CN107064890A - 一种脉冲体制雷达海冰探测能力评估方法 - Google Patents

一种脉冲体制雷达海冰探测能力评估方法 Download PDF

Info

Publication number
CN107064890A
CN107064890A CN201710232310.XA CN201710232310A CN107064890A CN 107064890 A CN107064890 A CN 107064890A CN 201710232310 A CN201710232310 A CN 201710232310A CN 107064890 A CN107064890 A CN 107064890A
Authority
CN
China
Prior art keywords
mrow
msup
msub
mfrac
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710232310.XA
Other languages
English (en)
Other versions
CN107064890B (zh
Inventor
谢涛
何宜军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201710232310.XA priority Critical patent/CN107064890B/zh
Publication of CN107064890A publication Critical patent/CN107064890A/zh
Application granted granted Critical
Publication of CN107064890B publication Critical patent/CN107064890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9076Polarimetric features in SAR

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种脉冲体制雷达海冰探测能力评估方法,对于脉冲体制雷达,设其脉冲信号宽度为τ,电磁波传播速度为c0,则受脉宽限制的可探测海冰厚度为其中c0=3×108米/秒,θ2为海冰中电磁波透射角。海冰识别度用Dice表示,物理意义为雷达散射图像中海冰区域与海水区域的区分程度,水平极化和垂直极化时海冰识别度分别为 本发明基于海冰介电常数模型,考虑气‑冰界面与海水‑海冰界面之间电磁波多次散射,要评估因子为海冰可探测厚度和海冰识别度。

Description

一种脉冲体制雷达海冰探测能力评估方法
技术领域
本发明属于海洋技术领域,具体涉及一种海冰可探测厚度及海冰识别度模拟方法。
背景技术
自上世纪80年代以来,由于全球变暖,海冰融化加快,北极海冰对全球气候的影响有放大作用,利用空基和天基雷达对极区海冰进行探测具有重要的科学意义和应用价值。
合成孔径雷达(简记为SAR)具有全天候、可穿透云层等优点,自1978年首次发射升空以来,被应用于对地观测特别是对海洋观测,包括海面风场、海浪参数提取、海流锋面检测、海表面溢油、海上目标识别、海冰运动及分类等应用领域。海洋表面各种洋面特征引起的海面粗糙度变化,对SAR海面成像图像雷达散射截面产生影响,使得SAR的海洋特征检测应用成为可能,因此对于不同介质的海面电磁散射也是一直以来的研究热点。其中海冰的SAR遥感监测越来越受到重视,研究热点包括海冰分类和海冰厚度探测。海冰厚度反演研究一直是气候模式研究所急需解决的技术瓶颈,最近的研究主要是利用海冰薄层的盐度和卤水体积随冰厚的变化经验关系进行海冰厚度探索研究,但该方法仅适用于小于薄冰厚度探测(小于0.4米)。目前对于海冰的探测能力尚缺乏定量理论研究,我们提出了一种脉冲体制雷达海冰探测能力评估模型,发明了一种脉冲体制雷达海冰探测能力评估方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种脉冲体制雷达海冰探测能力评估方法,是基于分层多次电磁散射机制的一种归一化雷达散射截面(NRCS)、可探测海冰厚度以及海冰识别度的模拟方法。
本发明采用的技术方案为:一种脉冲体制雷达海冰探测能力评估方法,包括以下步骤:
步骤1:介质1、2、3分别为空气、海冰和海水,它们的介电常数、磁导率和电导率分别为(ε111)、(ε222)、(ε333);一般来说,除了铁磁质外的介质,磁导率都近似等于真空中的磁导率,即有μ1=μ2=μ3=μ0。空气中ε1=ε0,σ1=0,其中真空中磁导率μ0=4π×10-7亨/米(H/m)、介电常数ε0=8.85419×10-12(F/m),海冰电导率为σ2=ωε″ε0,其中,电磁波角频率为ω=2πf,f为电磁波频率。海水电导率为:
式中,SW为海水的盐度,t为海水的温度。海水介电常数Debye模型函数为:
式中,
与温度和盐度相关的弛豫时间τ为:
ε*=a′+a″SW,式中,
步骤2:电磁波部分能量透射入海冰中传播,入射角为θ1,透射角为:
透入海水中的透射角为:
海冰中的电磁波衰减系数为:
步骤3:本发明方法中的受脉宽限制的可探测海冰厚度为:
其中电磁波传播速度c0=3×108米/秒。
步骤4:本发明中,海冰识别度用Dice表示,物理意义为雷达散射图像中海冰区域与海水区域的区分程度,水平极化(HH)和垂直极化(VV)时海冰识别度分别为:
其中,SHH,water,SVV,water分别为水平极化和垂直极化下海水的雷达散射系数。
分别水平极化和垂直极化下海冰的雷达散射系数。
其中,水平极化时冰-气界面的反射系数:
垂直极化时冰-气界面的反射系数:
其中,
有益效果:本发明基于海冰介电常数模型,考虑气-冰界面与海水-海冰界面之间电磁波多次散射,提出一种脉冲体制雷达海冰探测能力评估模型,主要评估因子为海冰可探测厚度和海冰识别度。
附图说明
图1为平面电磁波入射厚度为h的海冰时多次反射和透射示意图。
图2为雷达海冰识别度随雷达频率的变化。
图3为雷达海冰识别度随雷达入射角的变化。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的说明。
一种脉冲体制雷达海冰探测能力评估方法,包括以下步骤:
步骤1:如图1所示,介质1、2、3分别为空气、海冰和海水,它们的介电常数、磁导率和电导率分别为(ε111)、(ε222)、(ε333);一般来说,除了铁磁质外的介质,磁导率都近似等于真空中的磁导率,即有μ1=μ2=μ3=μ0。空气中ε1=ε0,σ1=0,其中真空中磁导率μ0=4π×10-7亨/米(H/m)、介电常数ε0=8.85419×10-12(F/m),海冰电导率为σ2=ωε″ε0,其中,电磁波角频率为ω=2πf,f为电磁波频率。海水电导率为:
式中,SW为海水的盐度,t为海水的温度。海水介电常数Debye模型函数为:
式中,
与温度和盐度相关的弛豫时间τ为:
ε*=a′+a″SW,式中,
步骤2:电磁波部分能量透射入海冰中传播,入射角为θ1,透射角为:
透入海水中的透射角为:
海冰中的电磁波衰减系数为:
步骤3:本发明方法中的受脉宽限制的可探测海冰厚度为:
其中电磁波传播速度c0=3×108米/秒。
步骤4:如图2和图3所示,本发明中,海冰识别度用Dice表示,物理意义为雷达散射图像中海冰区域与海水区域的区分程度,水平极化(HH)和垂直极化(VV)时海冰识别度分别为:
其中,SHH,water,SVV,water分别为水平极化和垂直极化下海水的雷达散射系数。
分别水平极化和垂直极化下海冰的雷达散射系数。
其中,水平极化时冰-气界面的反射系数:
垂直极化时冰-气界面的反射系数:
其中,
以上结合附图对本发明的实施方式做出详细说明,但本发明不局限于所描述的实施方式。对本领域的普通技术人员而言,在本发明的原理和技术思想的范围内,对这些实施方式进行多种变化、修改、替换和变形仍落入本发明的保护范围内。

Claims (1)

1.一种脉冲体制雷达海冰探测能力评估方法,其特征在于:包括以下步骤:
步骤1:介质1、2、3分别为空气、海冰和海水,它们的介电常数、磁导率和电导率分别为(ε111)、(ε222)、(ε333);磁导率都近似等于真空中的磁导率,即有μ1=μ2=μ3=μ0;空气中ε1=ε0,σ1=0,其中真空中磁导率μ0=4π×10-7H/m、介电常数ε0=8.85419×10- 12F/m,海冰电导率为σ2=ωε″ε0,其中,电磁波角频率为ω=2πf,f为电磁波频率;海水电导率为:
<mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.086374</mn> <mo>+</mo> <mn>0.030606</mn> <mi>t</mi> <mo>-</mo> <msup> <mrow> <mn>0.0004121</mn> <mi>t</mi> </mrow> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <msub> <mi>S</mi> <mi>W</mi> </msub> <mrow> <mo>(</mo> <mn>0.077454</mn> <mo>+</mo> <mn>0.001687</mn> <mi>t</mi> <mo>+</mo> <msup> <mrow> <mn>0.000019371</mn> <mi>t</mi> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
式中,SW为海水的盐度,t为海水的温度;海水介电常数Debye模型函数为:
<mrow> <msub> <mi>&amp;epsiv;</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;infin;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msup> <mi>&amp;epsiv;</mi> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;infin;</mi> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>f</mi> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>i</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>f</mi> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;epsiv;</mi> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;infin;</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>f</mi> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;f&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式中,
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;infin;</mi> </msub> <mo>=</mo> <mn>6.4857</mn> <mo>-</mo> <mn>0.04203</mn> <mi>t</mi> <mo>-</mo> <mn>0.006588</mn> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>0.0006492</mn> <msup> <mi>t</mi> <mn>3</mn> </msup> <mo>-</mo> <mn>1.2328</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>5.0433</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>8</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>5</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
与温度和盐度相关的弛豫时间τ为:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>&amp;tau;</mi> <mo>=</mo> <mn>17.03</mn> <mo>-</mo> <mn>0.66651</mn> <mi>t</mi> <mo>+</mo> <mn>5.1482</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>1.2145</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>3</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>5.0325</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>5.8272</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>7</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>5</mn> </msup> <mo>+</mo> <msub> <mi>S</mi> <mi>W</mi> </msub> <mo>(</mo> <mo>-</mo> <mn>6.772</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>2.357</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>5.075</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>6.3983</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>3</mn> </msup> <mo>+</mo> <mn>2.463</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>4</mn> </msup> <mo>-</mo> <mn>3.0676</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>8</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>5</mn> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
ε*=a′+a″SW,式中,
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mn>81.82</mn> <mo>-</mo> <mn>6.0503</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mi>t</mi> <mo>-</mo> <mn>3.1661</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>3.1097</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>3</mn> </msup> <mo>-</mo> <mn>1.1791</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>1.4838</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>5</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>a</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mo>=</mo> <mn>0.12544</mn> <mo>+</mo> <mn>9.4037</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> <mi>t</mi> <mo>-</mo> <mn>9.5551</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>9.0888</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>3</mn> </msup> <mo>-</mo> <mn>3.6011</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>4.71</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>8</mn> </mrow> </msup> <msup> <mi>t</mi> <mn>5</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
步骤2:电磁波部分能量透射入海冰中传播,入射角为θ1,透射角为:
<mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>a</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msqrt> <mfrac> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> </mfrac> </msqrt> <msub> <mi>sin&amp;theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
透入海水中的透射角为:
<mrow> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>a</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msqrt> <mfrac> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <msub> <mi>&amp;epsiv;</mi> <mn>3</mn> </msub> </mfrac> </msqrt> <msub> <mi>sin&amp;theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
海冰中的电磁波衰减系数为:
<mrow> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>&amp;omega;</mi> <msqrt> <mrow> <mfrac> <mrow> <msub> <mi>&amp;mu;</mi> <mn>2</mn> </msub> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msqrt> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <msubsup> <mi>&amp;epsiv;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </msqrt> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
步骤3:所述评估方法中的受脉宽限制的可探测海冰厚度为:
<mrow> <msub> <mi>h</mi> <mrow> <mi>c</mi> <mi>r</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mi>&amp;tau;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
其中电磁波传播速度c0=3×108米/秒;
步骤4:所述评估方法中,海冰识别度用Dice表示,物理意义为雷达散射图像中海冰区域与海水区域的区分程度,水平极化和垂直极化时海冰识别度分别为:
<mrow> <msub> <mi>D</mi> <mrow> <mi>H</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> <mi>c</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mrow> <mi>H</mi> <mi>H</mi> <mo>,</mo> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>H</mi> <mi>H</mi> <mo>,</mo> <msub> <mi>h</mi> <mrow> <mi>c</mi> <mi>r</mi> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>D</mi> <mrow> <mi>V</mi> <mi>V</mi> <mo>,</mo> <mi>i</mi> <mi>c</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mrow> <mi>V</mi> <mi>V</mi> <mo>,</mo> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>V</mi> <mi>V</mi> <mo>,</mo> <msub> <mi>h</mi> <mrow> <mi>c</mi> <mi>r</mi> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
其中,SHH,water,SVV,water分别为水平极化和垂直极化下海水的雷达散射系数;
分别水平极化和垂直极化下海冰的雷达散射系数;
其中,水平极化时冰-气界面的反射系数:
<mrow> <msub> <mi>S</mi> <mrow> <mi>H</mi> <mi>H</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mfrac> <mrow> <mi>b</mi> <mi>e</mi> <mi>k</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>a</mi> <mi>e</mi> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
垂直极化时冰-气界面的反射系数:
<mrow> <msub> <mi>S</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mo>+</mo> <mfrac> <mrow> <mi>d</mi> <mi>g</mi> <mi>l</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>c</mi> <mi>g</mi> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
其中,
CN201710232310.XA 2017-04-11 2017-04-11 一种脉冲体制雷达海冰探测能力评估方法 Active CN107064890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710232310.XA CN107064890B (zh) 2017-04-11 2017-04-11 一种脉冲体制雷达海冰探测能力评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710232310.XA CN107064890B (zh) 2017-04-11 2017-04-11 一种脉冲体制雷达海冰探测能力评估方法

Publications (2)

Publication Number Publication Date
CN107064890A true CN107064890A (zh) 2017-08-18
CN107064890B CN107064890B (zh) 2019-10-25

Family

ID=59603197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710232310.XA Active CN107064890B (zh) 2017-04-11 2017-04-11 一种脉冲体制雷达海冰探测能力评估方法

Country Status (1)

Country Link
CN (1) CN107064890B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679476A (zh) * 2017-09-26 2018-02-09 南京大学 一种海冰类型遥感分类方法
RU2723437C1 (ru) * 2019-09-03 2020-06-11 Открытое акционерное общество "Авангард" Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665466A (en) * 1970-03-20 1972-05-23 Exxon Production Research Co Determination of ice thickness
WO2003048803A1 (fr) * 2001-11-07 2003-06-12 Communications Research Laboratory,Independent Administrative Institution Procede d'observation de glace marine
JP2005291782A (ja) * 2004-03-31 2005-10-20 National Institute Of Information & Communication Technology Sarによる氷厚推定方法
CN101105395A (zh) * 2007-08-01 2008-01-16 大连海事大学 雷达海冰厚度测量仪
CN203720349U (zh) * 2014-02-20 2014-07-16 中船重工鹏力(南京)大气海洋信息系统有限公司 一种实现海洋雷达多种扫描方式的扫描系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665466A (en) * 1970-03-20 1972-05-23 Exxon Production Research Co Determination of ice thickness
WO2003048803A1 (fr) * 2001-11-07 2003-06-12 Communications Research Laboratory,Independent Administrative Institution Procede d'observation de glace marine
JP2005291782A (ja) * 2004-03-31 2005-10-20 National Institute Of Information & Communication Technology Sarによる氷厚推定方法
CN101105395A (zh) * 2007-08-01 2008-01-16 大连海事大学 雷达海冰厚度测量仪
CN203720349U (zh) * 2014-02-20 2014-07-16 中船重工鹏力(南京)大气海洋信息系统有限公司 一种实现海洋雷达多种扫描方式的扫描系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679476A (zh) * 2017-09-26 2018-02-09 南京大学 一种海冰类型遥感分类方法
CN107679476B (zh) * 2017-09-26 2020-10-09 南京大学 一种海冰类型遥感分类方法
RU2723437C1 (ru) * 2019-09-03 2020-06-11 Открытое акционерное общество "Авангард" Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Also Published As

Publication number Publication date
CN107064890B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Fer Near-inertial mixing in the central Arctic Ocean
Wadhams et al. Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery
Johansson et al. Combined observations of A rctic sea ice with near‐coincident colocated X‐band, C‐band, and L‐band SAR satellite remote sensing and helicopter‐borne measurements
Lipa et al. High-frequency radar observations of the June 2013 US East Coast meteotsunami
Haas Dynamics versus thermodynamics: The sea ice thickness distribution
CN107064890B (zh) 一种脉冲体制雷达海冰探测能力评估方法
Potter et al. Observations of wind stress direction during Typhoon Chaba (2010)
Tegowski et al. Detecting and analyzing underwater ambient noise of glaciers on Svalbard as indicator of dynamic processes in the Arctic
Ramos et al. Determination of internal wave properties from X-band radar observations
Suanda et al. Shore-based video observations of nonlinear internal waves across the inner shelf
Fedele et al. Space-time waves and spectra in the northern adriatic sea via a wave acquisition stereo system
Stöber et al. On the potential for automated realtime detection of nonlinear internal waves from seafloor pressure measurements
CN104280737A (zh) 加权宽带时反算子分解声成像方法
CN103617628A (zh) 基于极化方位角正割函数特征的舰船检测方法
JP2021503593A (ja) 全偏波レーダーに基づく氷床の内部組織構造と氷流れ場の分布特徴の識別方法
Fingas et al. Detection of oil in, with, and under ice and snow
Yang et al. Analysis on directional feature extraction for the target identification of shallow subsurface based on curvelet transform.
Rashidi Ebrahim Hesari et al. Study of internal waves in the Persian Gulf using field data and satellite images
Lü et al. A new method for the estimation of oceanic mixed-layer depth using shipboard X-band radar images
Buzin et al. Search for Chelyabinsk Meteorite Fragments in Chebarkul Lake Bottom (GPR and Magnetic Data)
CN103969636A (zh) 一种利用重构回波进行稀疏时频表示的地雷目标鉴别方法
Guozhen et al. A curvelet-based method to determine wave directions from nautical X-band radar images [J]
Zha et al. A curvelet-based method to determine wave directions from nautical X-band radar images
Al-yasi et al. Detection of Subsurface Pipes by Using Ground Penetrating Radar (GPR) in Selected Area at University of Baghdad
Wang et al. A new method of mars ice flow detection based on anisotropy crystal orientation fabrics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant