CN107069430B - 硅基电注入激光器及其制备方法 - Google Patents

硅基电注入激光器及其制备方法 Download PDF

Info

Publication number
CN107069430B
CN107069430B CN201710255128.6A CN201710255128A CN107069430B CN 107069430 B CN107069430 B CN 107069430B CN 201710255128 A CN201710255128 A CN 201710255128A CN 107069430 B CN107069430 B CN 107069430B
Authority
CN
China
Prior art keywords
layer
silicon substrate
type
rectangular channel
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710255128.6A
Other languages
English (en)
Other versions
CN107069430A (zh
Inventor
王梦琦
李稚博
周旭亮
李亚节
王鹏飞
潘教青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201710255128.6A priority Critical patent/CN107069430B/zh
Publication of CN107069430A publication Critical patent/CN107069430A/zh
Application granted granted Critical
Publication of CN107069430B publication Critical patent/CN107069430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种硅基电注入激光器及其制备方法,该制备方法包括:在绝缘硅衬底的上表面生长SiO2层,并在SiO2层的中间位置刻蚀出贯穿SiO2层的第一矩形槽;腐蚀绝缘硅衬底,在与第一矩形槽相对应的位置,形成与第一矩形槽等宽的V型槽;在V型槽和第一矩形槽内生长形成N型位错限制层、N型缓冲层和外延结构;腐蚀去除SiO2层的剩余部分,完成硅基电注入激光器的制备。本发明由于直接外延采用选区V型槽工艺,不易产生缺陷及反相畴,并可大大降低缓冲层的厚度,因此器件的总体厚度小,降低了硅基光电集成中其余器件工艺实施的难度。

Description

硅基电注入激光器及其制备方法
技术领域
本发明属于光通信器件领域,更具体地涉及一种硅基电注入激光器及其制备方法。
背景技术
过去几十年中,微电子技术发展迅猛,COMS器件的特征尺寸已降低到10nm以内。然而伴随着器件尺寸缩小到10nm下,量子效应越加凸显,器件性能越发难以控制,器件的集成度更大,器件结构从二维向三维发展,工艺难度越来越高。因此,人们把延续“摩尔定律”即增强运算或通信能力的希望寄托在光子学特别是光电集成上。目前硅基光子学已高度发展,波导、光放大器、光探测器、光调制器等光子器件都可实现成熟应用,并集成在一起形成硅集成光子芯片。
但是,由于硅材料本身是间接带隙半导体,硅材料发光即制作光源十分困难;IIIA-VA族化合物材料为直接带隙,目前广泛用于半导体激光器制造,且半导体激光器体积小、性能优越且技术成熟。所以解决硅基光电集成中光源的缺失,最好的方法是引入IIIA-VA族化合物材料制作光源器件。
目前,在硅基上引入IIIA-VA族化合物激光器主要有两种方法,键合与直接外延。键合技术是通过特定贴合工艺将IIIA-VA族化合物激光器放置到硅波导上并将激光器的光引入硅波导,此技术工艺步骤复杂、成品率低,并且每次只能键合少量的激光器,可重复性低,不利于大规模工业生产。直接外延是在硅衬底上直接外延IIIA-VA族化合物材料再进一步制作激光器,但是目前硅衬底直接外延的电注入激光器都需要很厚的缓冲层(微米量级)来减少IIIA-VA族化合物与硅材料之间的晶格失配或反相畴引起的缺陷和热膨胀系数失配,因此有源区与硅衬底高度差太大,无法适用于进一步的硅基光电器件集成工艺。
发明内容
基于以上问题,本发明的主要目的在于提出一种硅基电注入激光器及其制备方法,用于解决以上技术问题的至少之一。
为了实现上述目的,作为本发明的一个方面,本发明提出一种硅基电注入激光器,包括:
绝缘硅衬底,其上表面的中心位置具有一V型槽;
N型位错限制层,形成于V型槽的表面,且其顶部与绝缘硅衬底的上表面平齐;
N型缓冲层,位于V型槽内,填满V型槽除N型位错限制层外的其他空间,且其上表面与绝缘硅衬底的上表面平齐;
外延结构,形成于N型缓冲层及N型位错限制层的上表面,外延结构与V型槽等宽。
进一步地,上述硅基电注入金属激光器还包括:
介质层,形成于外延结构上表面及侧面;
金属层,形成于介质层的上表面及侧面;以及
P型电极;
其中,介质层和金属层均延伸至绝缘硅衬底的上表面,且介质层和金属层的上表面有贯穿至外延结构上表面的矩形槽,且矩形槽的四周被介质层和金属层包围;P型电极形成于矩形槽中,其上表面与金属层的上表面平齐。
进一步地,上述硅基电注入激光器还包括N型电极,该N型电极形成于绝缘硅衬底上表面、与金属层绝缘的位置。
进一步地,上述N型位错限制层、N型缓冲层和外延结构的主体材料为IIIA-VA族化合物材料,例如InP、GaAs、GaInAs等。
进一步地,形成N型位错限制层和N型缓冲层的温度为350℃~450℃。
进一步地,上述外延结构的宽度为100nm~600nm。
为了实现上述目的,作为本发明的另一个方面,本发明提出一种硅基电注入激光器的制备方法,包括:
步骤1、在绝缘硅衬底的上表面生长SiO2层,并在SiO2层的中间位置刻蚀出贯穿SiO2层的第一矩形槽;
步骤2、腐蚀绝缘硅衬底,在与第一矩形槽相对应的位置,形成与第一矩形槽等宽的V型槽;
步骤3、在V型槽和第一矩形槽内生长形成N型位错限制层、N型缓冲层和外延结构;
步骤4、腐蚀去除SiO2层的剩余部分,完成硅基电注入激光器的制备。
进一步地,上述步骤3中,在V型槽的表面依次生长形成N型位错限制层和N型缓冲层,N型位错限制层和N型缓冲层的顶部与绝缘硅衬底的上表面平齐,N型缓冲层填满V型槽。
进一步地,上述步骤4具体包括以下步骤:
步骤4-1、腐蚀去除SiO2层的剩余部分;
步骤4-2、在外延结构的上表面和侧面依次沉积介质层和金属层,介质层和金属层均延伸至绝缘硅衬底的上表面;
步骤4-3、在介质层和金属层中腐蚀形成贯穿至外延结构的第二矩形槽,第二矩形槽的四周被介质层和金属层所包围;
步骤4-4、在第二矩形槽中沉积P型电极,P型电极与金属层的上表面平齐;
步骤4-5、在绝缘硅衬底的上表面,与金属层绝缘的位置沉积N型电极,完成硅基电注入激光器的制备。
本发明提出的硅基电注入激光器及其制备方法,具有以下有益效果:
1、由于直接外延采用选区V型槽工艺,不易产生缺陷及反相畴,并可大大降低缓冲层的厚度,因此器件的总体厚度小,降低了硅基光电集成中其余器件工艺实施的难度;
2、由于外延结构、介质层和金属层形成“半导体-介质-金属”结构,因此光场集中在金属腔内,能够提高激光器的增益,摆脱常规激光器设计时的尺寸限制效应,实现亚波长纳米级激光器,有利于硅基光源的集成与小型化;
3、由于在硅衬底上直接外延IIIA-VA族化合物材料,因此本发明提出的硅基电注入激光器的可重复性高,适用于工业生产;并且IIIA-VA族化合物材料有源区所产生的激光可直接进入硅衬底,实现了电注入发光,有利于硅基光电集成。
附图说明
图1是本发明一实施例提出的硅基电注入激光器的制备流程图;
图2是本发明一实施例提出的硅基电注入激光器在绝缘硅衬底上生长SiO2层后的横向截面图;
图3是本发明一实施例提出的硅基电注入激光器在形成第一矩形槽后的横向截面图;
图4是本发明一实施例提出的硅基电注入激光器在形成V型槽后的横向截面图;
图5是本发明一实施例提出的硅基电注入激光器在形成外延结构后的横向截面图;
图6是本发明一实施例提出的硅基电注入激光器在腐蚀去除剩余SiO2层后的横向截面图;
图7是本发明一实施例提出的硅基电注入激光器在生长介质层后的横向截面图;
图8是本发明一实施例提出的硅基电注入激光器在形成P型电极后的横向截面图;
图9是本发明一实施例提出的硅基电注入激光器在完成制备后的横向截面图;
图10是本发明另一实施例提出的硅基电注入激光器的俯视图;
图11是本发明另一实施例提出的硅基电注入激光器的沿中心的纵向截面图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
现阶段通过硅衬底V型槽结构选区外延可有效减少反相畴等缺陷及缓冲层厚度,但只实现了光注入激光器,不具备实用性。
本发明通过硅衬底选区外延可有效抑制IIIA-VA族化合物材料和硅材料之间晶格失配及反相畴等引起的缺陷,在硅基上生长高质量的IIIA-VA化合物材料有源区;并通过金属腔激光器技术,有效增强了光增益,并引入电极,实现了硅基电注入激光器。该激光器发射的光可直接泄露进底部的硅衬底,适用于硅基光电集成与硅基光子学。
本发明公开了一种硅基电注入激光器,包括:
绝缘硅衬底,其上表面的中心位置具有一V型槽;
N型位错限制层,形成于V型槽的表面,且其顶部与绝缘硅衬底的上表面平齐;
N型缓冲层,位于V型槽内,填满V型槽除N型位错限制层外的其他空间,且其上表面与绝缘硅衬底的上表面平齐;
外延结构,形成于N型缓冲层及N型位错限制层的上表面,外延结构与V型槽等宽。
在本发明的一些实施例中,上述硅基电注入金属激光器还包括:
介质层,形成于外延结构上表面及侧面;
金属层,形成于介质层的上表面及侧面;以及
P型电极;
其中,介质层和金属层均延伸至绝缘硅衬底的上表面,且介质层和金属层的上表面有贯穿至外延结构的矩形槽,矩形槽的四周均被所述介质层和金属层包围;P型电极形成于矩形槽中,其上表面与金属层的上表面平齐。
在本发明的一些实施例中,上述硅基电注入激光器还包括N型电极,该N型电极形成于绝缘硅衬底上表面、与金属层绝缘的位置。
在本发明的一些实施例中,上述N型位错限制层、N型缓冲层和外延结构的主体结构均为IIIA-VA族化合物材料,该IIIA-VA族化合物材料指的是一个选自IIIA族,一个选自VA族,形成的多元化合物材料,例如InP、GaAs、InGaAs等;由于在硅衬底上直接外延IIIA-VA族化合物材料,因此本发明提出的硅基电注入激光器的可重复性高,适用于工业生产;并且IIIA-VA族化合物材料有源区所产生的激光可直接进入硅衬底,实现了电注入发光,有利于硅基光电集成。
在本发明的一些实施例中,形成N型位错限制层和N型缓冲层的温度为350℃~450℃;从而可抑制“岛状生长”模式,促进“层-层”生长模式,使材料表面更为平滑,有助于后续材料生长。
在本发明的一些实施例中,上述外延结构的宽度为100nm~600nm。
本发明还公开了一种硅基电注入激光器的制备方法,包括:
步骤1、在绝缘硅衬底的上表面生长SiO2层,并在SiO2层的的中间位置刻蚀出贯穿SiO2层的第一矩形槽;
步骤2、腐蚀绝缘硅衬底,在与第一矩形槽相对应的位置,形成与第一矩形槽等宽的V型槽;
步骤3、在V型槽和第一矩形槽内生长形成N型位错限制层、N型缓冲层和外延结构;
步骤4、腐蚀去除SiO2层的剩余部分,完成硅基电注入激光器的制备。
由于直接外延采用选区V型槽工艺,不易产生缺陷及反相畴,并可大大降低缓冲层的厚度,因此器件的总体厚度小,降低了硅基光电集成中其余器件工艺实施的难度。
在本发明的一些实施例中,上述步骤3中,在V型槽的表面依次生长形成N型位错限制层和N型缓冲层,N型位错限制层和N型缓冲层的顶部与绝缘硅衬底的上表面平齐,N型缓冲层填满V型槽。
在本发明的一些实施例中,上述步骤4具体包括以下步骤:
步骤4-1、腐蚀去除SiO2层的剩余部分;
步骤4-2、在外延结构的上表面和侧面依次沉积介质层和金属层,介质层和金属层均延伸至绝缘硅衬底的上表面;
步骤4-3、在介质层和金属层中腐蚀形成贯穿至外延结构的第二矩形槽,第二矩形槽的四周均被介质层和金属层包围;
步骤4-4、在第二矩形槽中沉积P型电极,P型电极与金属层的上表面平齐;
步骤4-5、在绝缘硅衬底的上表面、与金属层绝缘的位置沉积N型电极,完成硅基电注入激光器的制备。
外延结构、介质层和金属层形成“半导体-介质-金属”结构,因此光场集中在金属腔内,可摆脱常规激光器设计时的尺寸限制效应,实现亚波长纳米级激光器,有利于硅基光源的集成与小型化。
在本发明的一些实施例中,上述绝缘硅衬底的上表面为Si的(100)方向,该绝缘硅衬底具有N型掺杂。
在本发明的一些实施例中,第一矩形槽的刻蚀深度与SiO2层的厚度相同,即为刻蚀到SiO2层与绝缘硅衬底的界面。从而在SiO2沟槽中,IIIA-VA族化合物材料中的穿透位错即缺陷主要沿(111)方向发展,因此缺陷会斜向发展到IIIA-VA族化合物材料与第一矩形槽侧壁的界面,在此处释放应力、终止发展。
在本发明的一些实施例中,上述N型位错限制层为N型掺杂的GaAs材料,其生长温度为350℃~450℃,厚度为5nm~20nm。
在本发明的一些实施例中,上述N型缓冲层为N型掺杂InP材料,其生长温度为350℃~450℃,厚度为生长到V型槽顶部的厚度。
在本发明的一些实施例中,上述外延结构包括N型下限制层、有源区、P型上限制层和P型接触层;其中N型下限制层为N型掺杂的InP材料,其生长温度为550℃~680℃,其厚度为50nm~200nm;有源区为1~5个量子阱结构,材料为GaInAs/GaAs,其中阱材料为GaInAs,每个阱层的厚度为4nm~8nm,垒材料为InP,每个垒层的厚度为9nm~12nm,有源区的生长温度为550℃~680℃;上限制层为P型掺杂的InP材料,其生长温度为550℃~680℃,其厚度为50nm~200nm;P型接触层为P型掺杂的GaInAs材料,其生长温度为550℃~680℃,其厚度为10nm~50nm。
在本发明的一些实施例中,上述介质层为SiNx或SiO2等电介质材料,其厚度为5nm~20nm;上述金属层为Ag或Au等金属材料。
在本发明的一些实施例中,P型电极由能够形成P型欧姆接触的材料构成,例如AuZn、TiAu,其厚度应设置在100nm~1000nm之间,可通过热蒸发或磁控溅射技术获得。
在本发明的一些实施例中,N型电极可由能形成N型欧姆接触的材料构成,例如AuGeNi,其厚度应设置在150nm~1000nm之间,可通过热蒸发或磁控溅射方法获得。需要说明的是,N型电极严禁与P型电极1有连接。
在本发明的一些实施例中,上述外延结构的长度(即与V型槽的V型面垂直的方向)为1μm~10μm,外延结构的宽度与V型槽的宽度相等。
本发明的一些实施例中,提供了一种硅基电注入激光器的详细制备方法,包含以下步骤:
步骤1、在绝缘硅衬底的上表面生长SiO2层,并在SiO2层的中间位置刻蚀出贯穿SiO2层的第一矩形槽;具体包括:
步骤1-1、在SOI(silicon on insulator)衬底的顶层Si上覆盖生长SiO2层;
步骤1-2、使用光刻、ICP方法,在SiO2层上沿(110)方向刻蚀沟槽,沟槽侧壁垂直、刻蚀到SiO2层与顶层Si界面;
步骤2、腐蚀绝缘硅衬底,在与第一矩形槽相对应的位置,形成与第一矩形槽等宽的V型槽;具体地分别使用HF溶液、去离子水清洗,清除沟槽底部残余SiO2材料、露出顶层Si材料,使用KOH溶液腐蚀沟槽底部,使形成两个Si(111)面构成V型;
步骤3、使用MOCVD技术,在沟槽内依次生长IIIA-VA族化合物材料的N型位错限制层、N型缓冲层、N型下限制层、有源区、P型上限制层、P型接触层;
步骤4、腐蚀去除SiO2层的剩余部分,完成硅基电注入激光器的制备;具体地包括以下步骤:
步骤4-1、将SOI衬底顶层Si上的SiO2完全腐蚀去除,使用光刻、ICP方法将IIIA-VA族化合物材料刻蚀成长方体;
步骤4-2、在IIIA-VA族化合物材料表面沉积介质层,在介质层表面沉积金属层;
步骤4-3、通过光刻在顶部金属层之上定义第二矩形槽区域,第二矩形槽被介质层和金属层所包围,通过腐蚀将该区域内的金属与介质去除,沉积金属,制作P型电极;
步骤4-4、在顶层Si上、器件的一侧,沉积金属,制作N型电极。
以下通过具体实施例,对本发明提出的硅基电注入激光器及其制备方法进行详细描述。
实施例1
如图1所示,本实施例提供了一种硅基电注入激光器的制备方法,包括以下步骤:
步骤1、在绝缘硅衬底的上表面生长SiO2层,并在SiO2层的的中间位置刻蚀出贯穿SiO2层的第一矩形槽;具体包括:
步骤1-1、如图2所示,在SOI(silicon on insulator)衬底1的顶层上覆盖生长SiO2层2,该SiO2层2的厚度为600nm,可使用热氧化部分SOI衬底1的顶层或PECVD等方法制备,剩余的SOI衬底1的顶层厚度为1μm;并且,SOI衬底1是N型掺杂的;
步骤1-2、如图3所示,使用光刻、ICP的方法,在SiO2层2上沿[110]方向刻蚀形成第一矩形槽3,该第一矩形槽3的宽度为400nm;第一矩形槽3的侧壁垂直,刻蚀深度与SiO2层2的厚度相同,即为刻蚀到SiO2层2与SOI衬底1的界面。在SiO2沟槽中,IIIA-VA族化合物材料中的穿透位错即缺陷主要沿(111)方向发展,因此缺陷会斜向发展到IIIA-VA族化合物材料与SiO2沟槽侧壁的界面,在此处释放应力、终止发展;
步骤2、如图4所示,腐蚀绝缘硅衬底,在与第一矩形槽相对应的位置,形成与第一矩形槽等宽的V型槽;具体地,分别使用HF溶液、去离子水清洗,清除第一矩形槽3底部残余的SiO2材料、露出顶层SOI衬底1,使用KOH溶液腐蚀第一矩形槽3的底部,使SOI衬底1中形成由两个Si(111)面构成的V型槽4,由于Si(111)面为双原子台阶,可抑制IIIA-VA族化合物在Si上成核时反相畴的形成,减少反相畴边界这一位错产生,这一步为后续第一矩形槽3内、SOI衬底1上IIIA-VA族化合物的外延提供了优良的初始条件;
步骤3、如图5所示,在V型槽4和第一矩形槽3内生长形成N型位错限制层5、N型缓冲层6和外延结构;具体地,使用MOCVD技术,在第一矩形槽3和V型槽4内依次生长IIIA-VA族化合物材料的N型位错限制层5、N型缓冲层6、N型下限制层7、有源区8、P型上限制层9、P型接触层10;
其中N型位错限制层5为N型掺杂GaAs材料,生长温度为400℃,厚度为10nm;N型位错限制层5生长时,Ga源使用TEGa,使低温生长时Ga源的分解效率更高;N型缓冲层6为N型掺杂InP材料,生长温度为400℃,厚度为生长到V型槽4的顶部;N型下限制层7为N型掺杂InP材料,生长温度为650℃,厚度为150nm;有源区8为GaInAs/GaAs量子阱,量子阱周期为4,生长温度为650℃,阱材料为GaInAs,厚度为5nm,垒材料为InP,厚度为10nm;P型上限制层9为P型掺杂InP材料,生长温度为650℃,厚度为150nm;P型接触层10为P型掺杂GaInAs材料,生长温度为650℃,厚度为20nm。
其中采用的MOCVD方法,生长N型位错限制层5和N型缓冲层6时采用400℃的低温生长,可抑制“岛状生长”模式,促进“层-层”生长模式,使材料表面更为平滑,有助于后续材料生长。
步骤4、腐蚀去除SiO2层2的剩余部分,完成硅基电注入激光器的制备;具体地包括以下步骤:
步骤4-1、如图6所示,将SOI衬底1顶层上的SiO2层2完全腐蚀去除,使用光刻、ICP方法将IIIA-VA族化合物材料刻蚀成长方体;该长方体,沿与V型槽V型面垂直的方向,即(110)方向,长度为6μm,宽度保持沟槽内外延材料的宽度,可略微腐蚀长方体侧面,使侧壁更光滑;
步骤4-2、如图7所示,在IIIA-VA族化合物材料表面及侧面沉积一介质层11,材料为SiNx电介质,厚度为10nm;在介质层表面及侧面沉积一金属层12,材料为Au金属;
步骤4-3、如图8所示,通过光刻、腐蚀等工艺,在P型接触层10上方的介质层11与金属层12上开窗口,制作P型电极13;P型电极13由能够形成P型欧姆接触的材料构成,本实施例中P型电极13采用材料为TiAu,厚度为200nm,通过磁控溅射技术获得;
步骤4-4、如图9所示,在SOI衬底1的上表面、器件的一侧,制作N型电极14,N型电极14可由能形成N型欧姆接触的材料构成,本实施例的N型电极14采用AuGeNi材料,厚度为300nm,通过热蒸发技术获得。需要说明的是,N型电极14严禁与P型电极13有连接。
实施例2
如图9所示,本实施例提出一种硅基电注入激光器,包括:
绝缘硅衬底1,其上表面的中心位置具有一V型槽4;
N型位错限制层5,形成于V型槽4的表面,且其上表面与绝缘硅衬底2平齐;
N型缓冲层6,位于V型槽4内,填满V型槽4除N型位错限制层5外的其他空间,且其上表面与绝缘硅衬底1平齐;
外延结构,形成于N型缓冲层6及N型位错限制层5的上表面,外延结构与V型槽4等宽。
其中,上述硅基电注入激光器还包括:
介质层11,形成于外延结构上表面及侧面;
金属层12,形成于介质层11的上表面及侧面;以及
P型电极13;
其中,介质层11和金属层12均延伸至绝缘硅衬底1的上表面,且介质层11和金属层12的上表面有贯穿至外延结构的矩形槽,矩形槽的四周均被介质层11和金属层12所包围;P型电极13形成于矩形槽中,其上表面与金属层12的上表面平齐。
上述硅基电注入激光器还包括N型电极13,该N型电极形成于绝缘硅衬底上表面、与金属层绝缘的位置;
其中,外延结构具体包括N型下限制层7、有源区8、P型上限制层9和P型接触层10。
本实施例提出的硅基电注入激光器可采用实施例1中的制备方法,制备得到。如图9所示为本实施例提出的硅基电注入激光器的横向(即与V型槽的V型面平行的方向)中心截面图,图10为硅基电注入激光器的俯视图,而图11是该激光器的纵向(即与V型槽的V型面垂直的方向)中心截面图。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种硅基电注入激光器,包括:
绝缘硅衬底,其上表面的中心位置具有一V型槽;
N型位错限制层,形成于所述V型槽的表面上,且其顶部与所述绝缘硅衬底的上表面平齐;
N型缓冲层,位于所述V型槽内,填满所述V型槽除所述N型位错限制层外的其他空间,且其上表面与所述绝缘硅衬底的上表面平齐;
外延结构,形成于所述N型缓冲层及N型位错限制层的上表面,所述外延结构与所述V型槽等宽;
介质层,形成于所述外延结构上表面及侧面;
金属层,形成于所述介质层的上表面及侧面;
其中,所述介质层和金属层均延伸至所述绝缘硅衬底的上表面,且所述介质层和金属层的上表面有贯穿至所述外延结构上表面的矩形槽,且所述矩形槽的四周被所述介质层和金属层包围。
2.如权利要求1所述的硅基电注入激光器,其中,所述硅基电注入金属激光器还包括:
P型电极;
所述P型电极形成于所述矩形槽中,其上表面与所述金属层的上表面平齐。
3.如权利要求2所述的硅基电注入激光器,还包括N型电极,所述N型电极形成于所述绝缘硅衬底上表面、与所述金属层绝缘的位置。
4.如权利要求1所述的硅基电注入激光器,其中,所述N型位错限制层、N型缓冲层和外延结构的主体材料均为IIIA-VA族化合物材料;形成所述N型位错限制层和N型缓冲层的温度为350℃~450℃。
5.如权利要求1所述的硅基电注入激光器,其中,所述外延结构的宽度为100nm~600nm。
6.一种硅基电注入激光器的制备方法,包括:
步骤1、在绝缘硅衬底的上表面生长SiO2层,并在所述SiO2层的中间位置刻蚀出贯穿所述SiO2层的第一矩形槽;
步骤2、腐蚀所述绝缘硅衬底,在与所述第一矩形槽相对应的位置,形成与所述第一矩形槽等宽的V型槽;
步骤3、在所述V型槽和第一矩形槽内生长形成N型位错限制层、N型缓冲层和外延结构;
步骤4、腐蚀去除所述SiO2层的剩余部分,完成所述硅基电注入激光器的制备。
7.如权利要求6所述的硅基电注入激光器的制备方法,其中,步骤3中,在所述V型槽的表面依次生长形成所述N型位错限制层和N型缓冲层,所述N型位错限制层和N型缓冲层的顶部与所述绝缘硅衬底的上表面平齐,所述N型缓冲层填满所述V型槽。
8.如权利要求6所述的硅基电注入激光器的制备方法,其中,所述步骤4具体包括以下步骤:
步骤4-1、腐蚀去除所述SiO2层的剩余部分;
步骤4-2、在所述外延结构的上表面和侧面依次沉积介质层和金属层,所述介质层和金属层均延伸至所述绝缘硅衬底的上表面;
步骤4-3、在所述介质层和金属层中腐蚀形成贯穿至所述外延结构上表面的第二矩形槽,所述第二矩形槽的四周被所述介质层和金属层包围;
步骤4-4、在所述第二矩形槽中沉积P型电极,所述P型电极与所述金属层的上表面平齐;
步骤4-5、在所述绝缘硅衬底的上表面、与所述金属层绝缘的位置沉积N型电极,完成所述硅基电注入激光器的制备。
9.如权利要求6所述的硅基电注入激光器的制备方法,其中,所述N型位错限制层、N型缓冲层和外延结构的主体材料均为IIIA-VA族化合物材料;生长形成所述N型位错限制层和N型缓冲层的温度为350℃~450℃。
10.如权利要求6所述的硅基电注入激光器的制备方法,其中,所述第一矩形槽和V型槽的宽度为100nm~600nm。
CN201710255128.6A 2017-04-18 2017-04-18 硅基电注入激光器及其制备方法 Active CN107069430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710255128.6A CN107069430B (zh) 2017-04-18 2017-04-18 硅基电注入激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710255128.6A CN107069430B (zh) 2017-04-18 2017-04-18 硅基电注入激光器及其制备方法

Publications (2)

Publication Number Publication Date
CN107069430A CN107069430A (zh) 2017-08-18
CN107069430B true CN107069430B (zh) 2019-07-05

Family

ID=59600812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710255128.6A Active CN107069430B (zh) 2017-04-18 2017-04-18 硅基电注入激光器及其制备方法

Country Status (1)

Country Link
CN (1) CN107069430B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108418095B (zh) * 2018-02-06 2019-08-06 北京邮电大学 电注入长波长硅基纳米激光器阵列的外延材料制备方法
EP3794409B1 (en) * 2018-05-15 2023-04-26 Rockley Photonics Limited Integration of photonic components on soi platform
CN108736314B (zh) * 2018-06-12 2020-06-19 中国科学院半导体研究所 电注入硅基iii-v族纳米激光器阵列的制备方法
CN110212078B (zh) * 2019-06-14 2020-10-27 厦门大学 一种电注入微盘谐振腔发光器件及其制备方法
CN111106506A (zh) * 2019-12-10 2020-05-05 郑州大学 基于表面等离激元的硅基纳米激光器及其制备方法
CN111554759B (zh) * 2020-01-20 2023-03-21 中国科学院微电子研究所 锗探测器及其制造方法
CN111509078B (zh) * 2020-01-20 2023-03-21 中国科学院微电子研究所 硅基光电探测器及其制造方法
CN111564756B (zh) * 2020-04-14 2022-03-25 中国科学院上海微系统与信息技术研究所 一种硅基无磷激光器及其制备方法
CN111564758A (zh) * 2020-05-27 2020-08-21 中国科学院半导体研究所 低损耗硅基激光器
CN114300556B (zh) * 2021-12-30 2024-05-28 中国科学院苏州纳米技术与纳米仿生研究所 外延结构、外延生长方法及光电器件
CN116111456B (zh) * 2022-12-28 2024-03-19 上海铭锟半导体有限公司 集成ⅲ-ⅴ族激光器的硅光器件及制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783368A (en) * 1994-12-24 1998-07-21 Alcatel N.V. Method of forming conductive paths on a substrate containing depressions
CN104283093A (zh) * 2013-07-01 2015-01-14 Imec公司 混合波导激光器和用于制造混合波导激光器的方法
CN105610047A (zh) * 2016-01-01 2016-05-25 西安电子科技大学 GeSn多量子阱金属腔激光器及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423951B1 (en) * 2010-08-05 2016-07-20 Imec Antiphase domain boundary-free III-V compound semiconductor material on semiconductor substrate and method for manufacturing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783368A (en) * 1994-12-24 1998-07-21 Alcatel N.V. Method of forming conductive paths on a substrate containing depressions
CN104283093A (zh) * 2013-07-01 2015-01-14 Imec公司 混合波导激光器和用于制造混合波导激光器的方法
CN105610047A (zh) * 2016-01-01 2016-05-25 西安电子科技大学 GeSn多量子阱金属腔激光器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
硅衬底上GaAlAs/GaAs单量子阱激光器;庄婉如 等;《半导体学报》;19891230;第10卷(第12期);第960-964页 *

Also Published As

Publication number Publication date
CN107069430A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN107069430B (zh) 硅基电注入激光器及其制备方法
CN101667716B (zh) 一种双面键合长波长垂直腔面发射激光器及其制作方法
WO2018184287A1 (zh) 基于多孔DBR的InGaN基谐振腔增强型探测器芯片
US8574939B2 (en) Semiconductor optoelectronics structure with increased light extraction efficiency and fabrication method thereof
JP5929115B2 (ja) 半導体ナノデバイス
CN106684213A (zh) GaN基半导体器件及其制作方法
CN111769436B (zh) 一种分布式反馈激光器芯片及其制备方法
CN111564756B (zh) 一种硅基无磷激光器及其制备方法
CN104795730A (zh) 一种利用量子阱混杂制作的基模半导体激光器及制作方法
CN102545047B (zh) 一种多量子阱波导对接耦合方法
CN108336642A (zh) 一种电注入激射的氮化物半导体微腔激光器结构及其制备方法
CN106229813B (zh) 硅基横向注入激光器及其制备方法
CN105140778A (zh) 一种多边形-环硅基激光器及其制备方法
CN114336287A (zh) 基于共面电极配置的倏逝波耦合硅基激光器及其制备方法
CN109638648B (zh) 电注入硅基iii-v族边发射纳米线激光器及其制备方法
CN108718030B (zh) 一种低电阻、低热阻的氮化物半导体微腔激光器结构及其制备方法
CN113437191B (zh) 基于回音壁模式的电注入等离激元激光器阵列及制备方法
CN107645121B (zh) 脊形阵列半导体激光器及其制作方法
CN106711764B (zh) GaN基激光器和超辐射发光二极管及其制备方法
CN105870267B (zh) 一种量子点超辐射发光二极管及其制作方法
CN111490453B (zh) 含有分步掺杂下波导层的GaN基激光器及其制备方法
KR101265056B1 (ko) 모래시계 구조를 갖는 발광소자 및 그 제조방법
JP3413811B2 (ja) 半導体素子およびiii族窒化物超格子構造の作製方法
KR100234001B1 (ko) 양자세선 레이저 다이오드 제작방법
JP6659938B2 (ja) 光半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant