CN107042298A - 静磁致深过冷高充型能力细晶铸造炉及使用方法 - Google Patents
静磁致深过冷高充型能力细晶铸造炉及使用方法 Download PDFInfo
- Publication number
- CN107042298A CN107042298A CN201710250064.0A CN201710250064A CN107042298A CN 107042298 A CN107042298 A CN 107042298A CN 201710250064 A CN201710250064 A CN 201710250064A CN 107042298 A CN107042298 A CN 107042298A
- Authority
- CN
- China
- Prior art keywords
- casting mold
- magnetic field
- crucible
- rotary table
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/02—Use of electric or magnetic effects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D35/00—Equipment for conveying molten metal into beds or moulds
- B22D35/04—Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/005—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
- B22D41/01—Heating means
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Continuous Casting (AREA)
Abstract
本发明涉及一种静磁致深过冷高充型能力细晶铸造炉,主要包括:熔化坩埚、铸型、稳恒磁场磁极、铸型承载转盘,所述熔化坩埚位于所述铸型的上方,所述稳恒磁场磁极位于所述铸型的周围;所述熔化坩埚上设有交变电流感应圈和直流电稳恒磁场;熔化坩埚、稳恒磁场磁极、铸型承载转盘位于铸造炉内,其承重和定位构造不与炉外相通,其转动速度可被炉外转动累积增加。同时,本发明提供了一种静磁致深过冷高充型能力细晶铸造炉的使用方法。本发明有益效果为:通过在熔化坩埚和铸型都施加了直流电流产生的稳恒磁场,有效实现了在熔化坩埚和铸型中的金属液体深过冷的目的,并最终实现了铸造产品的极细小、极均匀的内部晶粒组织,并且同时具有极强的充型能力。
Description
技术领域
本发明涉及新型细晶铸造设备技术领域,尤其涉及一种静磁致深过冷高充型能力细晶铸造炉及使用方法。
背景技术
金属或合金的细晶铸造从原理上可以分为三种类型。其一,就是在金属或合金尚未完全凝固的过程中,以机械的或电磁的方式搅拌打碎液体中已经形成的固体,以增加液体中的凝固结晶核心,以得到完全凝固后的细晶组织。其二,就是在金属或合金凝固的过程开始之前,将人造的固体粉末加入到此金属或合金的液体中,以增加液体中的凝固结晶核心,以得到完全凝固后的细晶组织。其三,就是将金属或合金的液体控制到尽可能低的温度凝固,使其凝固结晶的核心比较多,凝固后晶粒长大的程度也比较小,以得到完全凝固后的细晶组织。这三种类型的细晶铸造在充型能力方面都是比较差的,有个术语叫做:“粥状充型”因为液体里已经含有一些小固体颗粒了。这些固体颗粒在液体中的比例越多越难充型,但是这些固体颗粒在液体中的比例越少越,凝固以后合金晶粒组织就会越粗大。
申请号为201110430497.7,发明名称为一种熔点以下完全充型铸造方法,提供了一种将金属或合金的液体控制到低于其熔点的温度还不凝固的新型铸造技术,当金属或合金的纯液体控制到凝固点以下足够低的温度时,突然撤去控制措施,此时就能得到极其均匀细小的合金晶粒组织,并且这种技术钢液充入铸型腔内的基本上是纯液体,而不是“粥状液体”,所以充型能力就会很好;其原理是在熔点温度以下(专业术语是:过冷)越低的温度凝固,金属或合金液体的凝固结晶热力学驱动力就越大,液体中的凝固结晶核心就越多,凝固后的晶粒组织不仅晶粒细小而且均匀。但是,上述方法还不够理想,主要是抑制凝固结晶的方法措施不独立于熔炼,造成或抑制力不够,或钢液无法降温。而且,当钢液浇注入铸型时,就任何抑制措施也没有了。
基于上述问题,本申请提出一种静磁致深过冷高充型能力细晶铸造炉及使用方法,通过增设对熔化坩埚施加直流电流恒磁场及对铸造型腔中流动的金属或合金液体施加过冷措施的设备构造,能够得到过冷纯液体浇注充型和铸造组织晶粒尺寸极其细小及均匀效果的细晶组织。
发明内容
鉴于上述的分析,本发明旨在提供一种静磁致深过冷高充型能力细晶铸造炉及使用方法,用以解决现有技术中抑制凝固结晶的方法措施不独立于熔炼,造成或抑制力不够,或钢液无法降温的问题,有效提高了铸件各部位晶粒组织的细小和均匀性。
本发明的目的主要是通过以下技术方案实现的:
一种静磁致深过冷高充型能力细晶铸造炉,主要包括:熔化坩埚、铸型、稳恒磁场磁极、铸型承载转盘,所述熔化坩埚位于所述铸型的上方,所述稳恒磁场磁极位于所述铸型的周围,所述铸型承载转盘位于所述铸型的下端,并与所述铸型固定连接;所述熔化坩埚上设有交变电流感应圈和直流电稳恒磁场;所述熔化坩埚、稳恒磁场磁极、铸型承载转盘位于铸造炉内,所述铸型通过设备从炉门外放入所述铸型承载转盘上。
本发明在熔化坩埚上设有交变电流感应圈和直流电稳恒磁场,直流电稳恒磁场即直流电流感应圈,相当于坩埚是多重感应圈,交变电流感应圈用于钢液的熔化和控温,直流电流感应圈用于产生金属液体过冷的磁场,本发明实现了铸造型腔中的深过冷。
进一步的,所述熔化坩埚施加直流电稳恒磁场的感应线圈同时具有电阻式加热功能。
进一步的,所述熔化坩埚上安装有远红外和热电偶同时测温装置。
进一步的,所述稳恒磁场磁极分为稳恒磁场N极和稳恒磁场S极,所述稳恒磁场N极和稳恒磁场S极相对放置,所述铸型位于所述稳恒磁场N极和稳恒磁场S极中间。
进一步的,所述稳恒磁场磁极上安装有电阻应变片。
本发明在铸型周围设置稳恒磁场磁极,能够对铸型中流动的金属或合金液体施加过冷措施,实现铸型中液体的深过冷和高充型能力;在稳恒磁场磁极上安装电阻应变片,可通过测得磁极受力进而得出磁场强度值。
进一步的,所述铸型周围安装有可以活动组合式的加热元件。
优选地,所述加热元件为电阻丝。
进一步的,所述铸型承载转盘下端中心处安装有定位轴,所述定位轴不与炉外相通,只用于限定铸型承载盘的旋转中心,这对于炉内真空质量非常重要。
进一步的,所述铸型承载转盘在炉外以手动或电动方式慢速转动,所述铸型承载转盘由直径不小于25毫米不大于65毫米的慢速旋转轴输入,所述铸型承载转盘由棘轮带动旋转,铸型承载转盘的转速因此可由此棘轮累积加速旋转。
进一步的,所述铸型承载转盘下部设有铸型承载转盘承重轮,所述铸型承载转盘承重轮外围是齿环,所述齿环与棘轮相配合。
一种静磁致深过冷高充型能力细晶铸造炉的使用方法,主要包括以下步骤:
步骤1、将铸型埋砂造型在一个砂箱内,其上放置耐火材料分流器,然后将此砂箱吊装、推入加热炉内加热到1000到1200℃,保温3到5个小时;
步骤2、打开炉门,将步骤1加热完成之后的砂箱拉出加热炉,用叉车将砂箱安放于该细晶铸造炉的铸型承载转盘上,并将固定插销插入定位销孔;
步骤3、打开炉盖,将熔化坩埚倾斜45度角;将熔铸用的母合金沿着坩埚口推入坩埚,同时将按母合金重量的0.01%±0.005%的脱氧碳配入坩埚;然后将坩埚复位;同时将炉门内侧的铸型保温电阻丝插合;
步骤4、检查红外测温和电偶测温反应是否正常,检查窥视孔可否正常使用,检查各真空密封面是否洁净;然后,关闭炉盖和炉门;
步骤5、开启冷却水系统,内冷却水压力不小于每平方厘米1.5公斤,温度不高于35℃,各个部位无明显滴漏;
步骤6、开启真空系统,顺序为:机械泵、罗兹泵、扩散泵,依次按各自的真空门槛值到达后打开;同时开启铸型保温电阻丝加热电源;并且用手动转轮,将铸型承载转盘每5到10分钟旋转半周;
步骤7、当炉内真空度达到5~3Pa以下时,开启熔化坩埚熔化电源,待到母合金全部熔化之后,倾斜坩埚,用钢水烙烫坩埚嘴,至真空度可达3Pa以下,然后,提高功率,升温到合金熔点以上200℃~300℃,维持5到10分钟,停电降温,开启远红外和热电偶同时测温,当热电偶测得凝固温度时,读出远红外数值;然后,再度开启熔化坩埚熔化电源,待到母合金液体升温到合金熔点以上200℃±50℃时,开启坩埚直流稳恒磁场电源,然后关闭交流熔化电源,此时液体温度开始下降,此时每隔5到10分钟,开启熔化坩埚熔化电源功率的50%维持10秒钟;待到温度降至熔点以上50℃时,关闭铸型保温电阻丝加热电源,开启铸型周围的直流稳恒磁场电源,停止使用电偶测温,单独使用远红外测温,当液体温度降至远红外读数值之后,再继续降温10℃到20℃,开启熔化坩埚熔化电源功率的30%,倾转坩埚将钢液浇注入铸型;
如需施加铸型离心力,可在以上的倾转坩埚浇注之前,使用手轮或炉外电机带动炉内棘轮以带动铸型承载转盘转动至转速累积达到1转/1秒钟时,倾转坩埚将钢液浇注入铸型,5秒钟后停止铸型周围的直流稳恒磁场电源;并且停止铸型承载转盘的转动输入;
步骤8、浇注完成后,关闭坩埚电源,依次关停各真空泵,顺序为:扩散泵、罗兹泵、机械泵;然后,各机构复位;待到炉内热工作部位温度降至150℃以下,关停冷却水;打开炉盖、炉门取出铸型;
步骤9、如果是连续开炉工作,即可在步骤8中的各机构复位之后,打开炉盖、炉门更换铸型和母合金,其步骤重新从步骤1开始。
本发明有益效果如下:
(1)本发明铸造炉抑制凝固结晶的方法独立于熔炼,从而造成了液相在持续降温的过程中,固相析出受到抑制,从而引起过冷;
(2)本发明通过在熔化坩埚和铸型都施加了直流电流产生的稳恒磁场,有效实现了在铸型中的深过冷和高充型能力;
(3)本发明增设了可由炉外慢速传动传输进入炉内的可以累积转速的铸型离心转盘,本炉为炉内棘轮带动铸型离心转盘累积转速,并且该转盘由承重轮承重,由定位轴定位,功能各自独立;尤其是定位轴槽孔不与炉外相通,因此无论转速多快也不会对真空系统产生影响。
附图说明
图1-1为金属液体中没有固体析出时磁力线分布形态图;
图1-2为金属液体中磁力线在固-液界面发生弯曲时磁力线分布形态图;
图2为本发明静磁致深过冷高充型能力细晶铸造炉核心部位构造示意图;
图3为本发明静磁致深过冷高充型能力细晶铸造炉所制备的铸件结构示意图;
图4为本发明静磁致深过冷高充型能力细晶铸造炉铸造充型能力及各部位的晶粒组织示意图;
图5为普通铸造炉铸造的铸件的晶粒组织示意图;
图6为本发明静磁致深过冷高充型能力细晶铸造炉铸造的铸件的晶粒组织示意图。
图中,1-熔化坩埚,2-铸型,3-稳恒磁场磁极N极或S极,4-稳恒磁场磁极S极或N极,5-铸型承载转盘,6-铸型承载转盘承重轮,7-棘轮,8-铸型承载转盘旋转中心定位轴。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理。
本申请一种静磁致深过冷高充型能力细晶铸造炉及使用方法原理有二:
原理之一是:在有磁场存在的金属液体中,如果有金属固体析出,则具有有序原子点阵结构的金属固体远比完全无序的金属液体的铁磁性要高,从而固相中磁通量会增加,或者说磁力线的密度增加。这样,就会出现磁力线由液相进入固相时,磁力线密度将增加。使磁力线在固-液界面发生弯曲,而相互靠近之后才能进入固体,见图1中的磁力线分布形态。当液体中没有固体析出时磁力线是均匀平行的,如图1-1,而当液体中有固体析出时,磁力线在固-液界面发生弯曲,而相互靠近之后,才能进入固体,如图1-2,然而,磁力线发生弯曲相互靠近,必须提供额外的能量,根据量子力学原理,此时在金属液体中,若要有固体核心生出,此现象的热力学驱动力必须跨越这个能量壁垒,从而造成了液相在持续降温的过程中,固相析出受到抑制,从而引起过冷。
原理之二是:本专利不仅在熔化坩埚,而且在铸型也都施加了直流电流产生的稳恒磁场。因此设备的构造上有两个改变,其一是:原来坩埚只有一个交变电流感应圈,而现在坩埚又增加了两个直流电流感应圈,等于坩埚是多重感应圈,交变电流感应圈用于钢液的熔化和控温,直流电流感应圈用于产生金属液体过冷的磁场。其二是:增加了对在铸造型腔中流动的金属或合金液体的过冷措施的设备构造。该构造产生过冷的原理是:采用直流电使在铸造型腔中流动的金属或合金液处于静磁场即稳恒磁场中,如图2的N极和S极之间,该液体作为导电体在该稳恒磁场中垂直于磁力线的方向上流动必然切割磁力线产生感生电流,而钢液也有电阻,这就使电流和钢液切割磁力线不同步,从而因带有电流的流动导体又必然受到洛仑兹力(H.A.Lorentz force)而使钢液流动受到阻力。但是因为钢液电阻很小,所以这个不同步会是很小,因此阻力也会很小。实验证明200安培的直流电所产生的稳恒磁场对1公斤以上的铁镍基金属液体流动的阻力已经小到常规手段无法察觉。因此,可以忽略不计。这样,采用对浇注液体施加人为介入因素,抑制降温液体中析出固体使其流动性降低,保持浇注液体在熔点以下即过冷状态下完成充满铸型后再整体同时结晶的原理,该液体就会产生过冷。因此也就实现了在铸造型腔中的深过冷和高充型能力。
一种静磁致深过冷高充型能力细晶铸造炉的构造如图2所示,主要包括铸型承载转盘5、铸型2、棘轮7、铸型承载转盘旋转中心定位轴8、铸型承载转盘承重轮6、加热元件、稳恒磁场磁极、熔化坩埚1,熔化坩埚1位于铸型2的上方,铸型2安装与铸型承载转盘5的上方,在铸型承载转盘5下设有铸型承载转盘承重轮6和棘轮7,棘轮7用于带动铸型承载转盘5的转动,在铸型2的周围设有加热元件和稳恒磁场磁极,铸型承载转盘5下端中心部位设有铸型承载转盘旋转中心定位轴8,用于限定铸型承载转盘5的旋转中心。
其中,熔化坩埚1是具备稳恒磁场或称静磁场和交变磁场同时和单独施加能力的坩埚,用于盛放并熔化母合金,熔化坩埚1上施加有交变磁场及交变感应圈,同时,在熔化坩埚1上也施加有单独的稳恒磁场,也称为静磁场,即一个以上的感应线圈,静磁场感应线圈可以同时具有电阻式加热功能,而同类炉子只有交变感应圈;本发明中熔化坩埚1具有远红外和热电偶同时测温的构造,而同类炉子有的也有这两种测温手段,但是不能同时测温;
铸型2周围设有施加稳恒磁场或称静磁场的磁极,同类炉子没有,最为接近的,也是在铸型周围设有施加脉冲磁场的绕组;同时,本发明铸造炉在铸型2周围所设的施加稳恒磁场或称静磁场的磁极上安装有电阻应变片,可随时测出N—S极之间的吸引力F,因此可以随时通过F=BIL的电磁场公式计算出B—磁场强度的数值,本炉B=1~2T(T-特斯拉);
同时,在铸型2周围设有可以活动组合式的加热元件,本炉为电阻丝,而且可达1200℃以上,同类炉子有的有加热元件,但是,是固定式的,临时外加的,达不到1200℃,而且也不属于设备自身;
铸型承载转盘5可以在炉外以手动或电动两种方式慢速转动,随时停顿,用以均温和调整浇注位置,实现同炉多工位浇注,同类炉子有的有高速旋转的铸型承载转盘,但那是用于离心铸造的;因离心必须高速旋转的动力设备是非常庞大的,只能置于真空炉壳之外,其高速旋转轴由炉外通入炉内,高速旋转轴对真空密封的损坏从理论上说是不可避免的,这在国内已有多例失败的先例;铸型承载转盘5转动传输由直径不小于25毫米不大于65毫米的慢速旋转轴输入;其转速最大不超过1转/2秒钟,这低于目前已有的真空设备转动密封的能力,其实这就是现有真空设备转动手柄的速度,因此该旋转对真空密封的损坏是可以忽略不计的;铸型承载转盘5的转动由慢速旋转的棘轮7带动,因此铸型承载转盘5的转速可以累积,当累积至1转/1秒钟时,这对直径300毫米以上的铸件也具有离心铸造功能;该炉的铸型承载转盘5可以慢速转动是该炉的主要常用功能,目的是使铸型2周围的加热元件对铸型2的加热得以均匀,因为由图2可以看出,有磁极的两侧是没有电阻丝的;铸型承载转盘5采用铸型承载转盘旋转中心定位轴8限定旋转中心,此轴不承重,插入炉底定位槽孔,此槽孔为盲孔,与真空炉外不连通;铸型承载转盘5的下部设有多个承重轮,即铸型承载转盘承重轮6,铸型承载转盘5的外围是转动传递的齿环,与由炉外输入旋转的棘轮7相配合,棘轮轴通往炉外,即向铸型承载转轴传输动力的慢速旋转轴;在铸型承载转盘5的承载面上还设有铸型限位销孔,铸型2通过固定插销插入铸型限位销孔;
铸型2由叉车从炉门外水平放置于炉内铸型承载转盘5上,然后关闭炉门,打开炉顶炉盖,将炉门内侧的加热元件电阻丝插接电源,母合金也是由炉顶打开炉盖放入坩埚,更换新坩埚也是由此。
一种静磁致深过冷高充型能力细晶铸造炉的使用方法,包括以下实施例:
实施例1:
步骤1.将6个铸型埋砂造型在一个砂箱内,其上放置耐火材料分流器,然后将此砂箱吊装、推入加热炉内加热到1100℃保温4小时;
步骤2.打开炉门,将步骤1加热完成之后的砂箱拉出加热炉,用叉车将砂箱安放于本发明细晶铸造炉的铸型承载转盘上,并将固定插销插入定位销孔;
步骤3.打开炉盖,将熔化坩埚倾斜45度角;将熔铸用的母合金55公斤沿着坩埚口推入坩埚,同时将按母合金重量的0.015%的脱氧碳配入坩埚;然后将坩埚复位,同时将炉门内侧的铸型保温电阻丝插入电源插口;
步骤4.红外测温和电偶测温反应正常,更换窥视孔已经熏黑的镜片,擦拭各真空密封面;然后,关闭炉盖和炉门;
步骤5.开启冷却水系统,内冷却水压力为每平方厘米1.8公斤,温度为25℃,各个部位查无明显滴漏;
步骤6.开启真空系统,顺序为:机械泵、罗兹泵、扩散泵,依次按各自的真空门槛值到达后打开;同时开启铸型保温电阻丝加热电源;并且用手动转轮,将铸型承载转盘每隔10分钟旋转半周;
步骤7.当炉内真空度达到3Pa时,开启熔化坩埚熔化电源,半功率15分钟之后,给满功率,待到母合金全部熔化之后,倾斜坩埚,用钢水烙烫坩埚嘴,至真空度达到2Pa,然后,提高功率,升温到1600℃,维持5分钟,停电降温,开启远红外和热电偶同时测温,当热电偶测得凝固温度值—1380,读出远红外数值—1330℃;然后,再度开启熔化坩埚熔化电源,待到母合金液体升温到1580℃时,开启坩埚直流稳恒磁场电源,然后关闭交流熔化电源,此时液体温度开始下降,此时每隔8分钟,开启熔化坩埚熔化电源满功率的50%维持10秒钟;待到温度降至1430℃时,关闭铸型保温电阻丝加热电源,开启铸型周围的直流稳恒磁场电源,停止使用电偶测温,单独使用远红外测温,当液体温度降至远红外读数值—1330℃之后,再继续降温到1315℃,开启熔化坩埚熔化电源功率的30%,倾转坩埚将钢液浇注入铸型,5秒钟后停止铸型周围的直流稳恒磁场电源;
步骤8.浇注完成后,关闭坩埚电源,依次关停各真空泵,顺序为:扩散泵、罗兹泵、机械泵;然后,各机构复位;待到炉内热工作部位温度降至150℃以下,可以关停冷却水;打开炉盖、炉门取出铸型。
实施例2:
步骤1.将1个铸型埋砂造型在一个砂箱内,然后将此砂箱吊装、推入加热炉内加热到1200℃保温4小时;
步骤2.打开炉门,将步骤1加热完成之后的砂箱拉出加热炉,用叉车将砂箱安放于该细晶铸造炉的铸型承载转盘上,并将固定插销插入定位销孔;
步骤3.打开炉盖,将熔化坩埚倾斜45度角;将熔铸用的母合金50公斤沿着坩埚口推入坩埚,同时将按母合金重量的0.010%的脱氧碳配入坩埚;然后将坩埚复位;同时将炉门内侧的铸型保温电阻丝插入电源插口;
步骤4.红外测温和电偶测温反应正常,更换窥视孔已经熏黑的镜片,擦拭各真空密封面;然后,关闭炉盖和炉门;
步骤5.开启冷却水系统,内冷却水压力为每平方厘米1.6公斤,温度为28℃,各个部位查无明显滴漏;
步骤6.开启真空系统,顺序为:机械泵、罗兹泵、扩散泵,依次按各自的真空门槛值到达后打开;同时开启铸型保温电阻丝加热电源;并且用手动转轮,将铸型承载转盘每隔10分钟旋转半周。
步骤7.当炉内真空度达到3Pa时,开启熔化坩埚熔化电源,半功率15分钟之后,给满功率,待到母合金全部熔化之后,倾斜坩埚,用钢水烙烫坩埚嘴,至真空度达到2Pa,然后,提高功率,升温到1580℃,维持5分钟,停电降温,开启远红外和热电偶同时测温,当热电偶测得凝固温度值—1380,读出远红外数值—1330℃;然后,再度开启熔化坩埚熔化电源,待到母合金液体升温到1560℃时,开启坩埚直流稳恒磁场电源,然后关闭交流熔化电源,此时液体温度开始下降,此时每隔8分钟,开启熔化坩埚熔化电源满功率的50%维持10秒钟;待到温度降至1420℃时,关闭铸型保温电阻丝加热电源,开启铸型周围的直流稳恒磁场电源;转动炉外离心旋转手轮带动炉内棘轮进而带动炉内铸型承载转盘转动,至转速累积达到1转/1秒钟时,停止使用电偶测温,单独使用远红外测温,当液体温度降至远红外读数值—1330℃之后,再继续降温到1316℃,开启熔化坩埚熔化电源满功率的30%,倾转坩埚将钢液浇注入铸型,5秒钟后停止铸型周围的直流稳恒磁场电源,以及铸型承载转盘的转动。
步骤8.浇注完成后,关闭坩埚电源,依次关停各真空泵,顺序为:扩散泵、罗兹泵、机械泵;然后,各机构复位;待到炉内热工作部位温度降至150℃以下,可以关停冷却水;打开炉盖、炉门取出铸型。
其结果是:铸造型腔内所有棱角以及细微部位都全部充满,如图3所示,铸件各部位的晶粒组织都极其细小和均匀,晶粒最细尺寸已达0.03毫米以下,并且在此情况下仍能充满1.5毫米的薄片,如图4所示;图5和图6是现有相应的普通铸造炉的铸件的晶粒组织照片与本发明的新型铸造炉的铸件的晶粒组织的对比,由图中能够明显看出本发明新型铸造炉的铸件的晶粒组织细小且均匀。
综上所述,本发明提供了一种静磁致深过冷高充型能力细晶铸造炉及使用方法,通过在铸造炉增设了对熔化坩埚施加直流电稳恒磁场的措施;并且还增设了对铸造型腔中流动的金属或合金液体施加过冷措施的设备构造,此构造为直流静电磁极,以及可由炉外慢速带动炉内的可累积转速的铸型离心转盘;研制出新型细晶铸造炉能够在金属或合金液体在坩埚内降温浇注时,对其施加直流电稳恒磁场抑制其凝固生核,同时还能够在金属或合金液体在铸型内降温凝固时,对其施加直流电稳恒磁场抑制其凝固生核,导致其产生深程度的过冷(工业条件下,已达10℃以上,结晶组织已明显异于常规铸造),进而得到过冷纯液体浇注充型效果和铸造组织晶粒尺寸极其细小和均匀的效果。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
Claims (10)
1.一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,主要包括:熔化坩埚、铸型、稳恒磁场磁极、铸型承载转盘,所述熔化坩埚位于所述铸型的上方,所述稳恒磁场磁极位于所述铸型的周围,所述铸型承载转盘位于所述铸型的下端,并与所述铸型固定连接;所述熔化坩埚上设有交变电流感应圈和直流电稳恒磁场;所述熔化坩埚、稳恒磁场磁极、铸型承载转盘位于铸造炉内,所述铸型通过设备从炉门外放入所述铸型承载转盘上。
2.根据权利要求1所述的一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,所述熔化坩埚施加直流电稳恒磁场的感应线圈同时具有电阻式加热功能;所述熔化坩埚上安装有远红外和热电偶同时测温装置。
3.根据权利要求1或2所述的一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,所述稳恒磁场磁极分为稳恒磁场N极和稳恒磁场S极,所述稳恒磁场N极和稳恒磁场S极相对放置,所述铸型位于所述稳恒磁场N极和稳恒磁场S极中间。
4.根据权利要求3所述的一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,所述稳恒磁场磁极上安装有电阻应变片,可通过测得磁极受力进而得出磁场强度值。
5.根据权利要求4所述的一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,所述铸型周围安装有可以活动组合式的加热元件。
6.根据权利要求5所述的一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,所述铸型承载转盘下端中心处安装有定位轴,所述定位轴不与炉外相通,只用于限定铸型承载盘的旋转中心,这对于炉内真空质量非常重要。
7.根据权利要求6所述的一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,所述铸型承载转盘在炉外以手动或电动方式慢速转动,所述铸型承载转盘由直径不小于25毫米不大于65毫米的慢速旋转轴输入,所述铸型承载转盘由棘轮带动旋转,铸型承载转盘的转速因此可由此棘轮累积加速旋转。
8.根据权利要求7所述的一种静磁致深过冷高充型能力细晶铸造炉,其特征在于,所述铸型承载转盘下部设有铸型承载转盘承重轮,所述铸型承载转盘承重轮外围是齿环,所述齿环与棘轮相配合。
9.根据权利要求1-8所述的一种静磁致深过冷高充型能力细晶铸造炉的使用方法,其特征在于,主要包括以下步骤:
步骤1、将铸型埋砂造型在一个砂箱内,其上放置耐火材料分流器,然后将此砂箱吊装、推入加热炉内加热到1000到1200℃,保温3到5个小时;
步骤2、打开炉门,将步骤1加热完成之后的砂箱拉出加热炉,用叉车将砂箱安放于该细晶铸造炉的铸型承载转盘上;
步骤3、打开炉盖,将熔化坩埚倾斜45度角;将熔铸用的母合金沿着坩埚口推入坩埚,同时将按母合金重量的0.01%±0.005%的脱氧碳配入坩埚;将坩埚复位;同时将炉门内侧的铸型保温电阻丝插合;
步骤4、检查红外测温和电偶测温反应是否正常,检查窥视孔可否正常使用,检查各真空密封面是否洁净;关闭炉盖和炉门;
步骤5、开启冷却水系统,内冷却水压力不小于每平方厘米1.5公斤,温度不高于35℃,各个部位无明显滴漏;
步骤6、开启真空系统,同时开启铸型保温电阻丝加热电源;并且用手动转轮,将铸型承载转盘每5到10分钟旋转半周;
步骤7、当炉内真空度达到5~3Pa以下时,开启熔化坩埚熔化电源,待到母合金全部熔化之后,倾斜坩埚,用钢水烙烫坩埚嘴,至真空度可达3Pa以下,提高功率,升温到合金熔点以上200℃~300℃,维持5到10分钟,停电降温,开启远红外和热电偶同时测温,当热电偶测得凝固温度时,读出远红外数值;然后,再度开启熔化坩埚熔化电源,待到母合金液体升温到合金熔点以上200℃±50℃时,开启坩埚直流稳恒磁场电源,然后关闭交流熔化电源,此时液体温度开始下降,此时每隔5到10分钟,开启熔化坩埚熔化电源功率的50%维持10秒钟;待到温度降至熔点以上50℃时,关闭铸型保温电阻丝加热电源,开启铸型周围的直流稳恒磁场电源,停止使用电偶测温,单独使用远红外测温,当液体温度降至远红外读数值之后,再继续降温10℃到20℃,开启熔化坩埚熔化电源功率的30%,倾转坩埚将钢液浇注入铸型;
步骤8、浇注完成后,关闭电源;
步骤9、如果是连续开炉工作,即可在步骤8中的各机构复位之后,打开炉盖、炉门更换铸型和母合金,其步骤重新从步骤1开始。
10.根据权利要求9所述的一种静磁致深过冷高充型能力细晶铸造炉的使用方法,其特征在于,如需施加铸型离心力,在所述步骤7的倾转坩埚浇注之前,使用手轮或炉外电机带动炉内棘轮以带动铸型承载转盘转动至转速累积达到1转/1秒钟时,倾转坩埚将钢液浇注入铸型,5秒钟后停止铸型周围的直流稳恒磁场电源;并且停止铸型承载转盘的转动输入。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710250064.0A CN107042298B (zh) | 2017-04-17 | 2017-04-17 | 静磁致深过冷高充型能力细晶铸造炉及使用方法 |
PCT/CN2017/103634 WO2018192181A1 (zh) | 2017-04-17 | 2017-09-27 | 静磁致深过冷高充型能力细晶铸造炉及使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710250064.0A CN107042298B (zh) | 2017-04-17 | 2017-04-17 | 静磁致深过冷高充型能力细晶铸造炉及使用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107042298A true CN107042298A (zh) | 2017-08-15 |
CN107042298B CN107042298B (zh) | 2019-03-29 |
Family
ID=59544536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710250064.0A Active CN107042298B (zh) | 2017-04-17 | 2017-04-17 | 静磁致深过冷高充型能力细晶铸造炉及使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107042298B (zh) |
WO (1) | WO2018192181A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108031821A (zh) * | 2017-11-10 | 2018-05-15 | 涿州新卓立航空精密科技有限公司 | 利用不同步弯曲获得液体深过冷的铸造炉及使用方法 |
WO2018192181A1 (zh) * | 2017-04-17 | 2018-10-25 | 涿州新卓立航空精密科技有限公司 | 静磁致深过冷高充型能力细晶铸造炉及使用方法 |
CN108817357A (zh) * | 2018-05-25 | 2018-11-16 | 涿州新卓立航空精密科技有限公司 | 细晶、单晶双功能铸造炉及单晶铸造方法和细晶铸造方法 |
CN109280961A (zh) * | 2018-10-12 | 2019-01-29 | 宁国市华成金研科技有限公司 | 一种采用不同步弯曲技术的定向炉及单晶铸造方法 |
CN109780862A (zh) * | 2019-01-22 | 2019-05-21 | 宁国市华成金研科技有限公司 | 一种熔炼炉及冶炼方法 |
CN112146730A (zh) * | 2019-06-28 | 2020-12-29 | 北京铂阳顶荣光伏科技有限公司 | 一种坩埚内材料质量的在线测量装置和方法 |
CN113607593A (zh) * | 2021-07-30 | 2021-11-05 | 成都东骏激光股份有限公司 | 高温材料制备过程中温场核心区域的测温方法 |
CN114769523A (zh) * | 2022-03-24 | 2022-07-22 | 中国科学院电工研究所 | 一种中间包超导感应加热装置 |
CN115418588A (zh) * | 2022-09-15 | 2022-12-02 | 西北工业大学 | 一种提高钴基高温合金强韧性的磁场深过冷处理方法 |
CN117900435A (zh) * | 2024-01-30 | 2024-04-19 | 中国机械总院集团沈阳铸造研究所有限公司 | 铸造钛及钛合金细晶装置和方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110146566A1 (en) * | 2005-08-25 | 2011-06-23 | Gt Crystal Systems, Llc | System and method for crystal growing |
CN102528002A (zh) * | 2011-12-30 | 2012-07-04 | 洛阳理工学院 | 一种施加复合电磁场的高温合金细晶铸造工艺方法和装置 |
CN202398800U (zh) * | 2011-12-30 | 2012-08-29 | 洛阳理工学院 | 施加复合电磁场改善高温合金母合金锭质量的装置 |
CN103008623A (zh) * | 2012-12-25 | 2013-04-03 | 上海大学 | 利用强磁场细化晶粒的方法及其专用金属凝固铸造装置 |
CN205183744U (zh) * | 2015-11-25 | 2016-04-27 | 上海大学 | 稳恒磁场下铝合金低压铸造装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5142572B2 (zh) * | 1971-10-12 | 1976-11-16 | ||
JPS55149754A (en) * | 1979-05-09 | 1980-11-21 | Sumitomo Metal Ind Ltd | Electromagnetic agitation method of molten metal |
FR2628994B1 (fr) * | 1988-03-28 | 1992-04-03 | Vives Charles | Procede de production de gelees metalliques thixotropes par rotation d'un systeme d'aimants permanents dispose a l'exterieur de la lingotiere |
CN2407859Y (zh) * | 2000-02-25 | 2000-11-29 | 中国科学院金属研究所 | 一种真空行波电磁细化高温合金精密铸造装置 |
CN100516918C (zh) * | 2007-02-12 | 2009-07-22 | 西安交通大学 | 一种测量三维动态磁场的装置及方法 |
CN102581245B (zh) * | 2011-01-11 | 2014-05-14 | 中国科学院金属研究所 | 多功能真空离心振荡细晶熔铸炉 |
CN202270955U (zh) * | 2011-09-06 | 2012-06-13 | 河南万基铝业股份有限公司 | 一种大扁锭铸造机用调心支撑轮 |
CN102513523B (zh) * | 2011-12-20 | 2013-11-27 | 钢铁研究总院 | 一种熔点以下完全充型铸造方法 |
CN103170587B (zh) * | 2011-12-21 | 2015-04-08 | 中铝国际技术发展有限公司 | 铝锭铸造机的旋转盘装置 |
CN202989351U (zh) * | 2012-09-19 | 2013-06-12 | 杭州慧翔电液技术开发有限公司 | 基于多加热器的铸锭炉热场结构 |
CN107030234B (zh) * | 2017-04-17 | 2018-10-19 | 涿州新卓立航空精密科技有限公司 | 锻造型人工关节及金属制品的生产工艺及用途 |
CN107042298B (zh) * | 2017-04-17 | 2019-03-29 | 涿州新卓立航空精密科技有限公司 | 静磁致深过冷高充型能力细晶铸造炉及使用方法 |
-
2017
- 2017-04-17 CN CN201710250064.0A patent/CN107042298B/zh active Active
- 2017-09-27 WO PCT/CN2017/103634 patent/WO2018192181A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110146566A1 (en) * | 2005-08-25 | 2011-06-23 | Gt Crystal Systems, Llc | System and method for crystal growing |
CN102528002A (zh) * | 2011-12-30 | 2012-07-04 | 洛阳理工学院 | 一种施加复合电磁场的高温合金细晶铸造工艺方法和装置 |
CN202398800U (zh) * | 2011-12-30 | 2012-08-29 | 洛阳理工学院 | 施加复合电磁场改善高温合金母合金锭质量的装置 |
CN103008623A (zh) * | 2012-12-25 | 2013-04-03 | 上海大学 | 利用强磁场细化晶粒的方法及其专用金属凝固铸造装置 |
CN205183744U (zh) * | 2015-11-25 | 2016-04-27 | 上海大学 | 稳恒磁场下铝合金低压铸造装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018192181A1 (zh) * | 2017-04-17 | 2018-10-25 | 涿州新卓立航空精密科技有限公司 | 静磁致深过冷高充型能力细晶铸造炉及使用方法 |
CN108031821A (zh) * | 2017-11-10 | 2018-05-15 | 涿州新卓立航空精密科技有限公司 | 利用不同步弯曲获得液体深过冷的铸造炉及使用方法 |
CN108817357A (zh) * | 2018-05-25 | 2018-11-16 | 涿州新卓立航空精密科技有限公司 | 细晶、单晶双功能铸造炉及单晶铸造方法和细晶铸造方法 |
CN108817357B (zh) * | 2018-05-25 | 2021-05-25 | 赵京晨 | 一种细晶、单晶双功能铸造炉 |
CN109280961A (zh) * | 2018-10-12 | 2019-01-29 | 宁国市华成金研科技有限公司 | 一种采用不同步弯曲技术的定向炉及单晶铸造方法 |
CN109780862A (zh) * | 2019-01-22 | 2019-05-21 | 宁国市华成金研科技有限公司 | 一种熔炼炉及冶炼方法 |
CN112146730A (zh) * | 2019-06-28 | 2020-12-29 | 北京铂阳顶荣光伏科技有限公司 | 一种坩埚内材料质量的在线测量装置和方法 |
CN113607593A (zh) * | 2021-07-30 | 2021-11-05 | 成都东骏激光股份有限公司 | 高温材料制备过程中温场核心区域的测温方法 |
CN114769523A (zh) * | 2022-03-24 | 2022-07-22 | 中国科学院电工研究所 | 一种中间包超导感应加热装置 |
CN115418588A (zh) * | 2022-09-15 | 2022-12-02 | 西北工业大学 | 一种提高钴基高温合金强韧性的磁场深过冷处理方法 |
CN117900435A (zh) * | 2024-01-30 | 2024-04-19 | 中国机械总院集团沈阳铸造研究所有限公司 | 铸造钛及钛合金细晶装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107042298B (zh) | 2019-03-29 |
WO2018192181A1 (zh) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107042298B (zh) | 静磁致深过冷高充型能力细晶铸造炉及使用方法 | |
JP4712920B2 (ja) | 高度の減圧状態のダイカスト鋳造装置及び鋳造方法 | |
ES2827073T3 (es) | Procedimiento de fundido | |
CN204867366U (zh) | 一种多功能高梯度真空感应定向凝固单晶铸造炉 | |
CN108031821A (zh) | 利用不同步弯曲获得液体深过冷的铸造炉及使用方法 | |
CN105772661B (zh) | 合金快速凝固设备及利用该设备进行合金快速凝固的方法 | |
JPH11114664A (ja) | 鋳型加熱真空鋳造炉システムと鋳物の製造法 | |
CN103131980B (zh) | 一种通过控制球晶稳定化实现细晶凝固方法 | |
CN102528002A (zh) | 一种施加复合电磁场的高温合金细晶铸造工艺方法和装置 | |
CN110102220A (zh) | 适用于熔体制备的永磁体搅拌设备及熔体制备方法 | |
CN110421144A (zh) | 一种外加电磁场作用的高温合金浮动壁瓦片调压精铸方法 | |
CN206444547U (zh) | 一种用于金属半固态制浆的永磁搅拌装置 | |
CN108067148A (zh) | 一种用于金属半固态制浆的永磁搅拌装置 | |
CN103008623A (zh) | 利用强磁场细化晶粒的方法及其专用金属凝固铸造装置 | |
JP2004244236A (ja) | リチャージ装置、インゴット引上げ装置、及びインゴット製造方法 | |
CN108480580A (zh) | 一种感应线圈与永磁搅拌协同dc制备铝合金铸锭的装置 | |
CN104416162A (zh) | 一种合金快速凝固设备及其自动控制方法 | |
CN85202699U (zh) | 非晶薄带连续制取装置 | |
CN207214806U (zh) | 真空感应浇铸炉 | |
CN202398799U (zh) | 一种施加复合电磁场的高温合金细晶的铸造装置 | |
CN112974740B (zh) | 一种gh4151合金的真空感应熔炼浇铸工艺和锭模装置 | |
CN214442909U (zh) | 一种特殊钢凝固组织模拟装置 | |
GB1216776A (en) | Metal casting and solidification | |
CN107746980A (zh) | 一种铀金属的液固扩散实验装置及方法 | |
CN209754000U (zh) | 一种半圆类铸件铸造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Static magnetic induced deep undercooling and high filling capacity fine-grained casting furnace and its usage method Effective date of registration: 20230625 Granted publication date: 20190329 Pledgee: Bank of China Limited Baoding Branch Pledgor: ZHUOZHOU ZHUOLI AVIATION PRECISION TECHNOLOGY Co.,Ltd. Registration number: Y2023980045571 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |