CN107029777B - 复合可见光催化剂及其制备方法和应用 - Google Patents

复合可见光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN107029777B
CN107029777B CN201710386458.9A CN201710386458A CN107029777B CN 107029777 B CN107029777 B CN 107029777B CN 201710386458 A CN201710386458 A CN 201710386458A CN 107029777 B CN107029777 B CN 107029777B
Authority
CN
China
Prior art keywords
visible light
light catalyst
composite visible
cnt
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710386458.9A
Other languages
English (en)
Other versions
CN107029777A (zh
Inventor
罗琨
张建社
庞娅
李雪
廖兴盛
裴习君
刘运红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University
Original Assignee
Changsha University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University filed Critical Changsha University
Priority to CN201710386458.9A priority Critical patent/CN107029777B/zh
Publication of CN107029777A publication Critical patent/CN107029777A/zh
Application granted granted Critical
Publication of CN107029777B publication Critical patent/CN107029777B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种复合可见光催化剂及其制备方法和应用,该复合可见光催化剂由CNT‑柠檬酸银和g‑C3N4‑PO4 3‑通过沉淀法得到,CNT‑柠檬酸银是CNT、柠檬酸钠和AgNO3通过表面络合作用得到,g‑C3N4‑PO4 3‑是g‑C3N4和NaH2PO4通过表面磷酸化得到。制备方法包括:制备CNT‑柠檬酸银、制备g‑C3N4‑PO4 3‑和制备CNT/Ag3PO4/g‑C3N4。本发明的复合可见光催化剂可应用于处理抗生素废水,具有可见光利用率高,在水中稳定存在,且光催化性能稳定的优点。

Description

复合可见光催化剂及其制备方法和应用
技术领域
本发明属于抗生素废水处理领域,具体涉及一种复合可见光催化剂及其制备方法和应用。
背景技术
近年来,由于抗生素的广泛使用,抗生素废水已成为一类主要的工业污染源。由于抗生素废水的成分复杂,难以生物降解,且具有生物积累性,从而导致传统的水处理工艺对其处理效果并不理想。近年来,光催化技术受到越来越广泛的关注,光催化技术是一种绿色环保治理技术,广泛应用于降解水中难降解的有机污染物。与传统的生物法或物理-化学方法相比,光催化技术的巨大优势表现在其能够将污染物彻底地降解成CO2、H2O和其他小分子无机化合物,且无其他废物残留。
大部分传统的光催化剂只能吸收紫外线,但是紫外线仅占太阳辐射总量的4%。虽然Ag3PO4可以吸收波长小于520nm的太阳光,且在可见光下的量子产率高达90%,在可见光催化方面具有巨大的潜力。但是,Ag3PO4在光催化过程中易光腐蚀,且其在水中会缓慢溶解,从而影响了其光催化活性及回收利用效果,限制了其在水处理中的实际应用。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种可见光利用率高、在水中能够稳定存在、且光催化性能稳定的复合可见光催化剂及其制备方法和应用。
为解决上述技术问题,本发明采用以下技术方案:
一种复合可见光催化剂,所述复合可见光催化剂由碳纳米管CNT-柠檬酸银和g-C3N4-PO4 3-通过离子交换沉淀法制得,所述CNT-柠檬酸银是由碳纳米管CNT、柠檬酸钠和AgNO3通过表面络合作用制得,所述g-C3N4-PO4 3-是由g-C3N4和NaH2PO4通过表面磷酸化制得。
作为一个总的发明构思,本发明还提供了一种复合可见光催化剂的制备方法,包括以下步骤:
(1)将碳纳米管粉末分散到柠檬酸钠的乙二醇溶液中,然后在所得混合液中加入AgNO3的乙二醇溶液,经反应后,得到富集Ag-C6H5O7络合物的CNT分散液,即CNT-柠檬酸银分散液;
(2)将g-C3N4分散到水中,然后在所得分散液中加入NaH2PO4溶液,经反应后,得到富集PO4 3-功能团的g-C3N4分散液,即g-C3N4-PO4 3-分散液;
(3)将步骤(2)得到的g-C3N4-PO4 3-分散液加入到步骤(1)得到的CNT-柠檬酸银分散液中,经反应后,得到CNT/Ag3PO4/g-C3N4催化剂,即复合可见光催化剂。
上述的复合可见光催化剂的制备方法中,优选的,所述步骤(1)中,所述碳纳米管粉末为多壁碳纳米管粉末,所述碳纳米管粉末与AgNO3的质量比为2.5%~5.0%∶1,所述柠檬酸钠与AgNO3的摩尔比为1∶3~4;
和/或,所述步骤(2)中,所述NaH2PO4溶液是通过NaH2PO4·2H2O加入水中制得,所述g-C3N4与NaH2PO4·2H2O的质量之比为5.0%~15.0%∶1。
上述的复合可见光催化剂的制备方法中,优选的,所述步骤(1)中,所述AgNO3的乙二醇溶液中AgNO3的浓度为0.03mol/L~0.045mol/L,所述柠檬酸钠的乙二醇溶液中柠檬酸钠的浓度为0.01mol/L~0.015mol/L;和/或,所述步骤(2)中,所述NaH2PO4溶液中NaH2PO4的浓度为0.01mol/L~0.015mol/L。
上述的复合可见光催化剂的制备方法中,优选的,所述步骤(1)中,碳纳米管粉末在超声条件下分散到柠檬酸钠的乙二醇溶液中,超声时间为40min~60min,所述AgNO3的乙二醇溶液的加入方式为低速搅拌混合液时进行添加,搅拌速度为100rpm~120rpm,加入AgNO3的乙二醇溶液后,在转速为800rpm~1000rpm条件下剧烈搅拌反应溶液,所述反应的时间为30min~40min,得到的CNT-柠檬酸银分散液在暗室中静置10h~12h;
和/或,所述步骤(2)中,所述g-C3N4在超声条件下分散到去离子水中,超声时间为40min~60min,所述NaH2PO4溶液的加入方式为低速搅拌分散液时进行添加,搅拌速度为100rpm~120rpm,所述反应的时间为2h~3h;
和/或,所述步骤(3)中,所述g-C3N4-PO4 3-分散液的加入方式为低速搅拌CNT-柠檬酸银分散液时进行滴加,所述滴加的速度为30滴/min~60滴/min,所述搅拌的速度为100rpm~120rpm,所述反应的时间为1h~2h。
上述的复合可见光催化剂的制备方法中,优选的,所述步骤(3)中,所述反应完成后,进行分离、清洗和干燥,得到复合可见光催化剂;所述分离为离心分离,所述清洗采用先水洗后无水乙醇清洗,水洗的次数为3次~5次,无水乙醇的清洗次数为3次~5次,所述干燥为真空干燥,真空干燥的温度为50℃~60℃,真空干燥的时间为12h~24h。
上述的复合可见光催化剂的制备方法中,优选的,所述g-C3N4主要通过高温煅烧方法制备得到:将三聚氰胺置于氧化铝坩埚内,升温至500℃~550℃下反应2h~4h,自然冷却到室温,收集产物,得到g-C3N4
上述的复合可见光催化剂的制备方法中,优选的,所述反应过程中氧化铝坩埚需用盖子盖上;所述升温过程为以5℃/min~10℃/min的升温速度直到500℃~550℃;所述产物需研磨成细粉后使用。
作为一个总的发明构思,本发明还提供了一种上述的复合可见光催化剂或上述的制备方法制得的复合可见光催化剂在处理抗生素废水中的应用。
上述的应用中,优选的,所述应用包括以下步骤:在可见光照射条件下,将所述复合可见光催化剂用于降解含盐酸环丙沙星的废水,氙灯为光源,光强控制在300W,所述盐酸环丙沙星在废水中的初始浓度为1mg/L~10mg/L,所述复合可见光催化剂在废水中的添加量为0.2g/L~1.0g/L,所述降解的时间为60min~120min。
上述的应用中,所述光照条件是以氙灯(带420nm滤光片)作为光源模拟太阳光。
与现有技术相比,本发明的优点在于:
1、本发明提供了一种复合可见光催化剂,g-C3N4具有强共价键,使g-C3N4具有高热稳定性和化学稳定性,包覆于Ag3PO4表面可提高Ag3PO4在水中的稳定性,但g-C3N4的量子效率低,产生的电子和空穴易复合;CNT具有非常好的导电性能,主要起电子转移通道和电子接收体,从而抑制电子和空穴复合的作用,CNT可以提高光催化剂的量子效率。Ag3PO4与g-C3N4、CNT的复合,提高了Ag3PO4在水中的稳定性,同时产生的电子快速被CNT转移,从而抑制光腐蚀过程,提高了Ag3PO4可见光催化性能。本发明的复合可见光催化剂的可见光利用率高、在水中稳定存在且光催化性能稳定,具有良好的应用前景。
2、本发明提供了一种复合可见光催化剂的制备方法,结合并协同Ag3PO4、g-C3N4和CNT各自的特点,先通过高温煅烧得到g-C3N4,然后在酸性条件下使g-C3N4表面富集PO4 3-功能团,再使带负电的CNT表面富集Ag-C6H5O7,最后通过离子交换沉淀得到CNT/Ag3PO4/g-C3N4,即为本发明的复合可见光催化剂。由于Ag3PO4沉淀速度较快,而本发明中Ag+是以Ag-C6H5O7络合物的形式存在,因此在反应过程中Ag+会缓慢释放出来,并与PO4 3-生成Ag3PO4,从而保证了Ag3PO4形成颗粒不会过大。
3、本发明的复合可见光催化剂可用于降解抗生素废水,能有效提高抗生素废水的降解效率。本发明解决了光催化剂在水中不稳定、可见光利用率低和光催化性能不稳定等关键性问题。
具体实施方式
以下结合具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
以下实施例中所采用的材料和仪器均为市售。
实施例1:
一种本发明的复合可见光催化剂,该复合可见光催化剂由CNT-柠檬酸银和g-C3N4-PO4 3-通过离子交换沉淀法得到,CNT-柠檬酸银是CNT、柠檬酸钠和AgNO3通过表面离子化(络合作用)得到,g-C3N4-PO4 3-是g-C3N4和NaH2PO4通过表面磷酸化得到。
一种上述本实施例的复合可见光催化剂的制备方法,包括以下步骤:
(1)制备g-C3N4
(1.1)将1g三聚氰胺置于氧化铝坩埚内(加盖),以5℃/min的升温速度升温至500℃,在此温度下反应3h;
(1.2)将氧化铝坩埚自然冷却到室温收集产物,并将其研磨成细粉,得到g-C3N4
(2)CNT表面络合作用
(2.1)将0.255g AgNO3分散到50mL乙二醇中得到AgNO3的乙二醇溶液;将0.147g二水柠檬酸钠(Na3C6H5O7·2H2O)分散到50mL乙二醇中得到柠檬酸钠的乙二醇溶液;
(2.2)取0.01g CNT纳米颗粒在超声条件下分散到(2.1)配制的柠檬酸钠的乙二醇溶液中,超声时间为40min,再于搅拌速度为100rpm条件下,按滴加速度为1滴/秒(60滴/min)逐滴加入(2.1)配制的AgNO3的乙二醇溶液,在转速为800rpm条件下剧烈搅拌反应30min,随后在暗室中静置12h,得到富集Ag-C6H5O7络合物的CNT分散液,即CNT-柠檬酸银分散液。
(3)g- C3N4表面磷酸化
(3.1)将0.01g g-C3N4在超声条件下分散到50mL去离子水中,超声时间为40min,使其均匀分散;
(3.2)在搅拌速度为100rpm条件下,向(3.1)分散液中添加50mL 0.01mol/LNaH2PO4溶液,搅拌反应2h,得到富集PO4 3-功能团的g-C3N4分散液,即g-C3N4-PO4 3-
(4)制备CNT/Ag3PO4/g-C3N4复合可见光催化剂
(4.1)在搅拌速度为100rpm条件下,将步骤(3)得到的g-C3N4-PO4 3-分散液以1滴/s(即60滴/min)的速度逐滴加入到CNT-柠檬酸银分散液中,搅拌反应2h,得到反应产物;
(4.2)将(4.1)的反应产物通过离心分离,再采用水洗4次,无水乙醇清洗4次,随后在50℃真空干燥箱内干燥12h,得到CNT/Ag3PO4/g-C3N4,即为本发明的复合可见光催化剂。一种上述本实施例制备的复合可见光催化剂在抗生素废水处理中的应用,包括以下步骤:
在可见光光照条件下,将本实施例制备的复合可见光催化剂用于降解盐酸环丙沙星废水,氙灯为光源(带420nm滤光片),光强控制在300W,盐酸环丙沙星的初始浓度为5mg/L,复合可见光催化剂的添加量为1.0g/L,降解的时间为90min,盐酸环丙沙星的降解率达80.5%。光催化剂使用完后在离心分离后循环使用,循环使用4次,其催化活性没有明显的降低,可在水中稳定存在。相比之下,磷酸银催化剂一般在水中不稳定,很容易分解,通常重复使用两次,其光催化性能就下降了50%,重复使用三次,光催化降解效率仅20%。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种复合可见光催化剂,其特征在于,所述复合可见光催化剂由碳纳米管CNT-柠檬酸银和g-C3N4-PO4 3-通过离子交换沉淀法制得,所述CNT-柠檬酸银是由碳纳米管CNT、柠檬酸钠和AgNO3通过表面络合作用制得,所述g-C3N4-PO4 3-是由g-C3N4和NaH2PO4通过表面磷酸化制得。
2.一种复合可见光催化剂的制备方法,包括以下步骤:
(1)将碳纳米管粉末分散到柠檬酸钠的乙二醇溶液中,然后在所得混合液中加入AgNO3的乙二醇溶液,经反应后,得到富集Ag-C6H5O7络合物的CNT分散液,即CNT-柠檬酸银分散液;
(2)将g-C3N4分散到水中,然后在所得分散液中加入NaH2PO4溶液,经反应后,得到富集PO4 3-功能团的g-C3N4分散液,即g-C3N4-PO4 3-分散液;
(3)将步骤(2)得到的g-C3N4-PO4 3-分散液加入到步骤(1)得到的CNT-柠檬酸银分散液中,经反应后,得到CNT/Ag3PO4/g-C3N4催化剂,即复合可见光催化剂。
3.根据权利要求2所述的复合可见光催化剂的制备方法,其特征在于,所述步骤(1)中,所述碳纳米管粉末为多壁碳纳米管粉末,所述碳纳米管粉末与AgNO3的质量比为2.5%~5.0%∶1,所述柠檬酸钠与AgNO3的摩尔比为1∶3~4;
和/或,所述步骤(2)中,所述NaH2PO4溶液是通过NaH2PO4·2H2O加入水中制得,所述g-C3N4与NaH2PO4·2H2O的质量之比为5.0%~15.0%∶1。
4.根据权利要求2所述的复合可见光催化剂的制备方法,其特征在于,所述步骤(1)中,所述AgNO3的乙二醇溶液中AgNO3的浓度为0.03mol/L~0.045mol/L,所述柠檬酸钠的乙二醇溶液中柠檬酸钠的浓度为0.01mol/L~0.015mol/L;和/或,所述步骤(2)中,所述NaH2PO4溶液中NaH2PO4的浓度为0.01mol/L~0.015mol/L。
5.根据权利要求2所述的复合可见光催化剂的制备方法,其特征在于,所述步骤(1)中,碳纳米管粉末在超声条件下分散到柠檬酸钠的乙二醇溶液中,超声时间为40min~60min,所述AgNO3的乙二醇溶液的加入方式为低速搅拌混合液时进行添加,搅拌速度为100rpm~120rpm,加入AgNO3的乙二醇溶液后,在转速为800rpm~1000rpm条件下剧烈搅拌反应溶液,所述反应的时间为30min~40min,得到的CNT-柠檬酸银分散液在暗室中静置10h~12h;
和/或,所述步骤(2)中,所述g-C3N4在超声条件下分散到去离子水中,超声时间为40min~60min,所述NaH2PO4溶液的加入方式为低速搅拌分散液时进行添加,搅拌速度为100rpm~120rpm,所述反应的时间为2h~3h;
和/或,所述步骤(3)中,所述g-C3N4-PO4 3-分散液的加入方式为低速搅拌CNT-柠檬酸银分散液时进行滴加,所述滴加的速度为30滴/min~60滴/min,所述搅拌的速度为100rpm~120rpm,所述反应的时间为1h~2h。
6.根据权利要求2~5中任一项所述的复合可见光催化剂的制备方法,其特征在于,所述步骤(3)中,所述反应完成后,进行分离、清洗和干燥,得到复合可见光催化剂;所述分离为离心分离,所述清洗采用先水洗后无水乙醇清洗,水洗的次数为3次~5次,无水乙醇的清洗次数为3次~5次,所述干燥为真空干燥,真空干燥的温度为50℃~60℃,真空干燥的时间为12h~24h。
7.根据权利要求2~5中任一项所述的复合可见光催化剂的制备方法,其特征在于,所述g-C3N4主要通过高温煅烧方法制备得到:将三聚氰胺置于氧化铝坩埚内,升温至500℃~550℃下反应2h~4h,自然冷却到室温,收集产物,得到g-C3N4
8.根据权利要求7所述的复合可见光催化剂的制备方法,其特征在于,所述反应过程中氧化铝坩埚需用盖子盖上;所述升温过程为以5℃/min~10℃/min的升温速度直到500℃~550℃;所述产物需研磨成细粉后使用。
9.一种如权利要求1所述的复合可见光催化剂或者如权利要求2~8中任一项所述的制备方法制得的复合可见光催化剂在处理抗生素废水中的应用。
10.根据权利要求9所述的应用,其特征在于,所述应用包括以下步骤:在可见光照射条件下,将所述复合可见光催化剂用于降解含盐酸环丙沙星的废水,氙灯为光源,光强控制在300W,所述盐酸环丙沙星在废水中的初始浓度为1mg/L~10mg/L,所述复合可见光催化剂在废水中的添加量为0.2g/L~1.0g/L,所述降解的时间为60min~120min。
CN201710386458.9A 2017-05-26 2017-05-26 复合可见光催化剂及其制备方法和应用 Expired - Fee Related CN107029777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710386458.9A CN107029777B (zh) 2017-05-26 2017-05-26 复合可见光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710386458.9A CN107029777B (zh) 2017-05-26 2017-05-26 复合可见光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107029777A CN107029777A (zh) 2017-08-11
CN107029777B true CN107029777B (zh) 2019-05-14

Family

ID=59540383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710386458.9A Expired - Fee Related CN107029777B (zh) 2017-05-26 2017-05-26 复合可见光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107029777B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420512A (zh) * 2017-09-04 2019-03-05 中国科学院上海硅酸盐研究所 一种基于磷酸修饰的光催化材料及其制备方法和应用
CN107747105B (zh) * 2017-09-12 2019-08-13 天津理工大学 一种非金属基光电阴极的制备方法
CN107876073B (zh) * 2017-10-20 2020-02-18 浙江大学 核壳结构g-C3N4/MCNTs/BiOI复合材料的制备方法
CN108579791B (zh) * 2018-05-28 2020-10-30 北京林业大学 一种Pd和碳纳米管共掺杂石墨相氮化碳的三元复合催化剂及其制备方法与应用
CN109847786B (zh) * 2019-03-06 2021-12-21 常州大学 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用
CN111318298B (zh) * 2020-03-04 2021-06-08 燕山大学 一种p掺杂的空心多孔蠕虫状石墨相氮化碳光催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028428A (zh) * 2013-01-16 2013-04-10 华东理工大学 一种制备Ag3PO4@g-C3N4复合可见光催化材料的方法
CN104624211A (zh) * 2015-01-19 2015-05-20 江苏大学 一种可见光响应的复合光催化剂的制备方法及其应用
CN105688957A (zh) * 2016-04-01 2016-06-22 南京大学 具有可见光催化活性的CNTs-Ag3PO4催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028428A (zh) * 2013-01-16 2013-04-10 华东理工大学 一种制备Ag3PO4@g-C3N4复合可见光催化材料的方法
CN104624211A (zh) * 2015-01-19 2015-05-20 江苏大学 一种可见光响应的复合光催化剂的制备方法及其应用
CN105688957A (zh) * 2016-04-01 2016-06-22 南京大学 具有可见光催化活性的CNTs-Ag3PO4催化剂及其制备方法

Also Published As

Publication number Publication date
CN107029777A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN107029777B (zh) 复合可见光催化剂及其制备方法和应用
Yu et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants
Miao et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight
Zhang et al. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight
Yu et al. Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity
He et al. 3D BiOI–GO composite with enhanced photocatalytic performance for phenol degradation under visible-light
CN106111137B (zh) 一种碳量子点-氧化亚铜复合材料的制备方法及其应用
Yan et al. Morphology-controlled synthesis of Ag3PO4 microcubes with enhanced visible-light-driven photocatalytic activity
Cai et al. Enhanced visible light photocatalytic performance of g-C3N4/CuS pn heterojunctions for degradation of organic dyes
WO2015109916A1 (zh) 一种制备石墨烯的方法
Zhang et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate
CN104591301B (zh) 一种多孔纳米CoFe2O4的制备方法
CN105032375B (zh) 一种磁性石墨基重金属吸附材料的制备方法
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
Dai et al. Facile preparation of Bi2MoO6/multi-walled carbon nanotube nanocomposite for enhancing photocatalytic performance
Yu et al. AgI-modified TiO2 supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO
CN105016330A (zh) 一种石墨烯的制备方法
Chen et al. Synthesis of micro-nano Ag3PO4/ZnFe2O4 with different organic additives and its enhanced photocatalytic activity under visible light irradiation
CN106807414A (zh) 一种磷酸银/溴化银/碳纳米管复合光催化剂及制备与应用
Lu et al. Photocatalytic activity and mechanism of cerium dioxide with different morphologies for tetracycline degradation
CN107670691A (zh) 一种无金属非均相类芬顿型催化剂及其制备方法与应用
CN107321338A (zh) 一种纳米二氧化钛颗粒的制备方法
CN105879890B (zh) 磁性复合光催化剂及其制备方法和应用
Shi et al. Preparation and characterization of PVA–I complex doped mesoporous TiO2 by hydrothermal method
CN105967167B (zh) 一种制备一维碳纳米材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514

Termination date: 20200526