CN107056854A - 一种邻炔基酚醚类糖苷化给体及其制备方法和应用 - Google Patents

一种邻炔基酚醚类糖苷化给体及其制备方法和应用 Download PDF

Info

Publication number
CN107056854A
CN107056854A CN201710438438.1A CN201710438438A CN107056854A CN 107056854 A CN107056854 A CN 107056854A CN 201710438438 A CN201710438438 A CN 201710438438A CN 107056854 A CN107056854 A CN 107056854A
Authority
CN
China
Prior art keywords
donor
glycosylation
substituted
compound
alkynyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710438438.1A
Other languages
English (en)
Other versions
CN107056854B (zh
Inventor
孙建松
胡洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201710438438.1A priority Critical patent/CN107056854B/zh
Publication of CN107056854A publication Critical patent/CN107056854A/zh
Application granted granted Critical
Publication of CN107056854B publication Critical patent/CN107056854B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明公开了一种邻炔基酚醚类糖苷化给体,其制备方法及在糖苷化反应中的应用。本发明公开的邻炔基酚醚类糖苷化给体稳定,容易保存,广泛使用于各种糖苷化反应。给体的离去基为酚醚类保护基,可以区别于苄醚类保护基进行保护基操作。糖苷化反应条件温和,对酸敏感和对亲电试剂敏感的受体均能耐受。

Description

一种邻炔基酚醚类糖苷化给体及其制备方法和应用
技术领域
本发明属于化学合成领域,更具体的本发明涉及一种新型的糖苷化给体及其制备方法和应用。
背景技术
糖苷化反应其实就是将一个糖的异头位装上离去基(leaving group)得到的糖苷化给体(glycosyl donor)与ROH(具有裸露羟基的底物,称为受体glycosyl acceptor)通过缩醛键连接起来,形成糖苷键进而得到糖苷化产物。糖苷化反应的核心就是糖苷键的立体选择性的构建和糖苷化产物的收率,影响的因素可归纳为给体(donor),受体(acceptor)和反应条件(促进剂、溶剂、温度和浓度)等三大因素。给体和受体的活性均可以直接影响糖苷化反应的收率,然而研究发现给体的活性可以通过保护基来调节。因为糖苷键的特性不同,故而应用不同的糖苷化方法构建糖苷键均有不同的难度,对酸敏感的糖苷键,糖苷化方法的促进剂必须温和;而活性较低的糖苷键又需活性较高的给体与促进剂。对于糖苷键的立体选择性也是糖化学的难点,至今可以通过给体邻基参与效应控制得到1,2-trans糖苷键,利用异头碳效应得1,2-cis糖苷键以及构象控制得到1,2-cis糖苷键。(K.C.Nicolaou;Helen.J.Mitchell.Angew.Chem.Int.Ed.2001,40,1576–1624;JiansongSun,StéphaneLaval,Biao Yu.Synthesis 2014,46,1030–1045)
目前较为经典的糖苷化给体有溴苷给体、Schmidt给体、邻炔基苯甲酸酯给体、硫苷给体。其中以溴苷为给体的糖苷化方法(Koenigs-Knorr方法)是最早发展的糖苷化方法。用汞盐或银盐作为促进剂,虽然给体制备简单,反应性良好,但是由于溴苷不稳定而不利于保存,反应需要当量以上的重金属促进剂,价格昂贵且环境不友好,现在已经逐渐被其它方法取代。Schmidt给体糖苷化方法(三氯乙酰亚胺酯法)是R.R.Schmidt教授在1980年发展的糖苷化方法。以质子酸TfOH、及Lewis酸TMSOTf、BF3·Et2O等作为催化剂,对于活性较高的糖给体制备和纯化十分困难,容易坏,特别是不能应用在某些糖基底物特别是酮糖(如唾液酸和果糖)和某些脱氧糖底物中。2008年,上海有机所俞飚教授课题组发展了以邻炔基苯甲酸酯为给体,Ph3PAuNTf2/Ph3PAuOTf为促进剂的新型高效糖苷化方法。此方法存在的弊端就是异头安装好离去基后无法与酯类保护基进行保护基操作。硫苷糖苷化方法常用的促进剂有(NIS/TMSOTf),(MeSOTf),(NIS/TfOH),(Me2S/Tf2O)等。制备硫苷给体时的气味较不友好,同时糖苷化后掉下的 离去基具有一定的亲电性,会干扰糖苷化产物。之后Kim教授,万谦教授相继发展的给体,均属于苄醚类给体,安装好离去基后均无法与苄醚类保护基正交操作。因此有必要发展一种新型的基于炔基活化糖苷化方法,反应所需的促进剂体系温和、便宜、易得,对底物的普适性高,给体稳定,反应副产物较少,能与苄醚类保护基给体正交操作,且能够高效构建糖苷键。
发明内容
本发明要解决的技术问题是:提供一种新型的糖苷化给体及其制备方法并将之应用于糖苷化反应中。
为解决上述技术问题,本发明采取的技术方案是:
一种式I结构的邻炔基酚醚类糖苷化给体,
其中Gly为取代或非取代的糖基。
所述Gly为以下任一结构:
其中,PG为一个或多个羟基保护基,糖基或糖链。
所述羟基保护基选自取代或非取代的芳酰基、取代或非取代的C2-C6烷酰基、取代或非取代的硅基、取代或非取代的芳基、取代或非取代的C1-C6烷基中的任一种。
优选的,所述羟基保护基选自乙酰基(Ac),苄基(Bn),苯甲酰基(Bz),邻苯二甲酰亚胺基(NPhth),苯基亚甲基,TBS中的任一种。
所述式I结构的邻炔基酚醚类糖苷化给体选自以下任一结构的化合物:
所述式I结构的邻炔基酚醚类糖苷化给体的制备方法,包括以下步骤:
将如式II所示的化合物与对甲氧基苯乙炔进行Sonogashira反应即可,
其中,Gly结构如前所述。
所述进行Sonogashira反应包括以下步骤:将化合物II、Ph3P、Pd(PPh3)2Cl2、CuI、溶解在第一有机溶剂中,在惰性气体气氛中,降温到-78℃~-40℃后,加入对甲氧基苯乙炔在第二有机溶剂中的溶液,升温至50~100℃后,反应至TLC显示反应完全即可。
所述第一和第二有机溶剂相同或不同的选自N,N-二甲基甲酰胺(DMF)、二异丙基乙基胺(iPr2NH)、四氢呋喃(THF)、二氯甲烷(DCM)、丙酮、甲醇(MeOH)或乙醇(EtOH)中的一种或多种;优选的,所述第一有机溶剂为DMF和iPr2NH的混合溶液,更优选的,所述DMF和iPr2NH的体积比为1:3~5,能够更好的溶解化合物II;优选的,所述第二有机溶剂为DMF。
所述化合物II、Ph3P、Pd(PPh3)2Cl2、CuI和对甲氧基苯乙炔的摩尔比为1:0.2:0.1:0.2:1.2~1:0.5:0.2:0.5:1.6;优选的,为1:0.2:0.1:0.2:1.2~1:0.45:0.1:0.45:1.5;化合物II在第一有机溶剂中的浓度为0.01~1mol/L,优选为0.08~0.1mol/L。
所述的式I结构的邻炔基酚醚类糖苷化给体在糖苷化反应中的应用。
所述应用包括以下步骤:
第三有机溶剂中,在惰性气体环境中,干燥剂的存在下,NIS和路易斯酸组合催化下,将如式I所示的糖苷化给体和糖苷化受体ROH(式S所示化合物)进行如下所示的糖苷反应,制得如式P所示的糖苷化产物,
其中,ROH为任意的含有羟基的化合物。
所述的第三有机溶剂为芳烃类溶剂、卤代烃类溶剂、酮类溶剂、醇类溶剂和醚类溶剂中的一种或多种;优选的,为甲苯、二氯甲烷、乙醚、丙酮、THF中的一种或多种;更优选的,为二氯甲烷。所述的路易斯酸为TMSOTf,所述糖苷化受体ROH选自以下式S1~S4所示的任一化合物,
所述ROH和路易斯酸、NIS的摩尔比为1:0.1~1:1~2;优选的,为1:0.3~0.5:1.2~1.5;式I所示的糖苷化给体和ROH的摩尔比为1:1~5,优选的,为1:1~1.2;式I所示的糖苷化给体与第三有机溶剂的质量体积比为20~100mg/mL,优选为20~50mg/mL;所述反应的温度为-50~-20℃,最优选的为-35℃,所述反应的时间为1.5~3小时。
述的干燥惰性气体,优选的,选自如高纯氩气或高纯氮气;所述的干燥剂选自分子筛、分子筛、分子筛、酸洗的分子筛、酸洗的分子筛中的一种或多种。
本发明中,式II所示的化合物的制备方法和条件可采用本领域的常规方法和条件。
本发明中,产物化合物P包括以下分子:
以硫苷为给体与氨基糖受体的糖苷化反应中,硫苷给体的离去基SEt离去后得到的产物具有一定的亲电性,对糖苷化产物进行干扰而产生副反应,例如文献中记载,硫苷给体1与氨基糖受体2的糖苷化反应中生成如下式的副产物3。(Nifantiev N E,ShermanAA,Yudina O N,et al.Pure Appl.Chem.2004,76:1705-1714.)式中PG代表羟基上的保护基。
而本发明中,邻炔基酚醚给体与氨基糖受体的糖苷化反应中,能够分别以82%和90%的收率拿到化合物P4和P5,在反应产物中没有类似的邻炔基酚醚给体的离去基离去后的基团干扰糖苷化反应的产物。
有益效果:本发明公开的邻炔基酚醚类糖苷化给体稳定,容易保存,广泛使用于各种糖苷化反应。给体的离去基为醚类保护基,可以区别于苄醚类保护基进行保护基操作。糖苷化反应条件温和,对酸敏感和对亲电试剂敏感的受体均能耐受。
附图说明
图1不同条件下的糖苷化反应,其中,NR表示没有反应发生;收率为分离收率;上标c表示反应在-35℃条件下进行。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例中,MPEP代表
式II所示的化合物的制备:
1、化合物II-1的制备
在氮气保护反应体系中将全Ac保护的葡萄糖III-1(167mg,0.43mmol)和邻碘苯酚(248mg,1.13mmol)溶解在干燥的DCM(3mL)中,在冰水浴下先缓慢滴加Et3N(0.06mL,0.43mmol)搅拌5分钟后,再缓慢滴加BF3·Et2O(0.27mL,2.14mmol)。升至室温,反应4.5天。降温至0℃后缓慢加入大量的Et3N萃灭反应,真空减压旋干后上层析柱,用(PE/EA/DCM=4.5:1:1)过柱得到白色固体化合物II-1(130mg,55%):[α]28 D=-55.5°(c=1.0,CHCl3);1HNMR(400MHz,CDCl3)δ7.79(dd,J=1.2,7.6Hz,2H),7.32(td,J=1.6,8.4Hz,1H),7.07(dd,J=1.2,8.4Hz,1H),6.85(td,J=1.2,7.6Hz,1H),5.42(dd,J=7.6,9.2Hz,1H),5.32(t,J=9.2Hz,1H),5.22(t,J=9.6Hz,1H),5.07(d,J=7.6Hz,1H),4.32(dd,J=5.6,12.4Hz,1H),4.22(dd,J=2.8,12.4Hz,1H),3.91-3.87(m,1H),2.12(s,3H),2.09(s,3H),2.06(s,3H),2.05(s,3H);13C NMR(100MHz,CDCl3)δ170.5,170.2,169.3,169.2,155.9,139.7,129.5,125.0,116.0,99.6,86.9,72.6,72.2,70.7,68.3,61.9,21.2,20.6(2C),20.5;HRMS(ESI)calcd for C20H23IO10Na[M+Na]+573.0228,found573.0223.
反应物全Ac葡萄糖III-1的制备参考文献方法Albert A.Lee,Yi-Chen S.Chen,Tsung-Shing Andrew Wang et al.Angew.Chem.2016,55,12338–12342。
2、化合物II-2的制备:
将全Bz保护的葡萄糖溴苷III-2(1.34g,2.04mmol)和邻碘苯酚(672mg,3.06mmol)溶解在干燥的甲苯(16mL)中加入Ag2CO3(672mg,2.46mmol)。加热回流6小时后,点板监控反应完全,降至室温,垫上硅藻土过滤,用乙酸乙酯冲洗后旋干滤液,装入层析柱,用(PE/EA=10:1)过柱得到白色固体化合物II-2(1.48g,91%):[α]28 D=+32°(c=0.96,CHCl3);1H NMR(400MHz,CDCl3)δ8.05(dd,J=1.2,8.4Hz,2H),7.98-7.93(m,4H),7.88(dd,J=1.6,8.8Hz,2H),7.69(dd,J=1.6,8.0Hz,1H),7.60-7.29(m,12H),7.18(dd,J=1.6,8.4Hz,1H),7.08-7.04(m,1H),6.77-6.73(m,1H),6.03(t,J=9.2Hz,1H),5.96(dd,J=7.2,9.2Hz,1H),5.77(t,J=9.2Hz,1H),5.39(d,J=7.2Hz,1H),4.72(dd,J=2.8,12.0Hz,1H),4.57(dd,J=6.8,12.4Hz,1H),4.37-4.32(m,1H),13C NMR(100MHz,CDCl3)δ166.0,165.8,165.2,165.0,155.9,139.6,133.6,133.4,133.3,133.2,130.0,129.9,129.8(2C),129.5(2C),129.3,128.7,128.6,128.5,128.4(3C),128.3,125.1,116.8,100.1,87.3,72.8(2C),71.3,69.6,63.1;HRMS(ESI)calcd for C40H31IO10Na[M+Na]+821.0854,found 821.0834.
反应物全Bz葡萄糖溴苷III-2的制备参考文献:Manishkumar A.Chaube,VikramA.Sarpe,Santanu Jana and Suvarn S.Kulkarni.Org.Biomol.Chem.,2016,14,5595-5598。
3、化合物II-3的制备:
在氮气保护的反应体系中将2-氨基葡萄糖溴苷(440mg,0.883mmol)和邻碘苯酚(633.6mg,2.88mmol)溶解在活化分子筛(500mg)干燥的DCM(3.5mL)中,在冰水浴下加入AgOTf(251mg,0.972mmol)。升温至室温反应4小时。再降温到0℃后缓慢加入Et3N萃灭反应,垫上硅藻土过滤,用乙酸乙酯冲洗。旋干滤液后上样装层析柱,用(PE/EA=2:1)过柱得到白色固体化合物II-3(427mg,76%)。[α]28 D=+51°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.86-7.83(m,2H),7.74(dd,J=3.2,5.6Hz,2H),7.61(dd,J=1.6,8.0Hz,1H),7.28-7.24(m,1H),7.19(dd,J=1.6,8.4Hz,1H),6.78(td,J =1.6,7.6Hz,1H),5.94-5.89(m,2H),5.32(dd,J=9.2,10.4Hz,1H),4.75(dd,J=8.4,10.4Hz,1H),4.41(dd,J=5.6,12.0Hz,1H),4.30(dd,J=2.4,12.0Hz,1H),4.12-4.08(m,1H),2.14(s,3H),2.07(s,3H),1.91(s,3H);13C NMR(100MHz,CDCl3)δ170.5,170.0,169.4,155.7,139.3,134.4,131.6,129.6,125.1,123.6,116.3,97.5,86.9,72.2,70.4,68.8,62.0,54.2,20.7,20.6,20.4;HRMS(ESI)calcd for C26H24INO10Na[M+Na]+660.0337,found660.0341.
反应物氨基葡萄糖溴苷III-3的制备参考文献:Benjamin M.Swarts,Yu-ChengChang,Honggang Hu,Zhongwu Guo.Carbohydrate Research,2008,343,2894–2902。
4、化合物II-4的制备:
参考化合物II-1的制备方法,制得化合物II-4,[α]28 D=-13°(c=1.0,CHCl3);1HNMR(400MHz,CDCl3)δ7.78(dd,J=1.6,8.0Hz,1H),7.30(td,J=1.6,8.4Hz,1H),7.06(dd,J=1.2,8.4Hz,1H),6.80(td,J=1.6,7.6Hz,1H),5.66(s,1H),5.62-5.59(m,2H),4.48-4.41(m,2H),4.12(dd,J=4.4,11.6Hz,1H),2.16(s,3H),2.10(s,3H),1.96(s,3H);13C NMR(100MHz,CDCl3)δ170.6,169.6,169.5,155.1,139.5,129.5,124.3,115.3,103.8,87.3,79.8,75.0,71.0,63.4,20.7,20.6(2C);HRMS(ESI)calcd for C17H19IO8Na[M+Na]+501.0016,found 501.0017.
反应物全Ac核糖III-4的制备参考文献:Lingjun Li,Baichuan Lin,ZhenjunYang,Liangren Zhang,Lihe Zhang.Tetrahedron Letters,2008,49,4491–4493。
5、化合物II-5的制备:
将全Ac的鼠李糖(3.0g,9.03mmol)和邻碘苯酚(3.0g,13.55mmol)溶解在活化的分子筛干燥的DCM(12mL)中,在冰水浴下缓慢滴加TMSOTf(4.37mL,22.6mmol)。升至室温后反应36h,点板监控反应完全,在冰水浴下加入大量的Et3N后搅拌 20分钟,旋干上层析柱,用(PE/EA=5:1)过柱得到了淡黄色固体II-5(4.18g,94%):[α]28 D=-161.3°(c=1,CHCl3);1H NMR(400MHz,CDCl3)δ7.80(dd,J=1.6,8.0Hz,1H),7.31-7.27(m,1H),7.08(dd,J=1.6,8.4Hz,1H),6.82(td,J=1.2,7.6Hz,1H),5.68(dd,J=2.8,10.0Hz,1H),5.54-5.52(m,2H),5.22(t,J=10.0Hz,1H),4.04-3.97(m,1H),2.20(s,3H),2.08(s,3H),2.04(s,3H),1.21(d,J=6.0Hz,3H);13C NMR(100MHz,CDCl3)δ170.0(2C),169.9,154.5,139.6,129.5,124.5,114.7,96.0,87.2,70.7,69.6,68.9,67.8,20.9,20.8,20.7,17.4;HRMS(ESI)calcdfor C18H21IO8Na[M+Na]+515.0173,found 515.0178.
反应物具有全Ac鼠李糖的制备参考文献:Santiago Barroso,Danny Geerdink,AdriaanJ.Minnaard.Eur.J.Org.Chem.2013,4642–4654)
6、化合物II-6的制备:
用氮气保护反应体系中,将全Bz保护的鼠李糖(1.5g,2.59mmol)和邻碘苯酚(1.08g,4.91mmol)溶解在干燥的DCM(8mL)中,在冰水浴下搅拌并且缓慢滴加TMSOTf(1.25L,6.46mmol)。升至室温反应31小时反应完全。在冰水浴下缓慢加入Et3N萃灭反应,用大量乙酸乙酯稀释后,先用水洗2次,再用饱和NaHCO3洗两次,合并有机相用无水Na2SO4干燥。过滤旋干滤液,装入层析柱用(PE/EA=12:1)过柱得到淡黄色的固体II-6(1.60g,91%):[α]D 28=+95°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ8.16-8.13(m,2H),8.01(dd,J=1.2,8.0Hz,2H),7.89(dd,J=1.2,8.4Hz,2H),7.85(dd,J=1.6,7.6Hz,1H),7.65-7.61(m,1H),7.53-7.49(m,3H),7.45-7.24(m,6H),7.18(dd,J=1.2,8.4Hz,1H),6.85(td,J=1.2,7.6Hz,1H),6.24(dd,J=3.6,10.4Hz,1H),5.96(dd,J=1.6,3.2Hz,1H),5.84-5.79(m,2H),4.36-4.29(m,1H),1.36(d,J=6.4Hz,3H);13C NMR(100MHz,CDCl3)δ165.8,165.6,165.5,154.6,139.7,133.7,133.4,133.2,130.0,129.8(2C),129.6,129.2(2C),128.7,128.5,128.4,124.6,114.9,96.1,87.4,71.5,70.6,69.8,68.2,17.7;HRMS(ESI)calcd forC33H27IO8Na[M+Na]+701.0642,found701.0647.
反应物Bz鼠李糖III-6的制备参考文献::Kazuki Sato,Natsuhisa Oka,ShoichiFujita,Fumiko Matsumura and Takeshi Wada.J.Org.Chem.,2010,75,2147–2156.
7、化合物II-7的制备:
参考化合物II-5的制备方法由全Ac保护的2-脱氧葡萄糖合成白色固体II-7(65%)。[α]28 D=+136°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.80(dd,J=1.6,8.0Hz,1H),7.30-7.26(m,1H),7.12(dd,J=1.2,8.0Hz,1H),6.81(td,J=1.2,7.6Hz,1H),5.73(dd,J=1.2,3.6Hz,1H),5.67-5.61(m,1H),5.16(t,J=10.0Hz,1H),4.32(dd,J=4.8,12.4Hz,1H),4.09-4.05(m,1H),4.00(dd,J=2.0,12.4Hz,1H),2.63(ddd,J=1.2,5.2,12.8Hz,1H),2.07(s,3H),2.06(s,3H),2.03(s,3H);13C NMR(100MHz,CDCl3)δ170.6,170.1,170.0,154.8,139.6,129.5,124.4,115.2,96.0,87.5,69.2,69.0,68.9,62.0,35.0,21.1,20.8(2C);HRMS(ESI)calcd for C18H21IO8Na[M+Na]+515.0173,found 515.0167.
反应物具有全Ac脱氧糖的制备参考文献:Son N.Lam and Jacquelyn Gervay-Hague.Org.Lett.,2003,5,4219–4222。
上述反应的原料中Br苷可通过市售的对应的异头位为Ac的化合物制备,方法参考文献Albert A.Lee,Yi-Chen S.Chen,Tsung-Shing Andrew Wang etal.Angew.Chem.2016,55,12338–12342。
其他原料可购买,或从对应的糖制备得到。
实施例1:通过Sonogashira反应制备给体I-1:
将固体化合物II-1(1g,1.82mmol),Ph3P(218mg,0.82mmol),Pd(PPh3)2Cl2(123mg,0.18mmol),CuI(156mg,0.82mmol)溶解在DMF(4mL)和iPr2NH(18mL)的混合溶剂中,氮气保护下,降温到-78℃后用真空隔膜泵换气。重复三次换气后加入 溶解对甲氧基苯乙炔(360mg,2.73mmol)的DMF(4mL)。升温至70℃后反应4小时。点板监控反应完全加入NH4Cl萃灭反应,用乙酸乙酯稀释后垫硅藻土和硅胶粉过滤,先用饱和的NH4Cl洗三次后,再用饱和的NaCl洗两次合并有机相。用无水的Na2SO4干燥。垫上硅胶粉过滤,滤液旋干后装柱。用(PE/EA=12:1)过柱得到淡黄色固体给体I-1(897mg,89%)。[α]28 D=-87.9°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.54(d,J=8.8Hz,2H),7.50(dd,J=1.6,7.6Hz,1H),7.28(td,J=1.6,7.2Hz,1H),7.08-7.04(m,2H),6.90(d,J=8.8Hz,2H),5.46(dd,J=8.0,9.6Hz,1H),5.33(t,J=9.2Hz,1H),5.23(t,J=9.2Hz,1H),5.16(d,J=8.0Hz,1H),4.33(dd,J=5.2,12.4Hz,1H),4.22(dd,J=2.4,12.4Hz,1H),3.91-3.87(m,1H),3.83(s,3H),2.09(s,3H),2.05(s,3H),2.02(s,3H),1.90(s,3H);13C NMR(100MHz,CDCl3)δ170.6,170.2,169.4(2C),159.7,157.0,133.4,133.3,129.1,123.2,115.9,115.4,114.7,113.9,99.6,94.2,83.3,72.8,72.1,70.8,68.4,62.0,55.3,20.7,20.6,20.5;HRMS(ESI)calcd forC29H30O11Na[M+Na]+577.1680,found 577.1660.
实施例2:通过Sonogashira反应制备给体I-1:
合成的实验操作参考实施例1的合成步骤;所不同的是:化合物II-1、Ph3P、Pd(PPh3)2Cl2、CuI和对甲氧基苯乙炔的摩尔比为1:0.2:0.1:0.2:1.2;第一有机溶剂中,DMF和iPr2NH的体积比为1:5;化合物II-1在第一有机溶剂中的浓度为0.1mol/L,反应完全后得到淡黄色化合物I-2,收率为88%。
实施例3:通过Sonogashira反应制备给体I-2:
II-2合成的实验操作参考I-1的合成步骤;对甲氧基苯乙炔(64mg,0.485mmol)和II-2(240mg,0.323mmol)反应完全后得到淡黄色化合物I-2(241mg,93%)。[α]28 D=-20.3°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ8.05(dd,J=1.2,8.0Hz,2H),7.95(dd,J=1.6,8.4Hz,2H),7.86(dd,J=1.2,8.0Hz,2H),7.74(dd,J=1.2,8.0Hz,2H),7.59(t,J=7.2Hz,1H),7.53(t,J=7.6Hz,1H),7.45-7.33(m,9H),7.30(t,J=8.0Hz,2H),7.19-7.13(m,3H),7.09(td,J=1.6,7.2Hz,1H),7.00(td,J=1.2,7.2Hz,1H),6.81(d,J= 8.8Hz,2H),6.04-5.95(m,2H),5.76(t,J=9.2Hz,1H),5.53(d,J=6.8Hz,1H),4.72(dd,J=3.2,12.4Hz,1H),4.56(dd,J=6.4,12.0Hz,1H),4.40-4.35(m,1H),3.81(s,3H);13CNMR(100MHz,CDCl3)δ166.0,165.8,165.3,165.0,159.5,156.9,133.6,133.4,133.3,133.2(2C),133.0,129.9,129.8(3C),129.6,129.1,129.0,128.8,128.7,128.5,128.4,128.3,128.1,122.9,115.5(2C),114.6,113.7,99.5,94.2,83.1,73.0,72.7,71.4,69.7,63.2,55.3;HRMS(ESI)calcdfor C49H38O11Na[M+Na]+825.2306,found 825.2300.
实施例4:通过Sonogashira反应制备给体I-3:
II-3合成的实验操作请参考I-1的合成步骤;对甲氧基苯乙炔(90mg,0.68mmol)和II-3(273mg,0.43mmol)反应完全后得到白色固体化合物I-3(0.25g,91%)。[α]28 D=-34.5°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.50(bs,3H),7.34(dd,J=2.0,7.6Hz,1H),7.29-7.21(m,4H),7.14(dd,J=1.2,8.4Hz,1H),7.00(td,J=1.2,7.6Hz,1H),6.85(dd,J=2.0,6.8Hz,2H),6.02(d,J=8.8Hz,1H),5.91(dd,J=8.8,10.4Hz,1H),5.31(dd,J=9.2,10.0Hz,1H),4.77(dd,J=8.4,10.8Hz,1H),4.40(dd,J=4.2,12.4Hz,1H),4.28(dd,J=2.4,12.0Hz,1H),4.12-4.08(m,1H),3.85(s,3H),2.14(s,3H),2.06(s,3H),1.88(s,3H);13CNMR(100MHz,CDCl3)δ170.6,170.1,169.5,159.5,156.8,133.9,133.2(2C),131.1,129.2,123.4,123.0,115.3,115.2,114.3,113.6,97.0,93.6,83.1,72.2,70.6,68.9,62.1,55.4,54.2,20.8,20.7,20.5;HRMS(ESI)calcd for C35H31NO11Na[M+Na]+664.1789,found664.1784.
实施例5:通过Sonogashira反应制备给体I-4:
II-4合成的实验操作请参考I-1的合成步骤;对甲氧基苯乙炔(373mg,2.82mmol)和II-4(0.9g,1.88mmol)反应完全后得到淡黄色油状化合物I-4(843mg,93%)。[α]28 D=-21.4°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.52(d,J=8.8Hz,2H),7.48(dd,J=1.6,7.6Hz,1H),7.27-7.23(m,1H),7.09(dd,J=1.2,8.8Hz,1H),7.03(td,J=1.2,7.6Hz,1H),6.90(d,J=8.8Hz,2H),5.77(s,1H),5.65(m,1H),4.47-4.42(m,2H),4.14(dd,J=4.0,11.6Hz,1H),3.82(s,3H),2.12(s,3H),2.09(s,3H),1.94(s,3H);13C NMR(100MHz,CDCl3)δ170.7,169.6,169.5,159.7,156.1,133.1,133.0,129.2,122.5,115.4(2C),114.5,114.1,103.3,94.2,83.9,79.4,75.0,71.1,63.4,55.3,20.6(2C),20.5;HRMS(ESI)calcd forC26H26O9Na[M+Na]+505.1469,found 505.1464.
实施例6:通过Sonogashira反应制备给体I-5:
II-5合成的实验操作请参考I-1的合成步骤;对甲氧基苯乙炔(378mg,2.865mmol)和II-5(940mg,1.91mmol)反应完全后得到淡黄色固体化合物I-5(910mg,98%)。[α]28 D=+15°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.60(d,J=8.8Hz,2H),7.51(dd,J=2.0,7.6Hz,1H),7.28-7.23(m,1H),7.16(dd,J=0.8Hz,1H),7.05(td,J=1.2,7.6Hz,1H),6.91(d,J=8.8Hz,2H),5.82(dd,J=1.2,3.2Hz,1H),5.71-5.64(m,1H),5.15(t,J=9.6Hz,1H),4.31-4.26(m,2H),4.00-3.96(m,1H),3.83(s,3H),2.66(ddd,J=1.6,5.6,13.2Hz,1H),2.07(s,3H),2.04(m,1H),2.02(s,3H),2.019(s,3H);13C NMR(100MHz,CDCl3)δ170.6,169.9,159.7,156.1,133.3,133.1,129.1,122.6,115.7,115.4,114.8,114.0,95.9,94.3,83.8,69.0,68.9(2C),62.0,55.3,35.0,21.0,20.7(2C);HRMS(ESI)calcd for C27H28O9Na[M+Na]+519.1625,found 519.1620.
实施例7:通过Sonogashira反应制备给体I-6:
从化合物II-1出发,以甲醇为溶剂在0.3eq的K2CO3的作用下脱除Ac保护,再在DMF的溶剂中以NaH条件进行Bn保护得到化合物II-8,之后通过Sonogashira偶联得到给体I-6。最优条件操作如下:
将化合物II-1(1g,1.82mmol)溶解在甲醇(4mL)加入催化量的K2CO3(75mg,0.54mmol)在室温下搅拌反应3小时,用酸性树脂调节PH值到7。过滤旋干滤液上柱,用(CH2Cl2/MeOH=10:1)过柱得到白色固体化合物(639mg,92%)。将上一步化合物(431mg,1.13mmol)溶解在干燥的DMF中,冰水浴下虚掩瓶盖缓慢加入60%NaH(271mg,6.78mmol),氮气保护保持此温度缓慢加入BnBr(0.8mL,6.78mmol)搅拌15分钟后,升至室温反应2小时后加入大量的乙酸乙酯稀释,先用水萃取2次,再用1N HCl水溶液洗涤两次,加入饱和的NaHCO3中和。合并有机相用无水Na2SO4干燥后过滤,
旋干滤液上样层析柱,用洗脱剂(PE/EA=12:1)过柱得到化合物II-6(795mg,95%)。[α]28 D=-61.4°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.79(dd,J=1.6,7.6Hz,1H),7.40-7.17(m,21H),7.02(d,J=8.0Hz,1H),6.77(t,J=7.6Hz,1H),5.37(d,J=10.4Hz,1H),5.10(d,J=10.4Hz,1H),5.10(d,J=7.6Hz,1H),4.99(d,J=11.2Hz,1H),4.90(d,J=10.8Hz,1H),4.86(d,J=11.2Hz,1H),4.85(d,J=11.2Hz,1H),4.58(d,J=11.2Hz,1H),4.57(AB,2H),3.90(m,1H),3.79-3.75(m,2H),3.70-3.63(3H);13C NMR(100MHz,CDCl3)δ139.7,138.6,138.4,138.1,138.0,129.6,128.5(2C),128.4(2C),128.0,127.9,127.8(3C),127.7(2C),124.0,115.0,100.8,86.3,84.9,81.9,77.7,75.8,75.6,75.4,75.1,73.6,68.9;HRMS(ESI)calcd for C40H39IO6Na[M+Na]+765.1684,found 765.1685.
II-8合成的实验操作请参考I-1的合成步骤;对甲氧基苯乙炔(142mg,1.078mmol)和II-8(500mg,0.674mmol)反应完全后得到淡黄色糖浆化合物I-6(468mg,93%)。[α]28 D=-84.0°(c=0.82,CHCl3);1H NMR(400MHz,CDCl3)δ7.51(dd,J=2.0,7.6Hz,1H),7.34-7.16(m,23H),7.12-7.08(m,1H),7.00-6.96(m,1H),6.74-6.71(m,2H),5.40(d,J=10.8Hz,1H),5.14(d,J=7.6Hz,1H),4.99(d,J=10.8Hz,1H),4.87-4.81(m,3H),4.59-4.49(m,3H),3.90-3.75(m,3H),3.72-3.66(m,3H),3.70(s,3H);13C NMR(100MHz,CDCl3)δ159.6,157.6,138.6,138.4,138.2,138.1,133.4,133.0,129.4,128.5(2C),128.4(2C),128.3,128.0,127.9(2C),127.8,127.7,127.6(2C),122.1,115.6,114.4,114.0, 113.7,101.0,93.8,93.7,84.8,84.7,84.6,82.1,77.7,75.8,75.3,75.1,73.6,69.0;HRMS(ESI)calcd forC49H46O7Na[M+Na]+769.3136,found 769.3123.
实施例8:通过Sonogashira反应制备给体I-7:
从化合物II-5出发,以甲醇为溶剂在0.3eq的K2CO3的作用下脱除Ac保护,再在DMF的溶剂中以NaH条件进行Bn保护得到化合物II-9,之后通过Sonogashira偶联得到给体I-7。
II-9合成的实验操作请参考II-8的合成步骤;由化合物II-5反应完全得到无色糖浆状化合物II-9(1.43g,97%)。[α]28 D=-78.6°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.71(dd,J=1.2,7.6Hz,1H),7.43-7.38(m,4H),7.33-7.25(m,11H),7.24-7.20(m,1H),7.02(dd,J=1.6,8.4Hz,1H),6.73-6.69(m,1H),5.44(d,J=2.0Hz,1H),4.99(d,J=10.8Hz,1H),4.84(d,J=12.4Hz,1H),4.78-4.63(m,4H),4.22(dd,J=3.2,9.2Hz,1H),4.01(t,J=2.8Hz,1H),3.81-3.70(m,2H),1.29(d,J=6.0Hz,3H);13C NMR(100MHz,CDCl3)δ155.2,139.4,138.6,138.5,138.2,129.6,128.5(2C),128.4,128.1,128.0,127.9,127.8(2C),124.0,115.1,97.2,87.4,80.3,79.6,75.4,75.3,73.2,72.6,69.5,18.1;HRMS(ESI)calcd for C33H33IO5Na[M+Na]+659.1265,found 659.1269.
I-7合成的实验操作请参考I-1的合成步骤;对甲氧基苯乙炔(202mg,1.53mmol)和II-9(650mg,1.02mmol)反应完全后得到白色糖浆状化合物I-7(613mg,92%)。[α]28 D=-5.0°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.47-7.42(m,3H),7.38-7.22(m,16H),7.06(d,J=8.0Hz,1H),7.01(td,J=1.2,7.6Hz,1H),6.66(d,J=8.8Hz,2H),5.61(d,J=2.0Hz,1H),4.97(d,J=10.8Hz,1H),4.84(d,J=12.4Hz,1H),4.76(d,J=12.4Hz,1H),4.69(d,J=10.8Hz,1H),4.62(AB,2H),4.27(dd,J=2.8,9.2Hz,1H),4.09(t,J=2.8Hz,1H),4.05-3.98(m,1H),3.74(t,J=9.2Hz,1H),3.73(s,3H),1.32(d,J=6.0Hz,3H);13C NMR(100MHz,CDCl3)δ159.7,156.5,138.8,138.7,138.4,133.2,129.4,128.5(2C),128.1,128.0,127.8,127.7,127.6(2C),122.4,115.6(2C),114.7,114.1,96.8,93.8,84.2,80.7,80.6,75.4,75.3,73.3,72.8,69.4,55.4,18.2;HRMS(ESI)calcd for C42H41O6[M+H]+641.2897,found641.2896.
实施例9:通过Sonogashira反应制备给体I-8:
从化合物4出发经过本领域的常规保护基操作得到化合物II-10,之后通过Sonogashira偶联得到给体I-8。最优条件操作如下:
将化合物4(1.5g,3.93mmol)和HMDS(2.1mL,10.22mmol)溶解在DCM(8mL)中,0℃下加入催化量的TMSOTf(0.2mL,1.18mmol)。氮气保护升至室温,反应35分钟后,无水环境中真空减压旋干溶剂至无氨气,然后快速加入活化的MS,氮气保护下加入ArCHO(0.48mL,4.7mmol)和干燥的DCM(8mL)降温至0℃,缓慢滴加TMSOTf(0.14mL,0.79mmol)搅拌反应4小时后,点板监控反应完全。降温至-78℃后滴加Et3SiH(0.74mL,4.72mmol)和TMSOTf(0.142mL,0.786mmol)到反应体系中。继续搅拌反应8小时后,缓慢滴加1M的TBAF(5mL,5mmol)到反应体系中反应15min,升至室温反应2小时后,冰水浴下加入饱和的NaHCO3萃灭。用大量的EtOAc稀释后,先用水洗两次,再用饱和的NaHCO3洗涤两次,合并有机相后用无水Na2SO4干燥,过滤旋干滤液上柱,用(PE/EA=20:1)过柱得到白色粉末状固体化合物5(1.82g,83%)。[α]28 D=-47°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.79(dd,J=1.6,8.0Hz,2H),7.52-7.50(m,2H),7.44-7.27(m,9H),7.13(dd,J=1.2,8.0Hz,1H),6.86(td,J=1.6,7.6Hz,1H),5.62(s,1H),5.01(d,J=11.6Hz,1H),4.94(d,J=7.6Hz,1H),4.90(d,J=11.6Hz,1H),4.44(dd,J=4.8,10.4Hz,1H),4.00(t,J=8.0Hz,1H),3.89-3.76(m,3H),3.62-3.56(m,1H),2.85(d,J=0.8Hz,1H);13C NMR(100MHz,CDCl3)δ156.0,139.4,138.3,137.1,129.8,128.4,128.3,128.1,127.8,126.1,125.1,116.4,103.2,101.4,87.7,81.0,79.7,74.8,74.5,68.6,66.8;HRMS(ESI)calcd for C26H26IO6[M+H]+561.0768,found561.0768.
化合物5(1.82g,3.25mmol)溶解在干燥的吡啶(8mL)中,冰水下搅拌并滴加BzCl(1.1mL,9.7mmol)氮气保护下,升至室温反应5h。加入适量的乙酸乙酯稀释,先加水洗涤2次,再加入1N HCl水溶液洗三次。用饱和的NaHCO3水溶液洗两次,合并有机相用无水的Na2SO4干燥;过滤后旋干滤液上层析柱,用(PE/EA=12:1)过柱得到白色晶体化合物19(2g,95%)。[α]28 D=+9.0°(c=1.0,CHCl3);1H NMR(400MHz, CDCl3)δ8.01(dd,J=1.2,8.0Hz,2H),7.70(dd,J=1.6,8.0Hz,1H),7.60-7.51(m,3H),7.45-7.39(m,5H),7.28(td,J=1.6,8.8Hz,1H),7.18-7.05(m,6H),6.79(td,J=1.2,7.2Hz,1H),5.71(t,J=8.0Hz,1H),5.66(s,1H),5.20(d,J=7.6Hz,1H),4.88(d,J=12.4Hz,1H),4.76(d,J=12.0Hz,1H),4.46(dd,J=5.2,10.8Hz,1H),4.04-3.89(m,3H),3.70-3.64(m,1H);13C NMR(100MHz,CDCl3)δ139.8,137.1,133.1,130.5,130.1,129.5,129.3,128.4,128.3,126.4,124.9,116.2,102.1,100.4,87.2,81.4,74.4,73.2,68.8,66.8,25.6,18.0,-4.1,-4.8;HRMS(ESI)calcd forC33H29IO7Na[M+Na]+687.0850,found 687.0853.
在冰水浴下,将1M的BH3·THF(7.6mL,7.6mmol)络合溶液,缓慢滴加到装有化合物6(0.95g,1.43mmol)的干燥烧瓶中,氮气保护下搅拌反应10分钟后,加入Cu(OTf)2(29mg,0.07mmol)。升至室温溶后反应1.5小时,点板监控反应完全。降温到0℃后缓慢滴加Et3N和甲醇的混合溶液萃灭反应。过滤用乙酸乙酯冲洗,旋干滤液上柱,用(PE/EA=5:1)过柱得到白色固体化合物7(867mg,91%)。[α]28 D=+21.5°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ8.02(dd,J=1.2,8.0Hz,2H),7.70(dd,J=1.6,8.0Hz,1H),7.58-7.54(m,1H),7.44-7.30(m,7H),7.28-7.24(m,1H),7.19-7.12(m,5H),7.04(dd,J=1.6,8.4Hz,1H),6.78(td,J=1.2,7.6Hz,1H),5.67(dd,J=7.6,9.2Hz,1H),5.16(d,J=8.0Hz,1H),4.92(d,J=10.8Hz,1H),4.81(d,J=11.2Hz,1H),4.74(d,J=11.2Hz,1H),4.72(d,J=11.2Hz,1H),3.97-3.92(m,2H),3.89(t,J=8.8Hz,1H),3.81(dd,J=4.4,12.0Hz,1H),3.66-3.62(m,1H);13C NMR(100MHz,CDCl3)δ165.2,156.2,139.8,137.7,137.6,133.2,130.2,130.0,129.6,128.7,128.5,128.4,128.3,128.2(2C),127.9,124.8,115.8,100.1,87.2,82.5,76.0,75.3,75.2,73.0,62.0;HRMS(ESI)calcd forC33H31IO7Na[M+Na]+689.1006,found 689.0981.
将化合物7(700mg,1.05mmol)溶解在干燥的DMF中,冰水浴下缓慢加入BnBr(0.62mL,5.25mmol)搅拌10分钟后,虚掩瓶盖缓慢加入60%NaH(84mg,2.1mmol)。氮气保护反应1个小时后加入大量的乙酸乙酯稀释,先用水萃取2次,再用1N HCl水溶液洗涤两次,加入饱和的NaHCO3中和。合并有机相用无水Na2SO4干燥后过滤,旋干滤液上样层析柱,用洗脱剂(PE/EA=20:1)过柱得到化合物II-10(629mg,81%)。[α]28 D=+30.8°(c=1.0,CHCl3);1HNMR(400MHz,CDCl3)δ8.03(dd,J=1.6,8.4Hz,2H),7.67(dd,J=1.2,7.6Hz,1H),7.56(t,J=7.6Hz,1H),7.42(t,J=8.0Hz,2H),7.34-7.26(m,8H),7.23-7.11(m,9H),6.75(td,J=2.0,7.2Hz,1H),5.70(t,J=8.4Hz,1H),5.09(d,J=8.0Hz,1H),4.87(d,J=10.8Hz,1H),4.78(AB,2H),4.63(d,J=12.8Hz,1H),4.62(t,J=10.0Hz,1H),4.57(d,J=12.0Hz,1H),3.94-3.82(m,3H),3.76-3.71(m,2H);13C NMR(100MHz,CDCl3)δ165.2,156.5,139.6,138.2,137.9,137.8,133.1,130.4,130.0,129.5,128.6,128.5,128.4(2C),128.2,128.1,128.0,127.8(3C),124.6,116.5,100.3, 87.3,82.8,77.9,75.8,75.2,73.7,73.1,68.9;HRMS(ESI)calcd for C40H37IO7Na[M+Na]+779.1476,found 779.1450.
I-8合成的实验操作请参考I-1的合成步骤;对甲氧基苯乙炔(185mg,1.34mmol)和II-10(620mg,0.84mmol)反应完全后得到淡黄色化合物I-8(572mg,90%)。[α]28 D=-73.6°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ7.81(dd,J=1.2,8.0Hz,2H),7.44-7.11(m,23H),6.98(td,J=1.2,7.6Hz,1H),6.82(dd,J=8.4Hz,2H),5.73(t,J=8.4Hz,1H),5.24(d,J=7.6Hz,1H),4.86(d,J=10.8Hz,1H),4.77(AB,2H),4.63(d,J=12.0Hz,1H),4.62-4.54(m,2H),3.94-3.83(m,3H),3.82(s,3H),3.79-3.71(m,2H);13CNMR(100MHz,CDCl3)δ165.1,159.4,157.4,138.2,137.9,137.8,133.3(2C),133.2,132.8,129.8(2C),129.0,128.5,128.4,128.3,128.1(2C),128.0,127.9,127.7(2C),127.6,122.4,115.7,115.3,114.4,113.7,99.4,94.0,83.5,82.9,77.9,75.7,75.1(2C),73.6,73.3,68.9,55.3;HRMS(ESI)calcd for C49H44O8Na[M+Na]+783.2928,found 783.2923.
实施例10糖苷化反应合成化合物P1
将给体I-2(30mg,0.037mmol)和受体S1(16mg,0.031mmol)溶解在用活化的 MS干燥的DCM(0.8mL)中,氮气保护下搅拌20分钟。降温到.-35℃加入NIS(10mg,0.047mmol)和TMSOTf(1.68μL,0.0093mmol)。反应3.5小时后,加入Et3N萃灭反应。过滤旋干滤液上柱。用(PE/EA=3:1)过柱得到白色固体糖苷化产物P1(33mg,99%)。1H NMR(400MHz,CDCl3)δ8.01-7.78(m,14H),7.56-7.24(m,21H),6.10(t,J=10.0Hz,1H),5.95(t,J=9.6Hz,1H),5.69(t,J=10.0Hz,1H),5.59(dd,J=8.0,10.0Hz,1H),5.34(t,J=10.0Hz,1H),5.11(dd,J=3.6,10.4Hz,1H),4.99(d,J=7.6Hz,1H),4.94(d,J=3.6Hz,1H),4.63(dd,J=3.2,12.4Hz,1H),4.47(dd,J=4.8,12.0Hz,1H),4.25-4.09(m,3H),3.81(dd,J=8.0,11.6Hz,1H),3.10(s,3H).
实施例11糖苷化反应合成化合物P2
P2合成的实验操作请参考P1的合成步骤,所不同的是,其中TMSOTf用量为0.5eq;得到白色固体糖苷化产物P2(43mg,93%)。[α]28 D=+17.1°(c=1.0,CHCl3);1HNMR(400MHz,CDCl3)δ8.02(dd,J=1.6,8.8Hz,2H),7.58(t,J=7.6Hz,1H),7.45(t,J=7.6Hz,2H),7.36-7.20(m,10H),7.14-7.09(m,5H),5.26(t,J=8.8Hz,1H),4.84(dd,J=10.4,12.8Hz,1H),4.74(d,J=10.2Hz,1H),4.65-4.56(m,4H),3.84(t,J=8.8Hz,1H),3.79(dd,J=2.0,10.8Hz,1H),3.70-3.65(m,2H),3.58-3.54(m,1H),2.05(bs,3H),1.81(dd,J=3.6,14.8Hz,3H),1.65(d,J=12.0Hz,3H),1.58-1.49(m,6H);13C NMR(100MHz,CDCl3)δ165.0,138.4,138.1,137.9,132.9,130.3,129.7,128.4(2C),128.3,128.2,128.1,128.0,127.8,127.6(2C),127.5,94.0,83.2,78.4,75.1,75.0(3C),74.1,73.4,69.3,42.4,36.2,30.6;HRMS(ESI)calcd for C44H48O7Na[M+Na]+711.3292,found 711.3290.
实施例12糖苷化反应合成化合物P3
P3合成的实验操作请参考P1的合成步骤,所不同的是其中TMSOTf用量为0.5eq;得到白色固体糖苷化产物P3(47mg,98%)。1H NMR(400MHz,CDCl3)δ7.88(dd,J=3.2,9.6Hz,2H),7.76(dd,J=3.2,5.6Hz,2H),5.88(dd,J=8.8,10.4Hz,1H),5.59(d,8.4Hz,1H),5.14(dd,J=8.8,10.0Hz,1H),4.34-4.28(m,2H),4.15(dd,J=2.4,12.0Hz,1H),3.91-3.87(m,1H),2.09(s,3H),2.05(t,J=2.8Hz,3H),2.04(s,3H),1.86(s,3H),1.74(dt,J=14.4,1.8Hz,3H),1.57-1.47(m,9H);13C NMR(100MHz,CDCl3)δ170.7,170.2,169.6,134.3,129.0,128.2,123.6,91.6,75.9,71.3,70.9,69.4,62.5,55.1,42.2,36.0,30.5,20.8,20.7,20.5.
实施例13糖苷化反应合成化合物P4
P4合成的实验操作请参考P1的合成步骤,其中TMSOTf为0.5eq;得到白色固体糖苷化产物P4(21mg,82%)。[α]28 D=+6.4°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ8.04(dd,J=1.2,8.0Hz,2H),7.94-7.89(m,4H),7.83(dd,J=1.2,8.4Hz,2H),7.59-7.26(m,12H),5.92(t,J=9.6Hz,1H),5.70(t,J=10.0Hz,1H),5.55(dd,J=7.6,9.6Hz,1H),5.34(d,J=9.2Hz,1H),5.11(dd,J=9.2,10.4Hz,1H),4.96(d,J=8.0Hz,1H),4.83(t,J=9.6Hz,1H),4.66(dd,J=2.8,12.0Hz,1H),4.50(dd,J=5.2,12.4Hz,1H),4.26(d,J=8.4Hz,1H),4.18-4.13(m,1H),3.94(d,J=9.2Hz,1H),3.88-3.81(m,1H),3.70-3.63(m,2H),3.08(s,3H),1.99(s,3H),1.95(s,3H),1.91(s,3H);13C NMR(100MHz,CDCl3)δ171.0,170.2,169.7,166.1,165.8,165.2,165.1,133.5,133.3(2C),133.2,132.2,132.1,129.8(2C),129.7,129.6,129.1,128.7(2C),128.6,128.5,128.4(2C),128.3,101.5,101.4,73.4,72.8,72.6,72.4,71.8,69.6,69.2,68.9,63.0,56.4,54.3,23.3,20.7,20.6;HRMS(ESI)calcd forC47H48NO17[M+H]+898.2916,found 898.2910.
实施例14糖苷化反应合成化合物P5
P5合成的实验操作请参考P1的合成步骤,其中TMSOTf为0.5eq;得到白色固体糖苷化产物P5(36mg,90%)。[α]28 D=+22.6°(c=1.0,CHCl3);1H NMR(400MHz,CDCl3)δ8.00(dd,J=1.2,8.0Hz,2H),7.57-7.53(m,1H),7.43(t,J=1.6Hz,2H),7.37-7.27(m,8H),7.18-7.09(m,7H),5.43(d,J=9.2Hz,1H),5.30-5.26(m,1H),5.07(dd,J=9.2,10.8 Hz,1H),4.82(dd,J=9.6,10.4Hz,2H),4.75(d,J=11.2Hz,1H),4.66-4.52(m,5H),4.22(d,J=8.4Hz,1H),3.91-3.76(m,6H),3.60-3.52(m,3H),3.00(s,3H),1.98(s,3H),1.97(s,3H),1.90(s,3H);13C NMR(100MHz,CDCl3)δ171.0,170.1,169.7,165.1,138.0,137.9,137.7,133.1,129.9,129.8,128.4(2C),128.3,128.0(2C),127.9,127.8,127.7(2C),101.4,101.3,82.8,77.9,75.2(2C),75.0,73.6,73.5,73.4,72.7,69.3,68.6,68.5,56.2,54.2,23.3,20.7;HRMS(ESI)calcd for C47H53NO14[M+H]+856.3538,found 856.3545.
由化合物P4及P5合成表明,本发明给体,化合物I,进行糖苷化反应之后的离去基不能干扰糖苷化产物的生成。
实施例15糖苷化反应合成化合物P6
S4为市售产品。P6合成的实验操作请参考P1的合成步骤,得到淡黄色糖浆状糖苷化产物P6(31mg,87%)。是差向异构体α/β混合物(α/β=1:5)。[α]28 D=-23.3°(c=0.9,CHCl3);Forβ-isomer:1H NMR(400MHz,CDCl3)δ5.99(d,J=3.6Hz,1H),5.87(d,J=3.6Hz,0.2H),5.37(dd,J=4.8,6.8Hz,1H),5.31(d,J=4.8Hz,1H),5.27(dd,J=4.8,11.2Hz,0.2H),5.24(s,0.2H),5.19(s,0.2H),5.08(s,1H),4.58(d,J=3.6Hz,1H),4.54(d,J=4.0Hz,0.2H),4.40-4.24(m,3+1H),4.21(d,J=3.6Hz,1H),4.14-4.08(m,1.4H),4.00(dd,J=5.2,8.8Hz,0.2H),3.95(dd,J=2.4,11.2Hz,1H),3.70(td,J=2.4,7.2Hz,1H),3.57(dd,J=7.2,11.2Hz,1H),2.13(s,0.6H),2.11(s,3H),2.10(s,3H),2.09(s,0.6H),2.07(s,0.6H),2.05(s,3H),1.49(s,3.6H),1.42(s,0.6H),1.35(s,6H),1.32(s,3H),1.30(s,0.6H);13C NMR(100MHz,CDCl3)δ170.7,170.6,169.8,169.7,169.6(2C),112.2,112.0,109.4,106.4,105.6,105.2,102.2,101.0,84.0,81.5,80.8,79.2,78.5,78.3,75.0,74.7(2C),71.8,71.7,71.5(2C),68.2,67.6,65.6,64.4,27.2,26.8,26.5,26.2,25.1,23.9(2C),20.8(2C),20.6(2C),20.5(2C);HRMS(ESI)calcd for C23H34O13Na[M+Na]+541.1891,found 541.1886.
对比例1:
我们还制备了多种给体1a-1i和受体2a和2b,进行糖苷化反应尝试,证明本发明的给体反应得到的效果最佳。具体反应情况见图1。图1中化合物1c即为化合物I-2。
以活化邻炔基苯甲酸酯给体所需的Ph3PAuNTf2与Ph3PAuOTf为催化剂进行了大量糖苷化的尝试。不同当量的Ph3PAuNTf2促进剂和延长反应时间,均没有糖苷化产物生成,反应未启动,给体与受体全部回收。以活性较高的Ph3PAuOTf为催化剂,调节了催化剂的当量,结果和Ph3PAuNTf2促进剂一样反应未启动。以0.1eq Ph3PAuCl,0.5eqCu(OTf)2为促进剂均没有发生反应。以I2催化,在两当量条件下,仅得到10%收率的糖苷化产物。在TMSOTf的条件下进行糖苷化反应,需要1.2eq的TMSOTf才可以得到71%的糖苷化产物。

Claims (10)

1.一种式I结构的邻炔基酚醚类糖苷化给体,
其中Gly为取代或非取代的糖基。
2.根据权利要求1所述的式I结构的邻炔基酚醚类糖苷化给体,其特征在于,所述Gly为以下任一结构:
其中,PG为一个或多个羟基保护基,糖基或糖链。
3.根据权利要求2所述的式I结构的邻炔基酚醚类糖苷化给体,其特征在于,所述羟基保护基选自取代或非取代的芳酰基、取代或非取代的C2-C6烷酰基、取代或非取代的硅基、取代或非取代的芳基、取代或非取代的C1-C6烷基中的任一种。
4.根据权利要求1所述的式I结构的邻炔基酚醚类糖苷化给体,其特征在于,所述式I结构的邻炔基酚醚类糖苷化给体选自以下任一结构的化合物:
5.权利要求1~4所述式I结构的邻炔基酚醚类糖苷化给体的制备方法,其特征在于,包括以下步骤:
将如式II所示的化合物与对甲氧基苯乙炔进行Sonogashira反应即可,
其中,Gly结构如前所述。
6.根据权利要求5所述的制备方法,其特征在于,所述Sonogashira反应包括以下步骤:将化合物II、Ph3P、Pd(PPh3)2Cl2、CuI溶解在第一有机溶剂中,在惰性气体气氛中,降温到-78℃~-40℃后,加入对甲氧基苯乙炔在第二有机溶剂中的溶液,升温至50~100℃后,反应至TLC显示反应完全即可,所述第一和第二有机溶剂相同或不同的选自N,N-二甲基甲酰胺、二异丙基乙基胺、四氢呋喃、二氯甲烷、丙酮、甲醇或乙醇中的一种或多种。
7.权利要求1~4中任一所述的式I结构的邻炔基酚醚类糖苷化给体在糖苷化反应中的应用。
8.根据权利要求7所述的应用,其特征在于,包括以下步骤:
第三有机溶剂中,在惰性气体环境中,干燥剂的存在下,NIS和路易斯酸组合催化下,将如式I所示的糖苷化给体和糖苷化受体ROH进行如下所示的糖苷反应,制得如式P所示的糖苷化产物,
其中,ROH为任意的含有羟基的化合物。
9.根据权利要求8所述的制备方法,其特征在于,所述的第三有机溶剂为芳烃类溶剂、卤代烃类溶剂、酮类溶剂、醇类溶剂和醚类溶剂中的一种或多种,所述的路易斯酸为TMSOTf,所述糖苷化受体ROH选自以下式S1~S4所示的任一化合物,
10.根据权利要求8所述的制备方法,其特征在于,所述ROH和路易斯酸、NIS的摩尔比为1:0.1~1:1~2;式I所示的糖苷化给体和ROH的摩尔比为1:1~5;式I所示的糖苷化给体与第三有机溶剂的质量体积比为20~100mg/mL;所述反应的温度为-50~-20℃,所述反应的时间为1.5~3小时。
CN201710438438.1A 2017-06-12 2017-06-12 一种邻炔基酚醚类糖苷化给体及其制备方法和应用 Active CN107056854B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710438438.1A CN107056854B (zh) 2017-06-12 2017-06-12 一种邻炔基酚醚类糖苷化给体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710438438.1A CN107056854B (zh) 2017-06-12 2017-06-12 一种邻炔基酚醚类糖苷化给体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107056854A true CN107056854A (zh) 2017-08-18
CN107056854B CN107056854B (zh) 2018-11-09

Family

ID=59595203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710438438.1A Active CN107056854B (zh) 2017-06-12 2017-06-12 一种邻炔基酚醚类糖苷化给体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107056854B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912672A (zh) * 2019-04-02 2019-06-21 江西师范大学 一种以邻炔基苯酚醚作为离去基的碱基糖苷化的方法
CN110835361A (zh) * 2019-10-21 2020-02-25 山东大学 一类唾液酸糖基给体及其制备方法和应用
CN114891049A (zh) * 2022-06-28 2022-08-12 陕西师范大学 基于邻炔基苄醚类糖基供体的高效糖基化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164531A2 (en) * 2015-04-08 2016-10-13 BioMendics, LLC Formulation and process for modulating wound healing
CN106632518A (zh) * 2017-01-17 2017-05-10 江西师范大学 一种鬼臼毒素4‑oh衍生物的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164531A2 (en) * 2015-04-08 2016-10-13 BioMendics, LLC Formulation and process for modulating wound healing
CN106632518A (zh) * 2017-01-17 2017-05-10 江西师范大学 一种鬼臼毒素4‑oh衍生物的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912672A (zh) * 2019-04-02 2019-06-21 江西师范大学 一种以邻炔基苯酚醚作为离去基的碱基糖苷化的方法
CN109912672B (zh) * 2019-04-02 2021-07-27 江西师范大学 一种以邻炔基苯酚醚作为离去基的碱基糖苷化的方法
CN110835361A (zh) * 2019-10-21 2020-02-25 山东大学 一类唾液酸糖基给体及其制备方法和应用
CN114891049A (zh) * 2022-06-28 2022-08-12 陕西师范大学 基于邻炔基苄醚类糖基供体的高效糖基化方法
CN114891049B (zh) * 2022-06-28 2024-06-07 陕西师范大学 基于邻炔基苄醚类糖基供体的高效糖基化方法

Also Published As

Publication number Publication date
CN107056854B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN107056854B (zh) 一种邻炔基酚醚类糖苷化给体及其制备方法和应用
EP2318423B1 (en) Process for making 5-azacytosine nucleosides and their derivatives
Oyama et al. Total synthesis of apigenin 7, 4′-di-O-β-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogues
Takeo et al. Synthesis of the laminara-oligosaccharide methyl β-glycosides of dp 3–8
CN113527388B (zh) 一种β-2-脱氧糖、2-脱氧-2-叠氮糖和葡萄糖苷键立体选择性合成的方法
Maeba et al. C-Nucleosides. 1. Synthesis of 3-(. beta.-D-ribofuranosyl) pyridazines
Lergenmüller et al. Use of dichlorophthaloyl (DCPhth) group as an amino protecting group in oligosaccharide synthesis
CN117836298A (zh) 用于芳烃的催化糖基化方法
AU2010291893B2 (en) Synthesis of decitabine
CN105541933A (zh) 一种双三氟甲磺酰亚胺试剂活化糖基化反应提高β-糖苷键立体选择性的方法
Kononov et al. Synthesis of a polymer-supported sialic acid glycosyl donor
Shiragami et al. Synthesis of 1-(2, 3-dideoxy-β-D-glycero-pent-2-enofuranosyl) thymine (d4T; stavudine) from 5-methyluridine
CN106831927B (zh) 一种黄芪甲苷的合成方法
CN103275169A (zh) 呋甾皂苷及其合成方法
Zhang et al. Synthesis based on affinity separation (SAS): Separation of products having barbituric acid tag from untagged compounds by using hydrogen bond interaction
Ludwig et al. A new laboratory scale synthesis for the anticancer drug 3′-C-ethynylcytidine
Sato et al. General synthesis of homo-C-nucleosides.
Petráková et al. Syntheses of specifically deoxygenated methyl α-isomaltotriosides
CN1331880C (zh) 一种喷脑皂甙的化学合成方法
CN106565800B (zh) 三糖对甲氧基苯酚苷类化合物及其制备方法
Hřebabecký et al. Preparation of Thymidine-4'-C-carboxylic Acid and Its Derivatives
CN110016066B (zh) 一种i型n-聚糖天线的合成方法
Al Mourabit et al. New C2 symmetrical and semisymmetrical substituted imidazolium ribonucleoside. Imidazolic nucleosides analogues
Libnow et al. Synthesis and reactivity of halogenated 1, 2, 4-triazole nucleoside analogues with high potential for chemical modifications
Bär et al. Synthesis of β‐lactosyl 1‐thioceramide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant