CN107029703B - 三明治结构MnOX/C/MnOX空心球的制备方法 - Google Patents

三明治结构MnOX/C/MnOX空心球的制备方法 Download PDF

Info

Publication number
CN107029703B
CN107029703B CN201710297829.6A CN201710297829A CN107029703B CN 107029703 B CN107029703 B CN 107029703B CN 201710297829 A CN201710297829 A CN 201710297829A CN 107029703 B CN107029703 B CN 107029703B
Authority
CN
China
Prior art keywords
mno
hollow sphere
sandwich structure
phenylenediamine
popd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710297829.6A
Other languages
English (en)
Other versions
CN107029703A (zh
Inventor
韩杰
李亚男
郭荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710297829.6A priority Critical patent/CN107029703B/zh
Publication of CN107029703A publication Critical patent/CN107029703A/zh
Application granted granted Critical
Publication of CN107029703B publication Critical patent/CN107029703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

三明治结构MnOX/C/MnOX空心球的制备方法,涉及纳米催化剂的生产技术领域。先合成PoPD空心球,在酸性条件下,加入KMnO4于常温下通过氧化还原得到MnO2/PoPD/MnO2空心球,在惰性气体的保护下对其进行炭化得到三明治结构MnOX/C/MnOX空心球。本发明弥补了锰氧化物导电性差和活性位点少等缺点,提升了催化剂的电化学催化活性,制备出的催化剂具有大的比表面积,不需要模板可以一步合成空心球,并且催化剂催化活性高、稳定性好,在催化领域有着重要的应用价值。

Description

三明治结构MnOX/C/MnOX空心球的制备方法
技术领域
本发明涉及纳米催化剂的生产技术领域。
背景技术
近年来氧还原电催化剂一直是人们研究的焦点之一。过渡金属锰氧化物储量丰富,价格低廉,具有多种氧化物结构,氮掺杂的碳材料具有良好的导电性和电催化活性,氮掺杂的碳材料与过渡金属锰氧化物复合可以提高其电化学催化性能。
锰氧化物具有多种氧化物存在形式,其不同的形态具有不同的空间结构和表面状态,其中MnO2与Mn2O3由于其制备简单,热力学稳定性和氧还原电化学催化性能好而备受关注,但是锰氧化物为半导体,其导电性能较差,活性位点利用率低。碳材料具有良好的导电性和稳定性,可掺杂其他元素使其结构发生改变,其中氮掺杂的碳催化剂研究报道的最为成熟,因此一些研究者认为氮掺杂的碳材料与过渡金属氧化物一起构成催化活性中心。
发明内容
本发明的目的在于提供一种活性位点利用率高的MnOX/C/MnOX三明治结构空心球催化剂的制备方法。
本发明包括以下步骤:
1)将邻苯二胺水溶液与过硫酸铵水溶液混合反应,得聚邻苯二胺(PoPD)空心球;
2)超声条件下,将聚邻苯二胺(PoPD)空心球分散在去离子水中,经调整混合体系的pH至1~2后,再加入KMnO4水溶液,搅拌反应至结束,取得固相,用去离子水及无水乙醇洗涤,经烘干,得三明治结构MnO2/PoPD/MnO2空心球;
3)将三明治结构MnO2/PoPD/MnO2空心球置于坩埚中,于惰性气体保护下煅烧,得三明治结构MnOX/C/MnOX空心球。
本发明采用上述方案制备出了一种高活性、耐腐蚀性强的三明治结构MnOX/C/MnOX空心球。首先合成PoPD空心球,在酸性条件下,加入KMnO4于常温下通过氧化还原得到MnO2/PoPD/MnO2空心球,在惰性气体的保护下对其进行炭化得到三明治结构MnOX/C/MnOX空心球。
本发明碳材料的引入弥补了锰氧化物导电性差和活性位点少等缺点,进一步提升了催化剂的电化学催化活性。本发明的优点在于制备出的催化剂具有大的比表面积,不需要模板可以一步合成空心球,并且催化剂催化活性高、稳定性好,在催化领域有着重要的应用价值。
进一步地,本发明所述步骤1)中反应在0~5℃下进行,反应后取固相,以氨水、去离子水及无水乙醇洗至无色后烘干,得聚邻苯二胺(PoPD)空心球。低温使反应缓慢进行,得到空心球颗粒均一分散且尺寸分布窄。
所述邻苯二胺水溶液中邻苯二胺与过硫酸铵水溶液中过硫酸铵的质量比为26∶55。该用量可保证邻苯二胺反应完全。
所述步骤2)中所述聚邻苯二胺(PoPD)空心球和KMnO4水溶液中KMnO4的混合质量比为35∶7.9。该投料比使得MnO2能够生长在聚邻苯二胺(PoPD)空心球的内外表面且不会有大量MnO2散落在球外,同时在该投料比下得到的材料氧还原反应电催化活性最佳。
所述步骤3)中所述煅烧温度为600~900℃。在此温度范围内,材料的空心球形貌能够保持完整,并且可以使材料得到充分的炭化,锰氧化物结晶性增加,增加材料的活性位点,在此温度范围内氧还原反应催化性能呈现先增大后减小趋势,在800℃下催化性能最优。
附图说明
图1是实施例1制备得到的三明治结构MnO2/C/MnO2空心球的TEM照片。
图2是实施例2制备得到的三明治结构MnO2/C/MnO2空心球的TEM照片。
图3是实施例3制备得到的三明治结构Mn2O3/C/Mn2O3空心球的TEM照片。
图4是实施例4制备得到的三明治结构Mn2O3/C/Mn2O3空心球的TEM照片。
图5是不同催化剂催化氧还原反应的线性扫描伏安曲线图。
具体实施方式
下面通过实施例对本发明作进一步说明。
一、制备示例:
实施例1
(1)聚邻苯二胺(PoPD)空心球的合成:
取0.26 g邻苯二胺放入锥形瓶中,加入20 mL去离子水,室温下搅拌10 min至样品完全溶解,将其保持在0~5℃下30 min。
将0.55 g过硫酸铵用2.75 mL去离子水溶解后,加入上述混合溶液,保持0~5℃的反应温度,静置反应12 h后,取得固相产物。
将固相产物用0.1 M氨水、去离子水及无水乙醇洗至无色,烘干,即得PoPD空心球。
(2)三明治结构MnO2/PoPD/MnO2空心球的合成:
取0.35 gPoPD空心球加入8 mL H2O中,以盐酸溶液调溶液的pH在1~2,然后超声10 min使PoPD空心球充分分散。然后再在上述混合体系中加入5 mL 0.1 MKMnO4水溶液,搅拌反应4 h后,取固相。再用去离子水及无水乙醇对固相进行洗涤,再经烘干,得三明治结构MnO2/PoPD/MnO2空心球。
(3)三明治结构MnO2/C/MnO2空心球的合成:
将三明治结构MnO2/PoPD/MnO2空心球置于坩埚中,于氮气惰性气体保护下,600℃高温煅烧,即得三明治结构MnO2/C/MnO2空心球。
如图1所示的TEM形貌特征图可见:
三明治结构MnO2/C/MnO2空心球具有三层夹心壳层的空心球形貌特征。根据其煅烧温度标记为MnO2/C/MnO2(600)。
实施例2
按实施例1中步骤(1)和(2)的方法,取得MnO2/PoPD/MnO2材料。
(3)三明治结构MnO2/C/MnO2空心球的合成:
将三明治结构MnO2/PoPD/MnO2空心球置于坩埚中,于氮气惰性气体保护下,700℃高温煅烧,即得三明治结构MnO2/C/MnO2空心球。
如图2所示的TEM形貌特征图可见:
三明治结构MnO2/C/MnO2空心球具有三层夹心壳层的空心球形貌特征。根据其煅烧温度标记为MnO2/C/MnO2(700)。
实施例3
按实施例1中步骤(1)和(2)的方法,取得MnO2/PoPD/MnO2材料。
(3)三明治结构Mn2O3/C/Mn2O3空心球的合成:
将三明治结构MnO2/PoPD/MnO2空心球置于坩埚中,于氮气惰性气体保护下,800℃高温煅烧,即得三明治结构Mn2O3/C/Mn2O3空心球。
如图3所示的TEM形貌特征图可见:
三明治结构Mn2O3/C/Mn2O3空心球具有三层夹心壳层的空心球形貌特征。根据其煅烧温度标记为Mn2O3/C/Mn2O3 (800)。
实施例4
按实施例1中步骤(1)和(2)的方法,取得MnO2/PoPD/MnO2材料。
(3)三明治结构Mn2O3/C/Mn2O3空心球的合成:
将三明治结构MnO2/PoPD/MnO2空心球置于坩埚中,于氮气惰性气体保护下,900℃高温煅烧,即得三明治结构Mn2O3/C/Mn2O3空心球。
如图4所示的TEM形貌特征图可见:
三明治结构Mn2O3/C/Mn2O3空心球具有三层夹心壳层的空心球形貌特征。根据其煅烧温度标记为Mn2O3/C/Mn2O3 (900)。
以上各例说明:通过控制对MnO2/PoPD/MnO2材料的煅烧温度,可以获得三明治结构空心球可以是Mn2O3/C/Mn2O3或MnO2/C/MnO2
二、应用及效果验证:
取以上各例材料3 mg,与7 mg导电碳黑 Vulcan XC-72、50 μL 5wt%的Nafion溶液、950 μL水与异丙醇的溶液混合后经超声分散,制备工作电极,测定氧还原反应电催化活性。
如图5所示,当煅烧温度为800℃时得到的三明治结构Mn2O3/C/Mn2O3材料极限电流密度最大,超过10 wt% 的商业Pt/C催化剂,其初始电位也接近Pt/C催化剂。说明三明治结构Mn2O3/C/Mn2O3空心球不仅具有独特的形貌结构,同时具有良好的氧还原反应电催化活性。

Claims (2)

1.三明治结构MnOX/C/MnOX空心球的制备方法,其特征在于包括以下步骤:
1)将邻苯二胺水溶液与过硫酸铵水溶液混合反应,所述邻苯二胺水溶液中邻苯二胺与过硫酸铵水溶液中过硫酸铵的质量比为26∶55,反应在0~5℃下进行,反应后取固相,以氨水、去离子水及无水乙醇洗至无色后烘干,得聚邻苯二胺空心球;
2)超声条件下,将聚邻苯二胺空心球分散在去离子水中,经调整混合体系的pH至1~2后,再加入KMnO4水溶液,所述聚邻苯二胺空心球和KMnO4水溶液中KMnO4的质量比为35∶7.9,搅拌反应至结束,取得固相,用去离子水及无水乙醇洗涤,经烘干,得三明治结构MnO2/PoPD/MnO2空心球;
3)将三明治结构MnO2/PoPD/MnO2空心球置于坩埚中,于惰性气体保护下煅烧,得三明治结构MnOX/C/MnOX空心球;所述煅烧温度为600~900℃。
2.根据权利要求1所述三明治结构MnOX/C/MnOX空心球的制备方法,其特征在于:所述步骤3)中所述煅烧温度为800℃。
CN201710297829.6A 2017-04-29 2017-04-29 三明治结构MnOX/C/MnOX空心球的制备方法 Active CN107029703B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710297829.6A CN107029703B (zh) 2017-04-29 2017-04-29 三明治结构MnOX/C/MnOX空心球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710297829.6A CN107029703B (zh) 2017-04-29 2017-04-29 三明治结构MnOX/C/MnOX空心球的制备方法

Publications (2)

Publication Number Publication Date
CN107029703A CN107029703A (zh) 2017-08-11
CN107029703B true CN107029703B (zh) 2019-06-21

Family

ID=59538755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710297829.6A Active CN107029703B (zh) 2017-04-29 2017-04-29 三明治结构MnOX/C/MnOX空心球的制备方法

Country Status (1)

Country Link
CN (1) CN107029703B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891402B (zh) * 2010-07-21 2012-07-04 陕西科技大学 一种有机无机电致变色膜的制备方法
CN102408712B (zh) * 2011-09-22 2013-01-23 扬州大学 聚苯胺纳米纤维/二氧化锰纳米棒复合材料及其制备方法
CN103311512B (zh) * 2013-05-27 2015-04-15 浙江大学 吲哚修饰碳包硫复合的锂硫电池正极材料的制备方法
CN103936987B (zh) * 2014-05-08 2017-01-18 扬州大学 一种碳纳米管复合材料及其制备方法
CN104681823B (zh) * 2015-01-23 2017-10-03 西华师范大学 一种氮掺杂石墨烯与Co3O4空心纳米球复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN107029703A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN109841854B (zh) 一种氮掺杂碳载单原子氧还原催化剂及其制备方法
CN108543545B (zh) 一种Fe、Ni、N三掺杂碳纳米管包覆型FeNi@NCNT催化剂、制备方法及其应用
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
Zheng et al. Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction
Lázaro et al. Study and application of carbon black Vulcan XC-72R in polymeric electrolyte fuel cells
Huang et al. Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application
Askari et al. Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media
Ghoshal et al. ZIF 67 based highly active electrocatalysts as oxygen electrodes in water electrolyzer
Bruno et al. Platinum supported on mesoporous carbon as cathode catalyst for direct methanol fuel cells
Sui et al. Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
CN107685150B (zh) 一种氮掺杂碳包覆的Ni&MoO2超细纳米线及其制备方法和应用
Wang et al. Methanol electrooxidation reaction in alkaline medium on glassy carbon electrode modified with ordered mesoporous Ni/Al2O3
Wang et al. Quasi-atomic-scale platinum anchored on porous titanium nitride nanorod arrays for highly efficient hydrogen evolution
CN108039499B (zh) 一种氮掺杂剥离碳纳米管负载四氧化三钴材料的制备方法
Cui et al. Mo2N/C hybrid material as a promising support for the electro-oxidation of methanol and formic acid
Gayathri et al. Bimetallic Layered Hydroxide Nitrate@ Graphene Oxide as an Electrocatalyst for Efficient Non-Enzymatic Glucose Sensors: Tuning Sensitivity by Hydroxide-Regulated M2 (OH) 4–n (A n–) Phases Derived from Solvent Engineering
CN101773828A (zh) 一种Pt-TiO2/CNTs催化剂及其制备方法
Zhong et al. Co-doped Ni–Fe spinels for electrocatalytic oxidation over glycerol
Norouzi et al. Methanol electrooxidation on novel modified carbon paste electrodes with supported poly (isonicotinic acid)(sodium dodecyl sulfate)/Ni-Co electrocatalysts
Fuku et al. Performance of BiCu2O modified Pd/C as an anode electrocatalyst for direct ethanol fuel cell system
CN107029703B (zh) 三明治结构MnOX/C/MnOX空心球的制备方法
JP5757884B2 (ja) 燃料電池用電極触媒の製造方法ならびにその用途
Qi et al. Improving the activity and stability of a Pt/C electrocatalyst for direct methanol fuel cells
CN109012673B (zh) 一种析氧催化剂的制备方法及应用
Chang et al. Catalytic activity of carbon-supported iridium oxide for oxygen reduction reaction as a Pt-free catalyst in polymer electrolyte fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant