CN107069433A - GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法 - Google Patents

GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法 Download PDF

Info

Publication number
CN107069433A
CN107069433A CN201710472653.3A CN201710472653A CN107069433A CN 107069433 A CN107069433 A CN 107069433A CN 201710472653 A CN201710472653 A CN 201710472653A CN 107069433 A CN107069433 A CN 107069433A
Authority
CN
China
Prior art keywords
layer
type
gan
ultraviolet laser
gan base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710472653.3A
Other languages
English (en)
Inventor
邢瑶
赵德刚
江德生
刘宗顺
陈平
朱建军
杨静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201710472653.3A priority Critical patent/CN107069433A/zh
Publication of CN107069433A publication Critical patent/CN107069433A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

一种GaN基紫外激光器晶圆,包括叠置于GaN衬底正面上的n型限制层、n型波导层、有源区、u型波导层、p型限制层和p型接触层,其中:在n型波导层和有源区之间还有一n型空穴阻挡层;在u型波导层和p型限制层之间还有一p型电子阻挡层;该GaN基紫外激光器晶圆为脊型结构。以及一种GaN基紫外激光器晶圆的制备方法、通过解理、镀膜形成的激光芯片、通过封装形成的激光器。本发明在u型波导层/n型波导层与限制层/有源区之间插入p型电子阻挡层/n型空穴阻挡层;可在u型波导层与限制层之间/n型波导层和有源区之间形成高的势垒,有效阻止电子/空穴泄漏到有源区以外靠近p/n区的位置;从而可降低GaN基紫外激光器的阈值电流,提高功率和光电转换效率。

Description

GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法
技术领域
本发明属于半导体光电子器件技术领域,更具体地涉及一种GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法。
背景技术
随着半导体光电子器件的迅速发展,氮化镓基激光器因其优越的性能被广泛研究和应用。由于氮化镓具有较宽的禁带宽度,因此它的发光波长可以覆盖整个可见光光谱,具有很大的可调性;另外,氮化镓基激光器具有发光效率高,热导率高,化学稳定性好的特点,可广泛应用于工业加工领域、医学治疗领域、军事领域以及理论研究领域。但目前为止,对氮化镓基激光器的研究制备比较成熟的是蓝紫光波段,而紫外激光器还处于研究阶段。
氮化镓基紫外激光器材料层主要分为三部分:单量子阱或多量子阱形成的有源区、有源区一侧为有源区提供电子的n区、有源区另一侧为有源区提供空穴的p区。通过施加外加偏压驱动电子和空穴在垂直于结平面的方向上注入激光器结构,进入有源区的大部分载流子进行复合并产生光,而另一部分载流子由于近紫外激光器结构中量子阱比较浅而泄漏到量子阱外,造成载流子的损失,从而导致激光器性能下降。通过侧面两端的解理镜面形成反馈腔,使得电子空穴复合产生的光在腔内不断谐振并且形成波前平行于镜面的驻波。如果有源区内的光增益超过了激光器结构里的光损耗,就会产生放大的受激辐射,激光便会从镜面端面发射出来。
为了提高激光器的性能、降低阈值电流以及增大光输出功率,必须降低载流子的泄漏。
发明内容
基于以上问题,本发明的主要目的在于提出一种GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法,用于解决以上技术问题的至少之一。
为了实现上述目的,作为本发明的一个方面,本发明提出了一种GaN基紫外激光器晶圆,包括叠置形成于GaN衬底正面上的n型限制层、n型波导层、有源区、u型波导层、p型限制层和p型接触层,其中:
在n型波导层和有源区之间还形成有一n型空穴阻挡层;
在u型波导层和p型限制层之间还形成有一p型电子阻挡层;
该GaN基紫外激光器晶圆为脊型结构。
在本发明的一些实施例中,上述n型空穴阻挡层为n型掺杂结构,掺杂浓度为5×1018cm-3;p型电子阻挡层为p型掺杂结构,掺杂浓度为5×1019cm-3;u型波导层无掺杂。
在本发明的一些实施例中,上述n型空穴阻挡层的主体材料包括AlGaN或InAlGaN;优选地,AlGaN材料中Al的原子个数百分比为5%~25%;InAlGaN材料中In的原子个数百分比为0~15%,Al的原子个数百分比为20%~40%;优选地,n型空穴阻挡层的厚度为5~30nm。
在本发明的一些实施例中,上述p型电子阻挡层的主体材料包括AlGaN或InAlGaN;优选地,AlGaN材料中Al的原子个数百分比为10%~30%;InAlGaN材料中In的原子个数百分比为0~15%,Al的原子个数百分比为0~40%;优选地,p型电子阻挡层的厚度为5~30nm。
在本发明的一些实施例中,上述有源区为量子阱有源区,其中的量子阱个数为1~5个,每个量子阱的厚度为1~10nm。
在本发明的一些实施例中,上述量子阱的主体材料为GaN或InGaN;相应地,量子阱有源区中的量子垒的主体材料为GaN或InGaN。
在本发明的一些实施例中,上述GaN衬底的厚度为0.5~2μm;n型限制层的厚度为0.5~2μm;n型波导层的厚度为0.03~0.15μm;u型波导层的厚度为0.03~0.15μm;p型限制层的厚度为0.05~0.12μm;p型接触层的厚度为0.02~0.05μm。
在本发明的一些实施例中,上述n型限制层的主体材料为Al原子个数百分比2%~10%的AlGaN;n型波导层的主体材料为GaN或In原子个数百分比0~2%的InGaN;u型波导层的主体材料为GaN或In原子个数百分比0.1%~2%的InGaN;p型限制层的主体材料为Al原子个数百分比5%~12%的AlGaN;p型接触层的主体材料为GaN。
为了实现上述目的,作为本发明的另一个方面,本发明提出了一种上述的GaN基紫外激光器晶圆的制备方法,包括以下步骤:
步骤1、在GaN衬底上依次生长n型限制层、n型波导层、n型空穴阻挡层、有源区、u型波导层、p型电子阻挡层、p型限制层和p型接触层;
步骤2、部分的刻蚀u型波导层、p型电子阻挡层、p型限制层和p型接触层,形成脊型结构;
步骤3、在脊型结构的脊台上制备p型电极,同时打薄GaN衬底,并在GaN衬底的背面制备n型电极,完成GaN基紫外激光器晶圆的制备。
为了实现上述目的,作为本发明的再一个方面,本发明提出了一种GaN基紫外激光器芯片,由上述的制备方法制备得到的GaN基紫外激光器晶圆,经解理、镀膜后得到。
为了实现上述目的,作为本发明的又一个方面,本发明提出了一种GaN基紫外激光器,由上述的GaN基紫外激光器芯片封装后得到。
本发明提出的GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法,具有以下有益效果:
1、在u型波导层与限制层之间插入p型电子阻挡层,在n型波导层和有源区之间插入n型空穴阻挡层;可在u型波导层与限制层之间形成高的势垒,有效阻止电子泄漏到有源区以外靠近p区的位置;且在n型波导层和有源区之间形成高的势垒,从而有效阻止空穴泄漏到有源区以外靠近n区的位置,降低GaN基紫外激光器的阈值电流,提高功率和光电转换效率;
2、对p型电子阻挡层和n型空穴阻挡层分别进行p型和n型掺杂,从而可尽量减小p型电子阻挡层/n型空穴阻挡层的设置引起的,对空穴/电子注入的影响;
3、选择合适的p型电子阻挡层和n型空穴阻挡层的厚度和材料组分,可使得电子和空穴被很好的限制在有源区进行复合发光;同时,可避免增加过多电阻引起的器件性能的恶化。
附图说明
图1是本发明一实施例提出的GaN基紫外激光器晶圆的制备方法中完成步骤1后的结构示意图;
图2是本发明一实施例提出的GaN基紫外激光器晶圆的制备方法中完成步骤2后的结构示意图;
图3是本发明一实施例提出的GaN基紫外激光器晶圆的制备方法中完成步骤3后的结构示意图;
图4是本发明一实施例提出的GaN基紫外激光器晶圆的能带示意图;
图5是本发明一实施例提出的GaN基紫外激光器添加与未添加空穴阻挡层的模拟结果图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明公开了一种GaN基紫外激光器晶圆,包括叠置形成于GaN衬底正面上的n型限制层、n型波导层、有源区、u型波导层、p型限制层和p型接触层,其中:
在n型波导层和有源区之间还有一n型空穴阻挡层;
在u型波导层和p型限制层之间还有一p型电子阻挡层;
该GaN基紫外激光器晶圆为脊型结构。
因此,本发明在u型波导层与限制层之间插入p型电子阻挡层,在n型波导层和有源区之间插入n型空穴阻挡层;可在u型波导层与限制层之间形成高的势垒,有效阻止电子泄漏到有源区以外靠近p区的位置;且在n型波导层和有源区之间形成高的势垒,从而有效阻止空穴泄漏到有源区以外靠近n区的位置,降低GaN基紫外激光器的阈值电流,提高功率和光电转换效率。
在本发明的一些实施例中,上述u型波导层无掺杂。
在本发明的一些实施例中,n型空穴阻挡层掺杂Si,掺杂浓度为5×1018cm-3;p型电子阻挡层掺杂Mg,掺杂浓度为5×1019cm-3,从而可尽量减小p型电子阻挡层/n型空穴阻挡层的设置引起的,对空穴/电子注入的影响。
在本发明的一些实施例中,上述n型空穴阻挡层的主体材料包括AlGaN或InAlGaN;其中,AlGaN材料中Al的原子个数百分比为5%~25%;InAlGaN材料中In的原子个数百分比为0~15%,Al的原子个数百分比为20%~40%;n型空穴阻挡层的厚度为5~30nm。通过合理的调节材料组分和厚度,可使得空穴被很好的限制在有源区进行复合发光;同时,可避免增加过多电阻引起的器件性能的恶化。
在本发明的一些实施例中,p型电子阻挡层的主体材料包括AlGaN或InAlGaN;其中,AlGaN材料中Al的原子个数百分比为10%~30%;InAlGaN材料中In的原子个数百分比为0~15%,Al的原子个数百分比为0~40%;p型电子阻挡层的厚度为5~30nm。通过合理的调节材料组分和厚度,可使得空穴被很好的限制在有源区进行复合发光;同时,可避免增加过多电阻引起的器件性能的恶化。
在本发明的一些实施例中,上述有源区为量子阱有源区,其中的量子阱个数为1~5个,每个量子阱的厚度为1~10nm。
在本发明的一些实施例中,上述量子阱的主体材料为GaN或InGaN;相应地,量子阱有源区中的量子垒的主体材料为GaN或InGaN。
在本发明的一些实施例中,上述GaN衬底的厚度为0.5~2μm;n型限制层的厚度为0.5~2μm;n型波导层的厚度为0.03~0.15μm;u型波导层的厚度为0.03~0.15μm;p型限制层的厚度为0.05~0.12μm;p型接触层的厚度为0.02~0.05μm。
在本发明的一些实施例中,上述n型限制层的主体材料为Al原子个数百分比2%~10%的AlGaN;n型波导层的主体材料为GaN或In原子个数百分比0~2%的InGaN;u型波导层的主体材料为GaN或In原子个数百分比0.1%~2%的InGaN;p型限制层的主体材料为Al原子个数百分比5%~12%的AlGaN;p型接触层的主体材料为GaN。
本发明还公开了一种上述的GaN基紫外激光器晶圆的制备方法,包括以下步骤:
步骤1、在GaN衬底上依次生长n型限制层、n型波导层、n型空穴阻挡层、有源区、u型波导层、p型电子阻挡层、p型限制层和p型接触层;
步骤2、部分的刻蚀u型波导层、p型电子阻挡层、p型限制层和p型接触层,形成脊型结构;
步骤3、在脊型结构的脊台上制备p型电极,同时打薄GaN衬底,并在GaN衬底的背面制备n型电极,完成GaN基紫外激光器晶圆的制备。
上述的制备方法制备得到的GaN基紫外激光器晶圆,经解理、镀膜后即可得到GaN基紫外激光器芯片;而该得到GaN基紫外激光器芯片封装后即可得到GaN基紫外激光器。
以下通过具体实施例,对本发明提出的GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法进行详细说明。
实施例
本实施例提出的一种氮化镓基紫外激光器,其由氮化镓基紫外激光器晶圆经解理、镀膜,最后封装在管壳上得到。其中,氮化镓基紫外激光器晶圆的具体制备过程如下:
步骤1、如图1所示,在氮化镓衬底10上利用金属有机物气相化学淀积依次生长n型限制层11、n型波导层12、n型空穴阻挡层13、量子阱有源区14、u型波导层15、p型电子阻挡层16、p型限制层17、p型接触层18:
步骤2、如图2所示,通过光刻及干法刻蚀,形成激光器的脊型结构,其中,刻蚀工艺进行至u型波导层15的上表面为止;
步骤3、如图3所示,在刻蚀形成的脊台上做出p电极19,接着通过将衬底10减薄、清洗,做出n型电极20,即可完成氮化镓基紫外激光器晶圆的制备。
氮化镓衬底10的厚度为1μm;n型限制层11的材料为AlGaN,其中Al的原子个数百分比为8%,该层的厚度为1μm,掺杂浓度为3×1018cm-3;n型波导层12的材料为InGaN,其中In的原子个数百分比为0~2%,该层的厚度为0.12μm,掺杂浓度为5×1017cm-3;n型空穴阻挡层13的材料为AlGaN,其中Al的原子个数百分比为23%,该层的厚度为0.01μm,掺杂浓度为5×1018cm-3;量子阱有源区14包括2个量子阱层和3个量子垒层,每个量子阱层的材料均为GaN,每层的厚度为0.0025μm;每个量子垒层的材料均为GaN,每层的厚度为0.014μm;其中u型波导层15的材料为InGaN,其中In的原子个数百分比为0~2%,该层的厚度为0.1μm;p型电子阻挡层的材料为AlGaN,其中Al的原子个数百分比为25%,该层的厚度为0.02μm,掺杂浓度为5×1019cm-3;p型限制层17的材料为AlGaN,其中Al的原子个数百分比为8%,该层的厚度为0.6μm,掺杂浓度为2×1019cm-3;p型接触层18的材料为GaN,该层的厚度为0.04μm,掺杂浓度为5×1020cm-3
p电极19的材质为Ni(15nm)/Au(50nm);n电极20的材质为Ti(50nm)/Pt(50nm)/Au(100nm),以形成良好的欧姆接触。
如图4所示,为本实施例的氮化镓基紫外激光器晶圆的能带图,从图中可以看出,由于本实施例的结构中加入了n型空穴阻挡层13和p型电子阻挡层16,因此,在u型波导层15与p型限制层17之间可形成高的势垒,有效阻止电子泄漏到有源区以外靠近p区的位置;在n型波导层12和量子阱有源区14之间可形成高的势垒,有效阻止空穴泄漏到有源区以外靠近n区的位置,从而可降低GaN基紫外激光器的阈值电流,提高功率和光电转换效率。
如图5所示,LD3为未添加n型空穴阻挡层13的激光器模拟得到的P-I-V曲线,LD4为采用本实施例的氮化镓基紫外激光器晶圆制备得到的氮化镓基紫外激光器,模拟得到的P-I-V曲线。LD3与LD4的区别仅在于是否有n型空穴阻挡层13。因此,从图中可以看出,添加n型空穴阻挡层13后,阈值电流减小为60.9mA,光电转换效率提高到13.6%,最高输出功率可达到79毫瓦,因此,添加n型空穴阻挡层13后,激光器的光电性能提升,说明有效的阻止了空穴泄漏到有源区以外靠近n区的位置。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种GaN基紫外激光器晶圆,包括叠置形成于GaN衬底正面上的n型限制层、n型波导层、有源区、u型波导层、p型限制层和p型接触层,其中:
在所述n型波导层和有源区之间还形成有一n型空穴阻挡层;
在所述u型波导层和p型限制层之间还形成有一p型电子阻挡层;
所述GaN基紫外激光器晶圆为脊型结构。
2.如权利要求1所述的GaN基紫外激光器晶圆,其中,
所述n型空穴阻挡层为n型掺杂结构,掺杂浓度为5×1018cm-3
所述p型电子阻挡层为p型掺杂结构,掺杂浓度为5×1019cm-3
所述u型波导层无掺杂。
3.如权利要求1所述的GaN基紫外激光器晶圆,其中:
所述n型空穴阻挡层的主体材料包括AlGaN或InAlGaN;优选地,所述AlGaN材料中Al的原子个数百分比为5%~25%;所述InAlGaN材料中In的原子个数百分比为0~15%,Al的原子个数百分比为20%~40%;优选地,所述n型空穴阻挡层的厚度为5~30nm。
4.如权利要求1所述的GaN基紫外激光器晶圆,其中:
所述p型电子阻挡层的主体材料包括AlGaN或InAlGaN;优选地,所述AlGaN材料中Al的原子个数百分比为10%~30%;所述InAlGaN材料中In的原子个数百分比为0~15%,Al的原子个数百分比为0~40%;优选地,所述p型电子阻挡层的厚度为5~30nm。
5.如权利要求1所述的GaN基紫外激光器晶圆,其中:
所述有源区为量子阱有源区,其中的量子阱个数为1~5个,每个量子阱的厚度为1~10nm;优选地,所述量子阱的主体材料为GaN或InGaN;相应地,所述量子阱有源区中的量子垒的主体材料为GaN或InGaN。
6.如权利要求1所述的GaN基紫外激光器晶圆,其中,所述GaN衬底的厚度为0.5~2μm;所述n型限制层的厚度为0.5~2μm;所述n型波导层的厚度为0.03~0.15μm;所述u型波导层的厚度为0.03~0.15μm;所述p型限制层的厚度为0.05~0.12μm;所述p型接触层的厚度为0.02~0.05μm。
7.如权利要求1所述的GaN基紫外激光器晶圆,其中,所述n型限制层的主体材料为Al原子个数百分比2%~10%的AlGaN;所述n型波导层的主体材料为GaN或In原子个数百分比0~2%的InGaN;所述u型波导层的主体材料为GaN或In原子个数百分比0.1%~2%的InGaN;所述p型限制层的主体材料为Al原子个数百分比5%~12%的AlGaN;所述p型接触层的主体材料为GaN。
8.一种GaN基紫外激光器晶圆的制备方法,包括以下步骤:
步骤1、在GaN衬底上依次生长n型限制层、n型波导层、n型空穴阻挡层、有源区、u型波导层、p型电子阻挡层、p型限制层和p型接触层;
步骤2、部分的刻蚀u型波导层、p型电子阻挡层、p型限制层和p型接触层,形成脊型结构;
步骤3、在所述脊型结构的脊台上制备p型电极,同时打薄所述GaN衬底,并在所述GaN衬底的背面制备n型电极,完成所述GaN基紫外激光器晶圆的制备。
9.一种GaN基紫外激光器芯片,由如权利要求8所述的制备方法制备得到的所述GaN基紫外激光器晶圆,经解理、镀膜后得到。
10.一种GaN基紫外激光器,由权利要求9所述的GaN基紫外激光器芯片封装后得到。
CN201710472653.3A 2017-06-20 2017-06-20 GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法 Pending CN107069433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710472653.3A CN107069433A (zh) 2017-06-20 2017-06-20 GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710472653.3A CN107069433A (zh) 2017-06-20 2017-06-20 GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法

Publications (1)

Publication Number Publication Date
CN107069433A true CN107069433A (zh) 2017-08-18

Family

ID=59595332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710472653.3A Pending CN107069433A (zh) 2017-06-20 2017-06-20 GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法

Country Status (1)

Country Link
CN (1) CN107069433A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346923A (zh) * 2018-11-16 2019-02-15 华南师范大学 GaN基激光器及其制备方法
CN111817137A (zh) * 2020-08-31 2020-10-23 北京蓝海创芯智能科技有限公司 一种限制增强型GaN基深紫外激光器
CN112821200A (zh) * 2021-02-05 2021-05-18 中国工程物理研究院应用电子学研究所 一种脊型波导半导体激光器及其制备方法
WO2021129214A1 (zh) * 2019-12-26 2021-07-01 南京亮芯信息科技有限公司 垂直结构深紫外发光二极管及其制备方法
CN114400506A (zh) * 2022-01-17 2022-04-26 光为科技(广州)有限公司 半导体激光器及其制备方法
CN116365363A (zh) * 2023-03-22 2023-06-30 江苏第三代半导体研究院有限公司 激光器外延结构及激光器
WO2023206123A1 (zh) * 2022-04-27 2023-11-02 厦门三安光电有限公司 一种半导体激光器及其显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534839A (zh) * 2003-03-31 2004-10-06 中国科学院半导体研究所 半导体激光器腔面钝化的方法
CN101471536A (zh) * 2007-12-26 2009-07-01 夏普株式会社 氮化物半导体激光器芯片及其制造方法
CN101626058A (zh) * 2008-07-09 2010-01-13 住友电气工业株式会社 Ⅲ族氮化物类半导体发光元件及外延晶圆
CN102545052A (zh) * 2012-03-09 2012-07-04 北京工业大学 一种具有光栅结构的边发射半导体激光器
CN102709813A (zh) * 2012-05-25 2012-10-03 中国科学院长春光学精密机械与物理研究所 一种单片垂直集成多波长半导体激光器及其制造方法
CN103370842A (zh) * 2011-02-17 2013-10-23 康宁股份有限公司 应变平衡的激光二极管
CN106206876A (zh) * 2016-08-29 2016-12-07 扬州中科半导体照明有限公司 一种发光二极管外延片的制造方法
CN106785919A (zh) * 2016-10-26 2017-05-31 中国科学院苏州纳米技术与纳米仿生研究所 InGaN/GaN量子阱激光器及其制作方法
CN106785912A (zh) * 2016-05-26 2017-05-31 中国科学院苏州纳米技术与纳米仿生研究所 半导体激光器及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534839A (zh) * 2003-03-31 2004-10-06 中国科学院半导体研究所 半导体激光器腔面钝化的方法
CN101471536A (zh) * 2007-12-26 2009-07-01 夏普株式会社 氮化物半导体激光器芯片及其制造方法
CN101626058A (zh) * 2008-07-09 2010-01-13 住友电气工业株式会社 Ⅲ族氮化物类半导体发光元件及外延晶圆
CN103370842A (zh) * 2011-02-17 2013-10-23 康宁股份有限公司 应变平衡的激光二极管
CN102545052A (zh) * 2012-03-09 2012-07-04 北京工业大学 一种具有光栅结构的边发射半导体激光器
CN102709813A (zh) * 2012-05-25 2012-10-03 中国科学院长春光学精密机械与物理研究所 一种单片垂直集成多波长半导体激光器及其制造方法
CN106785912A (zh) * 2016-05-26 2017-05-31 中国科学院苏州纳米技术与纳米仿生研究所 半导体激光器及其制作方法
CN106206876A (zh) * 2016-08-29 2016-12-07 扬州中科半导体照明有限公司 一种发光二极管外延片的制造方法
CN106785919A (zh) * 2016-10-26 2017-05-31 中国科学院苏州纳米技术与纳米仿生研究所 InGaN/GaN量子阱激光器及其制作方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346923A (zh) * 2018-11-16 2019-02-15 华南师范大学 GaN基激光器及其制备方法
WO2021129214A1 (zh) * 2019-12-26 2021-07-01 南京亮芯信息科技有限公司 垂直结构深紫外发光二极管及其制备方法
CN111817137A (zh) * 2020-08-31 2020-10-23 北京蓝海创芯智能科技有限公司 一种限制增强型GaN基深紫外激光器
CN112821200A (zh) * 2021-02-05 2021-05-18 中国工程物理研究院应用电子学研究所 一种脊型波导半导体激光器及其制备方法
CN114400506A (zh) * 2022-01-17 2022-04-26 光为科技(广州)有限公司 半导体激光器及其制备方法
CN114400506B (zh) * 2022-01-17 2024-01-12 光为科技(广州)有限公司 半导体激光器及其制备方法
WO2023206123A1 (zh) * 2022-04-27 2023-11-02 厦门三安光电有限公司 一种半导体激光器及其显示装置
CN116365363A (zh) * 2023-03-22 2023-06-30 江苏第三代半导体研究院有限公司 激光器外延结构及激光器

Similar Documents

Publication Publication Date Title
CN107069433A (zh) GaN基紫外激光器晶圆、激光器芯片及激光器及其制备方法
KR102453206B1 (ko) 발광 다이오드 및 그 제조방법
JP4505147B2 (ja) 相分離の少ないiii族窒化物4元材料系を用いた半導体構造体および加工方法
TWI403002B (zh) 半導體發光元件
JP2000174339A (ja) GaN系半導体発光素子およびGaN系半導体受光素子
TW200529474A (en) Thin-film LED with an electric current expansion structure
CN207602981U (zh) 一种片内堆积多有源区半导体巴条激光器芯片
CN113257965B (zh) 一种AlInGaN半导体发光器件
KR100900114B1 (ko) 반도체 층 내부에 전기 전도도가 감소하는 영역을 형성하기위한 방법 및 광전 반도체 소자
JP4837012B2 (ja) 発光素子
JP3814151B2 (ja) 発光素子
JP3299739B2 (ja) 発光素子
CN105846310A (zh) 一种出光增强型电子束泵浦紫外光源及其制备方法
TW200406072A (en) Manufacturing method of light emitting device and light emitting device
TW200402153A (en) Method for the manufacturing of a semiconductor element for the emission of electromagnetic radiation
CN105048285B (zh) 一种提高氮化镓基激光器性能的方法
JP4836382B2 (ja) 発光素子
KR100751632B1 (ko) 발광 소자
CN113851563B (zh) 一种薄膜型半导体芯片结构及应用其的光电器件
TW200414560A (en) Light emitting diode having anti-reflection layer and method making of the same
CN104600565B (zh) 一种具有低电子泄漏的砷化镓激光器及其制作方法
JP4553457B2 (ja) pn接合を有するIII−V族化合物半導体装置
CN107482098A (zh) 一种薄膜led芯片结构
CN113991429A (zh) 一种提高空穴注入的氮化镓基激光器
CN105655454B (zh) 高调制发光二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170818

RJ01 Rejection of invention patent application after publication