CN107029751A - 高活性铂铜催化剂的制备方法 - Google Patents

高活性铂铜催化剂的制备方法 Download PDF

Info

Publication number
CN107029751A
CN107029751A CN201710402899.3A CN201710402899A CN107029751A CN 107029751 A CN107029751 A CN 107029751A CN 201710402899 A CN201710402899 A CN 201710402899A CN 107029751 A CN107029751 A CN 107029751A
Authority
CN
China
Prior art keywords
high activity
platinum
copper catalyst
catalyst
warming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710402899.3A
Other languages
English (en)
Inventor
周江东
陈融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANTONG BING ENERGY Inc
Original Assignee
NANTONG BING ENERGY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANTONG BING ENERGY Inc filed Critical NANTONG BING ENERGY Inc
Priority to CN201710402899.3A priority Critical patent/CN107029751A/zh
Publication of CN107029751A publication Critical patent/CN107029751A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及铂铜催化剂生产领域,具体涉及一种高活性铂铜催化剂的制备方法。分别称取硝酸铂153mg、43mg无水氯化铜,加入50mL蒸馏水溶解,将其置于超声剪切机中剪切分散30min,备用。再分别称取碳黑(XC‑72)1.0g、水合肼20ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌10h,再升温至90℃,反应1h,经过滤、洗涤、干燥后得到高活性铂铜催化剂。优点是成本低、反应时间短、适合规模化制备的化学还原方法,所制备的催化剂铂颗粒较小且分布均匀。

Description

高活性铂铜催化剂的制备方法
技术领域
本发明涉及铂铜催化剂生产领域,具体涉及一种高活性铂铜催化剂的制备方法。
背景技术
铂碳催化剂是将贵金属铂负载在活性炭上制备得到的一种电化学催化剂。铂碳催化剂主要用于燃料电池的氢气氧化、甲醇氧化、甲酸氧化以及氧气的还原。
铂碳催化剂的优劣主要由催化剂活性、稳定性和成本来评价。影响催化剂活性的因素有很多,如载体的性能(比表面积、孔结构、表面化学性质等)、催化剂中活性金属的含量和颗粒大小、活性金属在载体上的宏观和微观分布等。为了降低成本,减少贵金属铂的用量,引入非贵金属制备双金属或多金属催化剂是一种有效途径。本发明主要是一种成本低、适合规模化制备的化学还原方法,制备出铂铜双金属催化剂,所制备的催化剂铂颗粒较小且分布均匀。
发明内容
为了解决上述问题,本发明提出了高活性铂铜催化剂的制备方法,主要是一种成本低、反应时间短、适合规模化制备的化学还原方法,所制备的催化剂铂颗粒较小且分布均匀。
本发明的技术方案:
高活性铂铜催化剂的制备方法,具体步骤如下:分别称取硝酸铂153 mg、43mg无水氯化铜,加入50 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散30min,备用。再分别称取碳黑1.0 g、水合肼20 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌10 h,再升温至90℃,反应1h,经过滤、洗涤、干燥后得到高活性铂铜催化剂。所述的高活性铂铜催化剂中的Pt铜颗粒为4nm,以此催化剂制备的膜电极。
高活性铂铜催化剂的制备方法,其步骤如下:分别称取硝酸铂230mg、64.5mg无水氯化铜,加入100 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散30min,备用。再分别称取碳黑1.0 g、水合肼50 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌10 h,再升温至90℃,反应1h,经过滤、洗涤、干燥后得到高活性铂铜催化剂,高活性铂铜催化剂是15%铂铜催化剂。
高活性铂铜催化剂的制备方法,其步骤如下:分别称取硝酸铂765 mg、215mg无水氯化铜,加入300 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散50min,备用。再分别称取碳黑1.0 g、水合肼100 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌15 h,再升温至95℃,反应2h,经过滤、洗涤、干燥后得到高活性铂铜催化剂,高活性铂铜催化剂是50%铂铜催化剂。
所述的碳黑是碳黑XC-72。
铂铜催化剂中铂的质量含量可以从0-99%,但是铂的含量越高越不好做。我们能做到低载量的(10-40%),也能做高载量的(50-70%)。
本发明的优点是成本低、反应时间短、适合规模化制备的化学还原方法,所制备的催化剂铂颗粒较小且分布均匀。
附图说明
图1是催化剂的TEM图。
图2是膜电极极化曲线示意图。
具体实施方式
实施例1
高活性铂铜催化剂的制备方法,分别称取硝酸铂153 mg、43mg无水氯化铜,加入50 mL蒸馏水溶解,将其置于超声剪切机中剪切分散30min,备用。再分别称取碳黑(XC-72)1.0 g、水合肼20 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌10 h,再升温至90℃,反应1h,经过滤、洗涤、干燥后得到高活性铂铜催化剂。所得催化剂如图1,Pt铜颗粒为4nm左右,以此催化剂制备的膜电极性能如图2。电池温度:55℃,空气:常压、2000ml/min、30%湿度,H2:背压0.04MPa 不加湿。
实施例2
15 %铂铜催化剂的制备方法,其步骤如下:
分别称取硝酸铂230mg、64.5mg无水氯化铜,加入100 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散30min,备用。再分别称取碳黑(XC-72)1.0 g、水合肼50 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌10 h,再升温至90℃,反应1h,经过滤、洗涤、干燥后得到高活性铂铜催化剂。
实施例3
50%铂铜催化剂的制备方法,其步骤如下:
分别称取硝酸铂765 mg、215mg无水氯化铜,加入300 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散50min,备用。再分别称取碳黑(XC-72)1.0 g、水合肼100 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌15 h,再升温至95℃,反应2h,经过滤、洗涤、干燥后得到高活性铂铜催化剂。

Claims (5)

1.高活性铂铜催化剂的制备方法,其特征在于,具体步骤如下:分别称取硝酸铂153mg、43mg无水氯化铜,加入50 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散30min,备用;再分别称取碳黑1.0 g、水合肼20 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌10 h,再升温至90℃,反应1h,经过滤、洗涤、干燥后得到高活性铂铜催化剂。
2.高活性铂铜催化剂的制备方法,其特征在于,其步骤如下:分别称取硝酸铂230mg、64.5mg无水氯化铜,加入100 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散30min,备用;再分别称取碳黑1.0 g、水合肼50 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌10 h,再升温至90℃,反应1h,经过滤、洗涤、干燥后得到高活性铂铜催化剂,高活性铂铜催化剂是15%铂铜催化剂。
3.高活性铂铜催化剂的制备方法,其特征在于,其步骤如下:分别称取硝酸铂765 mg、215mg无水氯化铜,加入300 mL 蒸馏水溶解,将其置于超声剪切机中剪切分散50min,备用;再分别称取碳黑1.0 g、水合肼100 ml加入上述溶液中,混合均匀后,升温至70℃,低速搅拌15 h,再升温至95℃,反应2h,经过滤、洗涤、干燥后得到高活性铂铜催化剂,高活性铂铜催化剂是50%铂铜催化剂。
4.根据权利要求1所述的高活性铂铜催化剂的制备方法,其特征是所述的高活性铂铜催化剂中的Pt铜颗粒为4nm,以此催化剂制备的膜电极。
5.根据权利要求1或2或3所述的高活性铂铜催化剂的制备方法,其特征是所述的碳黑是碳黑XC-72。
CN201710402899.3A 2017-06-01 2017-06-01 高活性铂铜催化剂的制备方法 Pending CN107029751A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710402899.3A CN107029751A (zh) 2017-06-01 2017-06-01 高活性铂铜催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710402899.3A CN107029751A (zh) 2017-06-01 2017-06-01 高活性铂铜催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN107029751A true CN107029751A (zh) 2017-08-11

Family

ID=59540276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710402899.3A Pending CN107029751A (zh) 2017-06-01 2017-06-01 高活性铂铜催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107029751A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505030A (zh) * 2020-05-11 2020-08-07 北京工业大学 一种铂铜合金纳米催化剂形貌及三维结构的原位分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362108B1 (ko) * 1997-05-29 2003-03-26 기아자동차주식회사 희박연소용자동차촉매Cu-Pt-ZSM-5제조방법
CN1410160A (zh) * 2002-11-26 2003-04-16 南京师范大学 担体负载铂金属及铂基多元金属催化剂有机溶胶制备法
CN1846852A (zh) * 2005-04-15 2006-10-18 北京有色金属研究总院 一种碳载铂催化剂的制备方法
CN102266785A (zh) * 2011-07-03 2011-12-07 南京大学 以碳掺杂二氧化钛为载体的铂铜合金催化剂的制备方法
CN103349988A (zh) * 2013-07-17 2013-10-16 天津大学 一种铂铜双组分催化剂及其制备方法和应用
CN104733736A (zh) * 2015-04-03 2015-06-24 太原理工大学 碳负载铂金铜纳米颗粒催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362108B1 (ko) * 1997-05-29 2003-03-26 기아자동차주식회사 희박연소용자동차촉매Cu-Pt-ZSM-5제조방법
CN1410160A (zh) * 2002-11-26 2003-04-16 南京师范大学 担体负载铂金属及铂基多元金属催化剂有机溶胶制备法
CN1846852A (zh) * 2005-04-15 2006-10-18 北京有色金属研究总院 一种碳载铂催化剂的制备方法
CN102266785A (zh) * 2011-07-03 2011-12-07 南京大学 以碳掺杂二氧化钛为载体的铂铜合金催化剂的制备方法
CN103349988A (zh) * 2013-07-17 2013-10-16 天津大学 一种铂铜双组分催化剂及其制备方法和应用
CN104733736A (zh) * 2015-04-03 2015-06-24 太原理工大学 碳负载铂金铜纳米颗粒催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505030A (zh) * 2020-05-11 2020-08-07 北京工业大学 一种铂铜合金纳米催化剂形貌及三维结构的原位分析方法

Similar Documents

Publication Publication Date Title
Li et al. The comparability of Pt to Pt‐Ru in catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80° C
Yamada et al. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane
CN102489314B (zh) 用于甲醇、乙醇燃料电池的石墨烯负载双金属纳米粒子及制备方法
US10950869B2 (en) Fuel cell electrode catalyst and method for producing the same
Ercelik et al. Characterization and performance evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications
CN105449232B (zh) 过渡族金属掺杂Pt‑Al金属间化合物形成双模式孔三元合金的制备方法及应用
JP2003308849A (ja) 高分子固体電解質形燃料電池の燃料極用触媒
Nandenha et al. Preparation of PdAu/C-Sb 2 O 5· SnO 2 electrocatalysts by borohydride reduction process for direct formic acid fuel cell
Kadioglu et al. Investigation of the performance of a direct borohydride fuel cell with low Pt/C catalyst loading under different operating conditions
Wang et al. Single-metal site-embedded conjugated macrocyclic hybrid catalysts enable boosted CO2 reduction and evolution kinetics in Li-CO2 batteries
Pupo et al. Sn@ Pt and Rh@ Pt core–shell nanoparticles synthesis for glycerol oxidation
Jamard et al. Life time test in direct borohydride fuel cell system
JP2003007308A (ja) 燃料電池用アノード及び燃料電池
Hosseini et al. Pd-Ni nanoparticle supported on reduced graphene oxide and multi-walled carbon nanotubes as electrocatalyst for oxygen reduction reaction
CN103730669B (zh) 一种无膜的直接肼燃料电池及其制造方法
CN110586127B (zh) 一种铂钴双金属纳米空心球的制备方法及其应用
TWI508774B (zh) 擔持金之碳觸媒之製造方法
da Silva et al. Electrochemical and fuel cell evaluation of PtIr/C electrocatalysts for ethanol electrooxidation in alkaline medium
CN107029751A (zh) 高活性铂铜催化剂的制备方法
Fashedemi et al. Recent trends in carbon support for improved performance of alkaline fuel cells
JP2005353408A (ja) 燃料電池
CN101185900A (zh) 直接醇类燃料电池阳极催化剂的制备方法
Martinez et al. Analysis of a novel chlorine recycling process based on anhydrous HCl oxidation
Huang et al. Fe@ Pt core-shell nanoparticles as electrocatalyst for oxygen reduction reaction in acidic media
Silva et al. Effect of the TiO 2 content as support with carbon toward methanol electro-oxidation in alkaline media using platinum nanoparticles as electrocatalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170811