatus for tracking the motion of an imaging member with a line writing device using a rational electronic gearbox
US5986904A (en) * 1998-11-05 1999-11-16 Lucent Technologies, Inc. Self-regulating lossless snubber circuit
US6996414B2 (en) 2001-04-30 2006-02-07 Motorola, Inc. System and method of group calling in mobile communications
CA2464516A1 (en) 2001-10-25 2003-05-01 Worldcom, Inc. Communication session quality indicator
US6873854B2 (en) 2002-02-14 2005-03-29 Qualcomm Inc. Method and an apparatus for adding a new member to an active group call in a group communication network
EP1569473B1 (en) 2004-02-27 2009-02-25 Research In Motion Limited Methods and apparatus for facilitating concurrent push-to-talk over cellular (POC) group communication sessions
US9913300B2 (en) 2011-12-14 2018-03-06 Kodiak Networks, Inc. Push-to-talk-over-cellular (PoC)
US7536191B2 (en) 2005-07-01 2009-05-19 Microsoft Corporation Push-to-talk communications in computing environments
US8041376B2 (en) 2005-07-15 2011-10-18 Research In Motion Limited Methods and apparatus for providing PTT data buffering support indications from mobile devices and PTT data buffering control by wireless networks
US7746670B2 (en) * 2006-10-04 2010-06-29 Denso Corporation Dual-transformer type of DC-to-DC converter
US8138688B2 (en) * 2010-01-22 2012-03-20 Averd Labs Co., Ltd. Half-bridge power converter for driving LED by series-resonant connection of inductor, inductor and capacitor
US9392576B2 (en) 2010-12-29 2016-07-12 Motorola Solutions, Inc. Methods for tranporting a plurality of media streams over a shared MBMS bearer in a 3GPP compliant communication system
EP2546968B1 (en) * 2011-07-15 2016-05-18 Nxp B.V. Resonant converter control
CN102361357B (zh) * 2011-09-22 2013-06-26 重庆大学 基于静态电容阵列的cpt系统及其控制方法
CN103078510B (zh) * 2011-10-25 2015-11-25 通用电气公司 谐振电源、磁共振成像系统及控制方法
US9818530B2 (en) * 2012-01-17 2017-11-14 Texas Instruments Incorporated Adaptive wireless power transfer system and method
CA2804368C (en) 2012-02-01 2018-03-13 Kodiak Networks, Inc. Wifi interworking solutions for push-to-talk-over-cellular (poc)
US20130271069A1 (en) * 2012-03-21 2013-10-17 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9277425B2 (en) * 2012-03-30 2016-03-01 Marvell World Trade Ltd. Systems and methods for automatic frequency control for mobile communication systems
US9178438B2 (en) 2012-04-05 2015-11-03 Futurewei Technologies, Inc. Apparatus for resonant converters
US9398427B2 (en) 2012-05-24 2016-07-19 Hughes Network Systems, Llc System and method for efficient use of radio resources for push-to-talk services in mobile wireless communications systems
KR20140008020A (ko) * 2012-07-10 2014-01-21 삼성전자주식회사 무선 전력 전송 장치, 무선 전력 릴레이 장치 및 무선 전력 수신 장치
CN102882286B (zh) * 2012-09-25 2015-05-20 重庆大学 一种基于电场耦合的无线电能传输系统
US9143903B2 (en) 2012-10-19 2015-09-22 Qualcomm Incorporated Requesting and providing acknowledgements to specific PTT talk spurts
US9344042B2 (en) * 2013-02-27 2016-05-17 Hengchun Mao High efficiency power amplifiers with advanced power solutions
KR20160022823A (ko) * 2013-06-19 2016-03-02 르네사스 일렉트로닉스 가부시키가이샤 송전 장치, 비접촉 급전 시스템 및 제어 방법
WO2015105812A2 (en) * 2014-01-07 2015-07-16 NuVolta Technologies Harmonic reduction apparatus for wireless power transfer systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080186743A1 (en) * 2004-04-30 2008-08-07 Hon Hai Precision Industry Co., Ltd. DC transformer with an output inductance integrated on a magnetic core thereof and a DC/DC converter employing the same
CN101697456A (zh) * 2009-10-29 2010-04-21 浙江大学 以双功率变压器实现整流管电压箝位的整流电路
CN101834541A (zh) * 2010-06-02 2010-09-15 英飞特电子(杭州)有限公司 一种高功率因数恒流电路
US20140225439A1 (en) * 2013-02-14 2014-08-14 Hengchun Mao High Efficiency High Frequency Resonant Power Conversion
CN103813589A (zh) * 2014-01-24 2014-05-21 东南大学 一种具有多输出均流的隔离式大功率led驱动电源

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742863A (zh) * 2018-12-27 2019-05-10 华为技术有限公司 一种无线充电系统的接收端、发射端及无线充电系统
CN111740631A (zh) * 2019-03-19 2020-10-02 台达电子工业股份有限公司 谐振变换器及其变压器的制造方法
US11031878B2 (en) 2019-03-19 2021-06-08 Delta Electronics, Inc. Resonant converter and manufacturing method of transformer thereof
CN111740631B (zh) * 2019-03-19 2021-11-02 台达电子工业股份有限公司 谐振变换器及其变压器的制造方法
US11496064B2 (en) 2019-03-19 2022-11-08 Delta Electronics, Inc. Resonant converter and manufacturing method of transformer thereof
EP4128535A4 (en) * 2020-03-05 2024-05-29 Yank Technologies, Inc. ISOLATED SWITCHING AMPLIFIER SYSTEM
CN113162245A (zh) * 2021-03-23 2021-07-23 Oppo广东移动通信有限公司 充电电路、芯片和设备
CN113162245B (zh) * 2021-03-23 2023-11-10 Oppo广东移动通信有限公司 充电电路、芯片和设备
CN113098354A (zh) * 2021-04-29 2021-07-09 臻驱科技(上海)有限公司 一种电机控制器的过调制区域控制方法及系统
CN113098354B (zh) * 2021-04-29 2023-02-21 臻驱科技(上海)有限公司 一种电机控制器的过调制区域控制方法及系统
CN112994504A (zh) * 2021-05-13 2021-06-18 深圳赫兹创新技术有限公司 一种应用于无线充电系统的原边功率反馈电路以及方法

Also Published As

Publication number Publication date
US9929595B2 (en) 2018-03-27
US9991742B2 (en) 2018-06-05
GB2546181A (en) 2017-07-12
CN107078729B (zh) 2021-07-09
US20160056639A1 (en) 2016-02-25
GB2542739A (en) 2017-03-29
GB2546181B (en) 2021-12-22
WO2016033112A1 (en) 2016-03-03
US10637295B2 (en) 2020-04-28
GB2542739B8 (en) 2021-05-12
US20160056640A1 (en) 2016-02-25
US11139692B2 (en) 2021-10-05
GB201701228D0 (en) 2017-03-08
GB2542739B (en) 2021-05-05
CN107005091A (zh) 2017-08-01
WO2016032981A1 (en) 2016-03-03
US20180138747A1 (en) 2018-05-17
GB201701227D0 (en) 2017-03-08
US20200153286A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
CN107078729A (zh) 零电压开关半桥变换器
CN107248774B (zh) 用于基于GaN基电源装置的电池充电器的系统架构
CN109075612B (zh) 无线电能传输控制装置和方法
CN106160514B (zh) 谐振式无线电源接收电路及控制电路与无线电源转换方法
US20230216348A1 (en) High Performance Variable Ratio Switched Capacitor Power Converter
US20170294833A1 (en) Multiphase Coupled and Integrated Inductors with Printed Circuit Board (PCB) Windings for Power Factor Correction (PFC) Converters
Jiang et al. A high-efficiency GaN-based single-stage 6.78 MHz transmitter for wireless power transfer applications
CN106787253B (zh) 基于t-π复合谐振网络ecpt系统及其参数设计方法
HRP20200028T1 (hr) Uređaj i postupak za bežični prijenos snage između izvora dc napona
JP2014506111A (ja) ワイヤレス電力送信のためのシステム
WO2014063590A1 (zh) 交错式llc均流变换器
CN104242657B (zh) 一种原边并串补偿副边串联补偿的非接触谐振变换器
US9929585B2 (en) Power transfer system
US20180269726A1 (en) Inductive Power Transmitter
WO2015053246A1 (ja) ワイヤレス電力伝送システム
Costa et al. Evaluation of a variable-inductor-controlled LLC resonant converter for battery charging applications
US10135300B2 (en) Non-contact power reception apparatus
Thenathayalan et al. Individually regulated multiple-output WPT system with a single PWM and single transformer
Liu et al. Design and optimization of mutual inductance for high efficiency ICPT system
Jiang et al. Bidirectional high-frequency inductive power transfer systems based on differential load-independent class e converters
WO2017105256A1 (en) Inductive power receiver
Moisello et al. Recent trends and challenges in near-field wireless power transfer systems
KR102428009B1 (ko) 무선 전력 송신 장치
Zhang et al. A ring diode–capacitor network for current-balancing multiple LED strings
TW201737592A (zh) 無線充電系統

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Mao Hengchun

Inventor before: Mao Hengchun

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20200601

Address after: Tortola Island, British Virgin Islands

Applicant after: Hengchun Mao

Address before: 1525 McCarthy Avenue, mibida, California, USA

Applicant before: Fu Dakeji

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant