CN107065570A - 一种mmc‑hvdc系统控制参数分层优化方法 - Google Patents

一种mmc‑hvdc系统控制参数分层优化方法 Download PDF

Info

Publication number
CN107065570A
CN107065570A CN201710413812.2A CN201710413812A CN107065570A CN 107065570 A CN107065570 A CN 107065570A CN 201710413812 A CN201710413812 A CN 201710413812A CN 107065570 A CN107065570 A CN 107065570A
Authority
CN
China
Prior art keywords
mrow
particle
parameter
msubsup
mmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710413812.2A
Other languages
English (en)
Inventor
刘崇茹
谢国超
徐东旭
朱毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Electric Power University
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Electric Power University
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Electric Power University, Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710413812.2A priority Critical patent/CN107065570A/zh
Publication of CN107065570A publication Critical patent/CN107065570A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种MMC‑HVDC系统控制参数分层优化方法。在PSCAD上搭建MMC‑HVDC仿真模型,在MATLAB上运行寻优算法,利用PSCAD计算适应值,利用MATLAB对MMC‑HVDC系统站级控制的PI参数进行分层优化。将站级控制的PI参数分为内环和外环两层,首先优化内环控制参数,然后优化外环控制参数。具体操作是:每次迭代过程中粒子速度和位置更新两次,计算两次适应值,第一次更新后,将领导粒子的外环参数赋给所有粒子,即保持外环参数相同,试图优化出性能更佳的内环参数,第二次更新后,将领导粒子的内环参数赋给所有粒子,即固定内环参数,优化出性能更佳的外环参数。本发明采用分层优化的方法,收敛性好,获得参数的动态性能更优,适合于MMC‑HVDC系统控制器参数优化。

Description

一种MMC-HVDC系统控制参数分层优化方法
技术领域
本发明涉及电力系统控制参数优化领域,具体涉及一种运用多目标粒子群算法对MMC-HVDC系统控制参数分层优化的方法。
背景技术
模块化多电平换流器利用子模块级联的方式实现换流器的电压等级的提高和输送容量的提升,由于其采用模块化的结构而具有如下主要技术优势:①制造难度下降;②损耗成倍下降;③阶跃电压降低;④波形质量高;⑤故障处理能力强。于2010年投运的“跨湾工程”和于2011年投运的“上海南汇柔性直流输电示范工程”均是采用MMC拓扑结构的HVDC工程。
目前,国内外的研究工作主要集中于MMC-HVDC的建模仿真、控制策略、参数设计、调制策略、故障状态下的保护策略等方面。高度可控的MMC-HVDC系统的性能在很大程度上取决于其控制系统的性能。然而多模块的拓扑结构使其在应用中需要复杂的协调控制。比如,MMC的控制系统需要对数量众多的子模块进行测量、驱动和保护,对子模块电容电压进行均衡控制,对相单元间环流进行抑制控制。MMC控制系统,通常包含多个比例积分(PI)控制器或谐振控制器等。在建模和控制器设计优化时通常需要大量调试较多的控制参数。控制器参数优化不仅可以改善控制器性能,如提高鲁棒性和提高响应速度,还可以改善系统的性能,特别是在故障或扰动的发生、发展期间,故障恢复速度和系统运行的稳定性在很大程度上取决于控制系统性能的好坏。因此,在MMC-HVDC的设计、调试、运行研究和仿真等课题中,提出控制系统的参数优化问题是极为必要的。
针对MMC-HVDC换流器的控制,国内外学者开展了广泛的研究工作,提出了很多新的控制方法,然而在实际的工程中,比例积分微分(PID)算法依然占据着主导地位,这是因为PID控制具有结构简单、参数定义易于理解、调节快速、易于实现、鲁棒性强等优点。但实际中经常由于参数选择不够好而影响控制器的效果和系统的性能。目前,柔性直流输电工程多使用试凑法调节控制器PI参数,试图使MMC-HVDC系统在满足某一方面动态特性要求情况下改善其他方面的性能,然而实际调节过程中,在改善某个动态响应的同时,通常会引起其他动态响应的恶化,而且试凑法具有一定程度的盲目性,可能会增大工作量,降低效率。因而PI参数的调节需要调节技巧和工程经验,控制器的参数优化也成为了MMC-HVDC控制器研究的难点。
模块化多电平换流器含有众多的电力电子开关和非线性电容等元件,其控制系统模型具有多目标、非线性、高阶性、离散型等特点。概率型算法,如粒子群算法和遗传算法等,允许以一定的概率接受比当前解效果差的解,从而引入了跳出局部极值的机制。近年来,MOPSO算法以其良好的收敛性、简单的计算模式、较强的全局搜索能力和较少的参数设置的特点而被广泛应用到多目标参数优化问题中,基本思想是使用外部存储器存储非支配解,从中选取领导粒子用于速度和位置的迭代更新并搜索最优解。
针对上述问题,本发明提出了一种MMC-HVDC系统控制参数分层优化方法。本发明的方法收敛性好,获得参数的动态性能更优,适合于MMC-HVDC系统控制器参数优化,属于MMC-HVDC系统控制参数优化方法的创新技术。
发明内容
本发明的技术方案是,一种MMC-HVDC系统控制参数分层优化方法,其特征在于包括以下步骤:
步骤1:在PSCAD软件平台上搭建MMC-HVDC仿真模型,用以计算算法所需的适应值,并根据控制系统的设计结构,将待优化的站级控制的PI参数分为内环和外环两层;
步骤2:在MATLAB上运行多目标粒子群寻优算法,采用外部存储器和自适应网格机制,从中选取领导粒子对粒子的信息进行迭代更新,领导粒子的选取规则为首先计算每个网格的拥挤程度,利用轮盘赌方法选出某个网格,再从选出的网格中随机选取某个粒子作为领导粒子,粒子的位置代表待优化的MMC-HVDC系统控制参数;
步骤3:初始化算法参数和粒子信息,令迭代次数t=1;
步骤4:进入主循环,更新粒子速度和位置,优化内环参数,将非劣解加入到外部存储器中;
步骤5:更新粒子速度和位置,优化外环参数,将非劣解加入到外部存储器中;
步骤6:t=t+1,重复步骤4和步骤5,直到达到最大迭代次数。
进一步地:
上述步骤1中,所述的站级控制的控制器采用直接电流控制中的矢量控制技术,其在同步旋转坐标系下建立MMC的数学模型,包括内环电流控制和外环输出控制。
所述的适应值由换流器的控制目标计算而来,其计算方法采用误差绝对值乘以时间的积分ITAE指标,表示为:
式(1)中yref为控制目标参考值,y为控制目标实际值,积分上限T为动态过程时间。
所述的分层的依据是控制系统的设计结构,站级控制过程中,首先由外环输出控制计算出DQ轴电流参考值,然后将其用于内环电流控制计算换流器输出电压。所以,根据控制系统的设计结构,将待优化的站级控制的PI参数分为内环和外环两层,首先优化内环控制参数,然后优化外环控制参数。
上述步骤2中,所述迭代过程根据式(2)更新,
其中,ω表示惯性权重系数,c1和c2表示加速因子,r是[0,1]之间均匀分布的随机数,pid代表第id个粒子的位置,vid代表第id个粒子的速度,pbest代表第id个粒子所经过的最优位置,gbest代表当前所有粒子所经过的最优位置。
每次迭代过程中粒子速度和位置更新两次,计算两次适应值,第一次更新后,将领导粒子的外环参数赋给所有粒子,试图优化出性能更佳的内环参数,第二次更新后,将领导粒子的内环参数赋给所有粒子,优化出性能更佳的外环参数。
上述步骤3中,所述的算法参数包括粒子数、惯性权重系数、加速因子、最大迭代次数、外部存储器容量、网格膨胀系数等;所述的粒子信息包括维数、速度、位置及其运动范围、适应值等,并初始化自适应网格。
上述步骤4中,所述的优化内环参数具体操作为:利用基于拥挤度和轮盘赌的方法选取领导粒子,将领导粒子的外环参数赋值给更新后的所有粒子,即保持所有粒子的外环参数相同,试图搜索出性能更佳的内环参数,然后仿真计算出适应值并将非劣解加入到外部存储器中。
上述步骤5中,所述的优化外环参数具体操作为:利用基于拥挤度和轮盘赌的方法选取领导粒子,将领导粒子的内环参数赋值给更新后的所有粒子,即保持所有粒子的内环参数相同,试图搜索出性能更佳的外环参数,然后仿真计算出适应值并将非劣解加入到外部存储器中。
附图说明
图1是MMC-HVDC系统结构图;
图2是多目标粒子群算法流程图;
图3是最优参数的响应曲线图。
具体实施方式
下面结合附图和具体实例,进一步阐述本发明,但本发明的保护范围不限于下述的实例。
本发明联合调用PSCAD与MATLAB对MMC-HVDC系统控制参数进行优化。
步骤1:在PSCAD中搭建了单端101电平MMC-HVDC系统优化站级控制的PI参数,如图1所示,桥臂模型采用半桥详细等效模型,调制方式采用最近电平逼近调制,控制量为有功功率和无功功率。其参数为:有功功率设定值为100MW,无功功率设定值为30Mvar,每个桥臂子模块数为100,半桥子模块电容值为0.03F,桥臂电抗值为0.007H,仿真时间为2秒。待优化的控制参数为矢量控制策略的内外环4套PI参数,分为内环和外环两层。适应值为换流器的控制量包括有功功率和无功功率的误差绝对值乘以时间的积分指标,其值由PSCAD计算得到。
步骤2:在MATLAB中编写多目标粒子群算法程序,根据分层优化的思想修改主循环部分代码,具体是:每次循环过程中,粒子速度和位置第一次更新后,将领导粒子的外环参数赋值给所有粒子用于计算适应值,并将所得的非劣解加入到外部存储器中,粒子速度和位置第二次更新后,将领导粒子的内环参数赋值给所有粒子用于计算适应值,并将所得的非劣解加入到外部存储器中。多目标粒子群算法流程如图2所示。
步骤3:初始化算法参数和粒子信息,设置种群大小为100,外部存储器容量为100,适应值维数为2,最大迭代次数为100,惯性权重系数ω=0.7,加速因子c1=c2=1.5,初始化粒子速度、位置和适应值等,并初始化网格。
步骤4:进入主循环,首先利用基于拥挤度和轮盘赌的方法选取领导粒子,然后更新粒子速度和位置,再将领导粒子的外环参数赋值给更新后的所有粒子,最后仿真计算适应值并将非劣解加入到外部存储器中。
步骤5:内环参数优化结束后,再次选取领导粒子并更新粒子速度和位置,将领导粒子的内环参数赋值给更新后的所有粒子,最后仿真计算适应值并将非劣解加入到外部存储器中。
步骤6:重复步骤4和步骤5,直到达到最大迭代次数后退出程序。
为验证本发明方法的有效性,将本发明所得结果与非基于分层优化即所有参数同时优化的方法所得结果作对比,下表为两种方法优化的结果,由表可知,采用分层优化的方法可以获得更小的适应值,从而验证了本发明的有效性。
表格1 优化前后结果对比
为了校验本发明得到的PI参数的最优解的效果,采用PSCAD仿真分别对优化前、采用同时优化和分层优化方法所得结果进行验证。设置4s时交流电压下降为0.85pu,有功功率和无功功率的响应曲线如图3所示。可见分层优化所得结果可以使响应获得更小的超调量和调整时间,性能明显提高。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

1.一种MMC-HVDC系统控制参数分层优化方法,其特征在于,包括以下步骤:
步骤1:在PSCAD软件平台上搭建MMC-HVDC仿真模型,用以计算算法所需的适应值,并根据控制系统的设计结构,将待优化的站级控制的PI参数分为内环和外环两层;
步骤2:在MATLAB上运行多目标粒子群寻优算法,采用外部存储器和自适应网格机制,从中选取领导粒子对粒子的信息进行迭代更新,领导粒子的选取规则为首先计算每个网格的拥挤程度,利用轮盘赌方法选出某个网格,再从选出的网格中随机选取某个粒子作为领导粒子,粒子的位置代表待优化的MMC-HVDC系统控制参数;
步骤3:初始化算法参数和粒子信息,令迭代次数t=1;
步骤4:进入主循环,更新粒子速度和位置,优化内环参数,将非劣解加入到外部存储器中;
步骤5:更新粒子速度和位置,优化外环参数,将非劣解加入到外部存储器中;
步骤6:t=t+1,重复步骤4和步骤5,直到达到最大迭代次数。
2.根据权利要求1所述的一种MMC-HVDC系统控制参数分层优化方法,其特征在于,在上述步骤1中:
所述站级控制的控制器采用直接电流控制中的矢量控制技术,其在同步旋转坐标系下建立MMC的数学模型,包括内环电流控制和外环输出控制。
3.根据权利要求1所述的一种MMC-HVDC系统控制参数分层优化方法,其特征在于,在上述步骤1中:
所述的适应值由换流器的控制目标计算而来,其计算方法采用误差绝对值乘以时间的积分ITAE指标,表示为:
<mrow> <mi>F</mi> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>T</mi> </msubsup> <mi>t</mi> <mo>&amp;times;</mo> <mo>|</mo> <msub> <mi>y</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <mi>y</mi> <mo>|</mo> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
式(1)中yref为控制目标参考值,y为控制目标实际值,积分上限T为动态过程时间。
4.根据权利要求1所述的一种MMC-HVDC系统控制参数分层优化方法,其特征在于,上述步骤2中:
所述迭代过程根据式(2)更新,
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>v</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <mi>&amp;omega;</mi> <mo>&amp;times;</mo> <msubsup> <mi>v</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>&amp;times;</mo> <mi>r</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>p</mi> <mrow> <mi>b</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>p</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>&amp;times;</mo> <mi>r</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>g</mi> <mrow> <mi>b</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>p</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>t</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中,ω表示惯性权重系数,c1和c2表示加速因子,r是[0,1]之间均匀分布的随机数,pid代表第id个粒子的位置,vid代表第id个粒子的速度,pbest代表第id个粒子所经过的最优位置,gbest代表当前所有粒子所经过的最优位置。
5.根据权利要求3所述的一种MMC-HVDC系统控制参数分层优化方法,其特征在于,在上述步骤3中:
所述算法参数包括粒子数、惯性权重系数、加速因子、最大迭代次数、外部存储器容量、网格膨胀系数;所述的粒子信息包括维数、速度、位置及其运动范围、适应值,并初始化自适应网格。
6.根据权利要求4所述的一种MMC-HVDC系统控制参数分层优化方法,其特征在于,在上述步骤4中:
所述优化内环参数具体操作为:利用基于拥挤度和轮盘赌的方法选取领导粒子,将领导粒子的外环参数赋值给更新后的所有粒子,即保持所有粒子的外环参数相同,试图搜索出性能更佳的内环参数,然后仿真计算出适应值并将非劣解加入到外部存储器中。
7.根据权利要求5所述的一种MMC-HVDC系统控制参数分层优化方法,其特征在于,在上述步骤5中:
所述优化外环参数具体操作为:利用基于拥挤度和轮盘赌的方法选取领导粒子,将领导粒子的内环参数赋值给更新后的所有粒子,即保持所有粒子的内环参数相同,试图搜索出性能更佳的外环参数,然后仿真计算出适应值并将非劣解加入到外部存储器中。
CN201710413812.2A 2017-06-05 2017-06-05 一种mmc‑hvdc系统控制参数分层优化方法 Pending CN107065570A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710413812.2A CN107065570A (zh) 2017-06-05 2017-06-05 一种mmc‑hvdc系统控制参数分层优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710413812.2A CN107065570A (zh) 2017-06-05 2017-06-05 一种mmc‑hvdc系统控制参数分层优化方法

Publications (1)

Publication Number Publication Date
CN107065570A true CN107065570A (zh) 2017-08-18

Family

ID=59616736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710413812.2A Pending CN107065570A (zh) 2017-06-05 2017-06-05 一种mmc‑hvdc系统控制参数分层优化方法

Country Status (1)

Country Link
CN (1) CN107065570A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667284A (zh) * 2018-05-21 2018-10-16 武汉科技大学 一种模块化多电平换流器环流抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037965A1 (en) * 2010-09-21 2012-03-29 Abb Technology Ag An apparatus for controlling the electric power transmission in a hvdc power transmission system
CN105471110A (zh) * 2015-12-24 2016-04-06 国家电网公司 一种电力系统类噪声信号的低频振荡模式分层检测方法
CN106663933A (zh) * 2014-06-27 2017-05-10 西门子公司 用于多端hvdc电网的瞬态保护
CN106777517A (zh) * 2016-11-24 2017-05-31 东北大学 基于粒子群的航空发动机高压涡轮盘优化设计系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037965A1 (en) * 2010-09-21 2012-03-29 Abb Technology Ag An apparatus for controlling the electric power transmission in a hvdc power transmission system
CN106663933A (zh) * 2014-06-27 2017-05-10 西门子公司 用于多端hvdc电网的瞬态保护
CN105471110A (zh) * 2015-12-24 2016-04-06 国家电网公司 一种电力系统类噪声信号的低频振荡模式分层检测方法
CN106777517A (zh) * 2016-11-24 2017-05-31 东北大学 基于粒子群的航空发动机高压涡轮盘优化设计系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林雪华,等: "基于改进MOPSO的MMC控制参数多机联合优化", 《电力系统保护与控制》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667284A (zh) * 2018-05-21 2018-10-16 武汉科技大学 一种模块化多电平换流器环流抑制方法
CN108667284B (zh) * 2018-05-21 2019-10-11 武汉科技大学 一种模块化多电平换流器环流抑制方法

Similar Documents

Publication Publication Date Title
Panda et al. Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems
CN105114242B (zh) 基于模糊自适应的depso算法的水轮机调速器参数优化方法
CN105159096B (zh) 一种基于粒子群算法的冗余度空间机械臂关节力矩优化方法
CN114048903B (zh) 一种基于深度强化学习的电网安全运行策略智能优化方法
CN103810646B (zh) 一种基于改进投影积分算法的有源配电系统动态仿真方法
CN101344065B (zh) 基于满意控制的水轮机调速系统参数优化方法
CN109962495B (zh) 一种超低频振荡扰动源定位及抑制方法
CN105894090B (zh) 一种基于自适应变异粒子群优化的潮汐智能实时预报方法
CN106363633A (zh) 基于改良粒子群算法的机器人稳定步态规划方法和装置
Parmar Load frequency control of multi-source power system with redox flow batteries: an analysis
Swain et al. Design of static synchronous series compensator based damping controller employing real coded genetic algorithm
CN105298734A (zh) 一种水轮机调节系统的参数辨识方法
CN115128960B (zh) 一种基于深度强化学习双足机器人运动控制方法及系统
CN115017787A (zh) 基于智能算法的风电场电压穿越特性等值建模方法及系统
CN110347165A (zh) 一种基于slam技术的多机器人编队控制方法
CN116169776A (zh) 电力系统云边协同人工智能调控方法、系统、介质及设备
CN113852098B (zh) 一种基于多目标蜻蜓算法的自动发电控制调度方法
CN107065570A (zh) 一种mmc‑hvdc系统控制参数分层优化方法
CN105720574A (zh) 基于spsa的电力系统单区域负荷频率的数据驱动控制方法
CN104467741B (zh) 基于t‑s模糊建模的有源滤波器智能电流跟踪控制方法
CN107368930A (zh) 一种适用于电力系统分区恢复模式的黑启动电源选址方法
CN116663637A (zh) 一种多层级智能体同步嵌套训练方法
CN109149558B (zh) 基于系统串联补偿的跨区域电网调度agc方法
Špoljarić et al. Performance Comparison of No-preference and Weighted Sum Objective Methods in Multi-Objective Optimization of AVR-PSS Tuning in Multi-machine Power System
Gambier et al. Wind turbine pitch and active tower damping control using metaheuristic multi-objective bat optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170818

RJ01 Rejection of invention patent application after publication