CN107029671A - 一种改性Fe3O4@MOF复合材料的制备方法及其应用 - Google Patents

一种改性Fe3O4@MOF复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN107029671A
CN107029671A CN201710263573.7A CN201710263573A CN107029671A CN 107029671 A CN107029671 A CN 107029671A CN 201710263573 A CN201710263573 A CN 201710263573A CN 107029671 A CN107029671 A CN 107029671A
Authority
CN
China
Prior art keywords
modified
solution
mof
alcoholic solution
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710263573.7A
Other languages
English (en)
Other versions
CN107029671B (zh
Inventor
汤立红
金旭
李凯
宁平
孙鑫
包双友
朱婷婷
张秀英
周玲玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710263573.7A priority Critical patent/CN107029671B/zh
Publication of CN107029671A publication Critical patent/CN107029671A/zh
Application granted granted Critical
Publication of CN107029671B publication Critical patent/CN107029671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及一种改性Fe3O4@MOF复合材料的制备方法及其应用,属于材料制备技术领域。本发明采用溶剂热法制备超顺磁四氧化三铁纳米微粒,采用层层自组装方法,以超顺磁四氧化三铁为核,在其表面沉积金属中心离子和有机配体原位合成MOF得到Fe3O4@MOF复合材料,并对Fe3O4@MOF复合材料进行表面改性即得改性Fe3O4@MOF复合材料,该改性Fe3O4@MOF复合材料可用于吸附工业废水中的重金属汞离子。

Description

一种改性Fe3O4@MOF复合材料的制备方法及其应用
技术领域
本发明涉及一种改性Fe3O4@MOF复合材料的制备方法及其应用,属于材料制备技术领域。
背景技术
我国每年有大量含汞的工业废水排入江河中,导致了严重的水体污染,并且对人类健康造成了威胁,同时也致使了大量汞金属的流失。由于废水中汞的存在形式较多,很难用一般的方法进行去除。目前工业上主要使用的方法是沉淀法,但处理过程中生成的沉淀物不易分离,并且未使用完的沉淀剂会造成二次污染。
发明内容
本发明针对现有工业废水处理技术存在的不足,提供改性Fe3O4@MOF复合材料的制备方法及其应用,采用溶剂热法制备超顺磁四氧化三铁纳米微粒,采用层层自组装方法,以超顺磁四氧化三铁为核,在其表面沉积金属中心离子和有机配体原位合成MOF得到Fe3O4@MOF复合材料,并对Fe3O4@MOF复合材料进行表面改性连接上巯基即得改性Fe3O4@MOF复合材料,该改性Fe3O4@MOF复合材料可用于吸附工业废水中的重金属汞离子。
一种改性Fe3O4@MOF复合材料的制备方法,其特征在于,具体步骤如下:
(1)将FeCl3·6H2O溶解于醇溶剂中,加入三水合醋酸,在温度180~200℃条件下反应7~8h,冷却至室温,洗涤,分离得到磁性Fe3O4纳米颗粒;
(2)将l,3,5-苯三甲酸溶解到醇中得到l,3,5-苯三甲酸的醇溶液,将步骤(1)所得纳米Fe3O4分散到l,3,5-苯三甲酸的醇溶液中,加热至温度为60~70℃并回流反应5~6h;
(3)将三水合硝酸铜溶解于醇溶剂中得到三水合硝酸铜的醇溶液,在温度为60~70℃的条件下,将三水合硝酸铜的醇溶液加入到步骤(2)所得反应物中进行回流反应4~5h,冷却、分离得到Fe3O4@Cu3(BTC)2纳米颗粒,洗涤、干燥;
(4)将步骤(3)所得Fe3O4@Cu3(BTC)2纳米颗粒分散到甲苯中得到甲苯悬浮溶液中,然后加入1,2-乙二硫醇的乙醇溶液,在室温条件下反应22~24h,分离、洗涤次即为改性Fe3O4@MOF复合材料;
所述步骤(1)中FeCl3·6H2O与三水合醋酸的质量比为1.5~2.5: 0.8~1.0;
所述步骤(2)中l,3,5-苯三甲酸的醇溶液中l,3,5-苯三甲酸的浓度为10~15mmol/L,纳米Fe3O4颗粒与l,3,5-苯三甲酸的醇溶液的固液比g:mL为0.3~0.5: 80~90;
所述步骤(3)中三水合硝酸铜的醇溶液中三水合硝酸铜的浓度为10~15mmol/L,三水合硝酸铜的醇溶液与l,3,5-苯三甲酸的醇溶液的体积比为30~40: 80~90;
所述步骤(4)中Fe3O4@Cu3(BTC)2纳米颗粒与甲苯的固液比g:mL为0.1~0.3:10,1,2-乙二硫醇的乙醇溶液的浓度为0.25~0.3mol/L,1,2-乙二硫醇溶液与甲苯悬浮溶液的体积比为0.5~0.7: 10;
所述改性Fe3O4@MOF复合材料在废水中重金属汞离子的吸附应用。
本发明的有益效果:
本发明的有益效果:
(1)本发明改性Fe3O4@MOF复合材料用于处理含汞废水中的汞的复合材料的制备成本低,制备过程简单,制备条件要求低;
(2)本发明制备所得的改性Fe3O4@MOF复合材料具有超顺磁性,易磁分离,易回收利用,比表面积大等优点;
(3)本发明制备所得的改性Fe3O4@MOF复合材料是经过巯基改性,在原来的吸附能力上增大了对Hg2+的选择吸附性;
(4)本发明制备所得的改性Fe3O4@MOF复合材料可以用于处理含汞废水中的汞,其吸附率高,可重复使用。
附图说明
图1为实施例1所制备的巯基改性的Fe3O4@MOF复合材料纳米颗粒的透射电镜图;
图2为实施例3所制备的巯基改性的Fe3O4@MOF复合材料纳米颗粒在不同pH值的汞离子溶液中的吸附性能图;
图3为实施例4所制备的巯基改性的Fe3O4@MOF复合材料纳米颗粒在不同浓度的汞离子溶液中的吸附性能图。
具体实施方式
下面结合附图具体实施方式,对本发明作进一步说明,但本发明的保护范围并不限于所述内容。
实施例1:一种改性Fe3O4@MOF复合材料的制备方法,具体步骤如下:
(1)将1.5g FeCl3·6H2O溶解于30mL乙二醇溶剂中,加入0.8g三水合醋酸(FeCl3·6H2O与三水合醋酸的质量比为1.5: 0.8)搅拌30min,将所得混合物倒入不锈钢反应釜中,在温度180℃条件下反应7h,冷却至室温,用乙醇和去离子水洗涤,通过磁铁进行分离得到磁性Fe3O4纳米颗粒;
(2)将l,3,5-苯三甲酸溶解到乙醇中得到l,3,5-苯三甲酸的乙醇溶液,其中l,3,5-苯三甲酸的醇溶液中l,3,5-苯三甲酸的浓度为10mmol/L,将步骤(1)所得0.3g纳米Fe3O4分散到90mL l,3,5-苯三甲酸的乙醇溶液中,其中纳米Fe3O4颗粒与l,3,5-苯三甲酸的醇溶液的固液比g:mL为0.3:90,加热至温度为60℃并回流反应5h;
(3)将三水合硝酸铜溶解于醇溶剂中得到三水合硝酸铜的醇溶液,其中三水合硝酸铜的醇溶液中三水合硝酸铜的浓度为10mmol/L,在温度为60℃的条件下,将30mL三水合硝酸铜的醇溶液加入到步骤(2)所得反应物中进行回流反应4h,其中三水合硝酸铜的醇溶液与l,3,5-苯三甲酸的醇溶液的体积比为30: 90,冷却至室温,采用磁铁进行分离得到Fe3O4@Cu3(BTC)2纳米颗粒,并用乙醇和去离子水依次洗涤,置于温度为100℃的真空条件下干燥10h;
(4)按照Fe3O4@Cu3(BTC)2纳米颗粒与甲苯的固液比g:mL为0.1:10的比例,将步骤(3)所得Fe3O4@Cu3(BTC)2纳米颗粒分散到甲苯中得到甲苯悬浮溶液,然后加入1,2-乙二硫醇的乙醇溶液,其中1,2-乙二硫醇的乙醇溶液的浓度为0.25mol/L,1,2-乙二硫醇溶液与甲苯悬浮溶液的体积比为0.5: 10,在室温条件下反应22h,采用磁铁进行分离,用乙醇和去离子水依次洗涤,得到改性Fe3O4@MOF复合材料,即巯基改性的Fe3O4@MOF复合材料SH-Fe3O4@Cu3(BTC)2
本实施例制备的巯基改性的Fe3O4@MOF复合材料SH-Fe3O4@Cu3(BTC)2纳米颗粒的透射电镜图如图1所示,从图中可知,图中磁性Fe3O4纳米颗粒被包裹在MOF的壳里面,Fe3O4@MOF磁性微球为核-壳结构;
汞离子的吸附:称取10mg改性Fe3O4@MOF复合材料加入到10mL硝酸汞溶液中,其中硝酸汞溶液中二价汞离子浓度为100mg/L,采用盐酸调节溶液的pH值为3,常温条件下吸附反应24h,待吸附饱和后用外加磁场进行分离,取分离后的上清液用火焰原子吸收分光光度计对二价汞离子的浓度进行测量,计算其吸附效率,本实施例中二价汞离子的吸附效率为80%。
实施例2:一种改性Fe3O4@MOF复合材料的制备方法,具体步骤如下:
(1)将1.5g FeCl3·6H2O溶解于35mL乙二醇溶剂中,加入1.0g三水合醋酸(FeCl3·6H2O与三水合醋酸的质量比为1.5: 1.0)搅拌35min,将所得混合物倒入不锈钢反应釜中,在温度185℃条件下反应7h,冷却至室温,用乙醇和去离子水洗涤,通过磁铁进行分离得到磁性Fe3O4纳米颗粒;
(2)将l,3,5-苯三甲酸溶解到乙醇中得到l,3,5-苯三甲酸的乙醇溶液,其中l,3,5-苯三甲酸的醇溶液中l,3,5-苯三甲酸的浓度为12mmol/L,将步骤(1)所得0.35g纳米Fe3O4分散到80mL l,3,5-苯三甲酸的乙醇溶液中,其中纳米Fe3O4颗粒与l,3,5-苯三甲酸的醇溶液的固液比g:mL为0.35: 80,加热至温度为60℃并回流反应5.5h;
(3)将三水合硝酸铜溶解于醇溶剂中得到三水合硝酸铜的醇溶液,其中三水合硝酸铜的醇溶液中三水合硝酸铜的浓度为10mmol/L,在温度为60℃的条件下,将30mL三水合硝酸铜的醇溶液加入到步骤(2)所得反应物中进行回流反应4h,其中三水合硝酸铜的醇溶液与l,3,5-苯三甲酸的醇溶液的体积比为30: 80,冷却至室温,采用磁铁进行分离得到Fe3O4@Cu3(BTC)2纳米颗粒,并用乙醇和去离子水依次洗涤,置于温度为110℃的真空条件下干燥11h;
(4)按照Fe3O4@Cu3(BTC)2纳米颗粒与甲苯的固液比g:mL为0.15:10的比例,将步骤(3)所得Fe3O4@Cu3(BTC)2纳米颗粒分散到甲苯中得到甲苯悬浮溶液,然后加入1,2-乙二硫醇的乙醇溶液,其中1,2-乙二硫醇的乙醇溶液的浓度为0.27mol/L,1,2-乙二硫醇溶液与甲苯悬浮溶液的体积比为0.5: 10,在室温条件下反应23h,采用磁铁进行分离,用乙醇和去离子水依次洗涤,得到改性Fe3O4@MOF复合材料,即巯基改性的Fe3O4@MOF复合材料SH-Fe3O4@Cu3(BTC)2
汞离子的吸附:称取20mg改性Fe3O4@MOF复合材料加入到20mL硝酸汞溶液中,其中硝酸汞溶液中二价汞离子浓度为150mg/L,采用盐酸调节溶液的pH值为5,常温条件下吸附反应25h,待吸附饱和后用外加磁场进行分离,取分离后的上清液用火焰原子吸收分光光度计对二价汞离子的浓度进行测量,计算其吸附效率,本实施例中二价汞离子的吸附效率为83%。
实施例3:一种改性Fe3O4@MOF复合材料的制备方法,具体步骤如下:
(1)将2.5g FeCl3·6H2O溶解于40mL乙二醇溶剂中,加入1.0g三水合醋酸(FeCl3·6H2O与三水合醋酸的质量比为2.5:1.0)搅拌35min,将所得混合物倒入不锈钢反应釜中,在温度190℃条件下反应7.5h,冷却至室温,用乙醇和去离子水洗涤,通过磁铁进行分离得到磁性Fe3O4纳米颗粒;
(2)将l,3,5-苯三甲酸溶解到乙醇中得到l,3,5-苯三甲酸的乙醇溶液,其中l,3,5-苯三甲酸的醇溶液中l,3,5-苯三甲酸的浓度为15mmol/L,将步骤(1)所得0.40g纳米Fe3O4分散到85mL l,3,5-苯三甲酸的乙醇溶液中,其中纳米Fe3O4颗粒与l,3,5-苯三甲酸的醇溶液的固液比g:mL为0.40: 85,加热至温度为65℃并回流反应5.5h;
(3)将三水合硝酸铜溶解于醇溶剂中得到三水合硝酸铜的醇溶液,其中三水合硝酸铜的醇溶液中三水合硝酸铜的浓度为12mmol/L,在温度为65℃的条件下,将35mL三水合硝酸铜的醇溶液加入到步骤(2)所得反应物中进行回流反应4.5h,其中三水合硝酸铜的醇溶液与l,3,5-苯三甲酸的醇溶液的体积比为35: 85,冷却至室温,采用磁铁进行分离得到Fe3O4@Cu3(BTC)2纳米颗粒,并用乙醇和去离子水依次洗涤,置于温度为115℃的真空条件下干燥12h;
(4)按照Fe3O4@Cu3(BTC)2纳米颗粒与甲苯的固液比g:mL为0.20:10的比例,将步骤(3)所得Fe3O4@Cu3(BTC)2纳米颗粒分散到甲苯中得到甲苯悬浮溶液,然后加入1,2-乙二硫醇的乙醇溶液,其中1,2-乙二硫醇的乙醇溶液的浓度为0.30mol/L,1,2-乙二硫醇溶液与甲苯悬浮溶液的体积比为0.6: 10,在室温条件下反应23h,采用磁铁进行分离,用乙醇和去离子水依次洗涤,得到改性Fe3O4@MOF复合材料,即巯基改性的Fe3O4@MOF复合材料SH-Fe3O4@Cu3(BTC)2
汞离子的吸附:称取30mg改性Fe3O4@MOF复合材料加入到40mL硝酸汞溶液中,其中硝酸汞溶液中二价汞离子浓度为180mg/L,采用盐酸调节溶液的pH值为6,常温条件下吸附反应28h,待吸附饱和后用外加磁场进行分离,取分离后的上清液用火焰原子吸收分光光度计对二价汞离子的浓度进行测量,计算其吸附效率,本实施例中二价汞离子的吸附效率为90%;
本实施例制备的巯基改性的Fe3O4@MOF复合材料SH-Fe3O4@Cu3(BTC)2纳米颗粒在不同pH值的汞离子溶液中的吸附性能如图2所示,从图2可知,在pH为2~4的范围内,SH-Fe3O4@Cu3(BTC)2纳米颗粒对二价汞离子的吸附效率随pH的升高而增大;在pH为4~8的范围内,SH-Fe3O4@Cu3(BTC)2纳米颗粒对二价汞离子的吸附效率随pH的升高而减小。
实施例4:一种改性Fe3O4@MOF复合材料的制备方法,具体步骤如下:
(1)将2.5g FeCl3·6H2O溶解于40mL乙二醇溶剂中,加0.8g三水合醋酸(FeCl3·6H2O与三水合醋酸的质量比为2.5: 0.8)搅拌40min,将所得混合物倒入不锈钢反应釜中,在温度200℃条件下反应8.0h,冷却至室温,用乙醇和去离子水洗涤,通过磁铁进行分离得到磁性Fe3O4纳米颗粒;
(2)将l,3,5-苯三甲酸溶解到乙醇中得到l,3,5-苯三甲酸的乙醇溶液,其中l,3,5-苯三甲酸的醇溶液中l,3,5-苯三甲酸的浓度为15mmol/L,将步骤(1)所得0.50g纳米Fe3O4分散到80mL l,3,5-苯三甲酸的乙醇溶液中,其中纳米Fe3O4颗粒与l,3,5-苯三甲酸的醇溶液的固液比g:mL为0.50: 80,加热至温度为70℃并回流反应6h;
(3)将三水合硝酸铜溶解于醇溶剂中得到三水合硝酸铜的醇溶液,其中三水合硝酸铜的醇溶液中三水合硝酸铜的浓度为15mmol/L,在温度为70℃的条件下,将40mL三水合硝酸铜的醇溶液加入到步骤(2)所得反应物中进行回流反应5.0h,其中三水合硝酸铜的醇溶液与l,3,5-苯三甲酸的醇溶液的体积比为40: 80,冷却至室温,采用磁铁进行分离得到Fe3O4@Cu3(BTC)2纳米颗粒,并用乙醇和去离子水依次洗涤,置于温度为120℃的真空条件下干燥12h;
(4)按照Fe3O4@Cu3(BTC)2纳米颗粒与甲苯的固液比g:mL为0.30:10的比例,将步骤(3)所得Fe3O4@Cu3(BTC)2纳米颗粒分散到甲苯中得到甲苯悬浮溶液,然后加入1,2-乙二硫醇的乙醇溶液,其中1,2-乙二硫醇的乙醇溶液的浓度为0.30mol/L,1,2-乙二硫醇溶液与甲苯悬浮溶液的体积比为0.7: 10,在室温条件下反应24h,采用磁铁进行分离,用乙醇和去离子水依次洗涤,得到改性Fe3O4@MOF复合材料,即巯基改性的Fe3O4@MOF复合材料SH-Fe3O4@Cu3(BTC)2
汞离子的吸附:称取50mg改性Fe3O4@MOF复合材料加入到50mL硝酸汞溶液中,其中硝酸汞溶液中二价汞离子浓度为200mg/L,采用盐酸调节溶液的pH值为7,常温条件下吸附反应30h,待吸附饱和后用外加磁场进行分离,取分离后的上清液用火焰原子吸收分光光度计对二价汞离子的浓度进行测量,计算其吸附效率,本实施例中二价汞离子的吸附效率为94%;
本实施例制备的巯基改性的Fe3O4@MOF复合材料SH-Fe3O4@Cu3(BTC)2纳米颗粒在不同浓度的汞离子溶液中的吸附性能图如图3所示,从图3可知,随着二价汞离子浓度增大,SH-Fe3O4@Cu3(BTC)2对二价汞离子的吸附量逐渐增大。

Claims (6)

1.一种改性Fe3O4@MOF复合材料的制备方法,其特征在于,具体步骤如下:
(1)将FeCl3·6H2O溶解于醇溶剂中,加入三水合醋酸,在温度180~200℃条件下反应7~8h,冷却至室温,洗涤,分离得到磁性Fe3O4纳米颗粒;
(2)将l,3,5-苯三甲酸溶解到醇中得到l,3,5-苯三甲酸的醇溶液,将步骤(1)所得纳米Fe3O4分散到l,3,5-苯三甲酸的醇溶液中,加热至温度为60~70℃并回流反应5~6h;
(3)将三水合硝酸铜溶解于醇溶剂中得到三水合硝酸铜的醇溶液,在温度为60~70℃的条件下,将三水合硝酸铜的醇溶液加入到步骤(2)所得反应物中进行回流反应4~5h,冷却、分离得到Fe3O4@Cu3(BTC)2纳米颗粒,洗涤、干燥;
(4)将步骤(3)所得Fe3O4@Cu3(BTC)2纳米颗粒分散到甲苯中得到甲苯悬浮溶液中,然后加入1,2-乙二硫醇的乙醇溶液,在室温条件下反应22~24h,分离、洗涤次即为改性Fe3O4@MOF复合材料。
2.根据权利要求1所述改性Fe3O4@MOF复合材料的制备方法,其特征在于:步骤(1)中FeCl3·6H2O与三水合醋酸的质量比为(1.5~2.5): (0.8~1.0)。
3.根据权利要求1所述改性Fe3O4@MOF复合材料的制备方法,其特征在于:步骤(2)中l,3,5-苯三甲酸的醇溶液中l,3,5-苯三甲酸的浓度为10~15mmol/L,纳米Fe3O4颗粒与l,3,5-苯三甲酸的醇溶液的固液比g:mL为(0.3~0.5): (80~90)。
4.根据权利要求3所述改性Fe3O4@MOF复合材料的制备方法,其特征在于:步骤(3)中三水合硝酸铜的醇溶液中三水合硝酸铜的浓度为10~15mmol/L,三水合硝酸铜的醇溶液与l,3,5-苯三甲酸的醇溶液的体积比为(30~40): (80~90)。
5.根据权利要求4所述改性Fe3O4@MOF复合材料的制备方法,其特征在于:步骤(4)中Fe3O4@Cu3(BTC)2纳米颗粒与甲苯的固液比g:mL为(0.1~0.3):10,1,2-乙二硫醇的乙醇溶液的浓度为0.25~0.3mol/L,1,2-乙二硫醇溶液与甲苯悬浮溶液的体积比为(0.5~0.7): 10。
6.权利要求1~5任意一项所述改性Fe3O4@MOF复合材料的制备方法制得的改性Fe3O4@MOF复合材料在废水中重金属汞离子的吸附应用。
CN201710263573.7A 2017-04-21 2017-04-21 一种改性Fe3O4@MOF复合材料的制备方法及其应用 Active CN107029671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710263573.7A CN107029671B (zh) 2017-04-21 2017-04-21 一种改性Fe3O4@MOF复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710263573.7A CN107029671B (zh) 2017-04-21 2017-04-21 一种改性Fe3O4@MOF复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107029671A true CN107029671A (zh) 2017-08-11
CN107029671B CN107029671B (zh) 2020-06-16

Family

ID=59535839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710263573.7A Active CN107029671B (zh) 2017-04-21 2017-04-21 一种改性Fe3O4@MOF复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107029671B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107827192A (zh) * 2017-10-16 2018-03-23 北京工业大学 一种MOFs材料用于吸附水体中痕量汞离子的用途及方法
CN108465489A (zh) * 2018-03-07 2018-08-31 武汉理工大学 一种Fe3O4@ZIF-8核壳式复合材料及其制备方法和催化应用
CN109621910A (zh) * 2019-01-02 2019-04-16 湖南大学 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN109647364A (zh) * 2019-02-03 2019-04-19 重庆音波科技有限责任公司 一种用于重金属处理的可回收磁性吸附材料的制备方法
CN110508252A (zh) * 2019-09-29 2019-11-29 合肥海关技术中心 一种用于吸附汞的磁性金属有机骨架材料的制备方法
CN111019148A (zh) * 2019-12-10 2020-04-17 河南科技学院 一种改性泡沫铜材料及其制备方法和应用
CN111423878A (zh) * 2020-04-30 2020-07-17 山东交通学院 一种荧光磁性复合纳米颗粒、其制备方法以及由该荧光磁性复合纳米颗粒制备的生物探针
CN113533407A (zh) * 2021-06-17 2021-10-22 长沙理工大学 一种uspio-mof组装体及其制备方法和应用
CN115715978A (zh) * 2022-11-24 2023-02-28 中国原子能科学研究院 一种负载四氧化三铁的mof复合材料吸附剂及其制备方法和应用
CN115805063A (zh) * 2022-11-29 2023-03-17 浙江大学 一种多功能多孔核壳状复合纳米材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156434A (ja) * 2013-02-18 2014-08-28 Kansai Univ 新規な複合粒子含有の機能性金属有機骨格材料
CN105214613A (zh) * 2015-09-23 2016-01-06 济南大学 一种核壳结构Fe3O4@MIL(Fe)复合材料的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156434A (ja) * 2013-02-18 2014-08-28 Kansai Univ 新規な複合粒子含有の機能性金属有機骨格材料
CN105214613A (zh) * 2015-09-23 2016-01-06 济南大学 一种核壳结构Fe3O4@MIL(Fe)复合材料的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柯飞: "新型磁性纳米孔洞金属-有机骨架材料复合物的设计、性质及其应用", 《安徽大学硕士学位论文》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107827192A (zh) * 2017-10-16 2018-03-23 北京工业大学 一种MOFs材料用于吸附水体中痕量汞离子的用途及方法
CN108465489A (zh) * 2018-03-07 2018-08-31 武汉理工大学 一种Fe3O4@ZIF-8核壳式复合材料及其制备方法和催化应用
CN109621910A (zh) * 2019-01-02 2019-04-16 湖南大学 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN109621910B (zh) * 2019-01-02 2022-05-20 湖南大学 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN109647364A (zh) * 2019-02-03 2019-04-19 重庆音波科技有限责任公司 一种用于重金属处理的可回收磁性吸附材料的制备方法
CN110508252B (zh) * 2019-09-29 2022-02-25 合肥海关技术中心 一种用于吸附汞的磁性金属有机骨架材料的制备方法
CN110508252A (zh) * 2019-09-29 2019-11-29 合肥海关技术中心 一种用于吸附汞的磁性金属有机骨架材料的制备方法
CN111019148A (zh) * 2019-12-10 2020-04-17 河南科技学院 一种改性泡沫铜材料及其制备方法和应用
CN111019148B (zh) * 2019-12-10 2021-10-01 河南科技学院 一种改性泡沫铜材料及其制备方法和应用
CN111423878B (zh) * 2020-04-30 2022-11-08 山东交通学院 一种荧光磁性复合纳米颗粒、其制备方法以及由该荧光磁性复合纳米颗粒制备的生物探针
CN111423878A (zh) * 2020-04-30 2020-07-17 山东交通学院 一种荧光磁性复合纳米颗粒、其制备方法以及由该荧光磁性复合纳米颗粒制备的生物探针
CN113533407B (zh) * 2021-06-17 2022-02-18 长沙理工大学 一种uspio-mof组装体及其制备方法和应用
CN113533407A (zh) * 2021-06-17 2021-10-22 长沙理工大学 一种uspio-mof组装体及其制备方法和应用
CN115715978A (zh) * 2022-11-24 2023-02-28 中国原子能科学研究院 一种负载四氧化三铁的mof复合材料吸附剂及其制备方法和应用
CN115715978B (zh) * 2022-11-24 2024-02-20 中国原子能科学研究院 一种负载四氧化三铁的mof复合材料吸附剂及其制备方法和应用
CN115805063A (zh) * 2022-11-29 2023-03-17 浙江大学 一种多功能多孔核壳状复合纳米材料及其制备方法

Also Published As

Publication number Publication date
CN107029671B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN107029671A (zh) 一种改性Fe3O4@MOF复合材料的制备方法及其应用
Yu et al. Three-dimensional graphene/titanium dioxide composite for enhanced U (VI) capture: insights from batch experiments, XPS spectroscopy and DFT calculation
Wang et al. The synergistic elimination of uranium (VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide
Yang et al. Fabrication of core-shell Fe3O4@ MIL-100 (Fe) magnetic microspheres for the removal of Cr (VI) in aqueous solution
Min et al. Fe3O4@ ZIF-8: a magnetic nanocomposite for highly efficient UO22+ adsorption and selective UO22+/Ln3+ separation
Zhang et al. Simultaneous sensitive detection and rapid adsorption of UO 2 2+ based on a post-modified sp 2 carbon-conjugated covalent organic framework
Singhal et al. Efficient extraction of uranium from environmental samples using phosphoramide functionalized magnetic nanoparticles: understanding adsorption and binding mechanisms
Yuan et al. Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE
Zhang et al. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions
Li et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd (II) removal
Wang et al. Development of mercaptosuccinic anchored MOF through one-step preparation to enhance adsorption capacity and selectivity for Hg (II) and Pb (II)
Zhou et al. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid
Wang et al. Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime
Yang et al. Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@ MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study
Sun et al. Synthesis of polyethylenimine-functionalized poly (glycidyl methacrylate) magnetic microspheres and their excellent Cr (VI) ion removal properties
Li et al. Thiol-functionalized metal–organic frameworks embedded with chelator-modified magnetite for high-efficiency and recyclable mercury removal in aqueous solutions
Yao et al. The difference in the adsorption mechanisms of magnetic ferrites modified carbon nanotubes
CN105399176B (zh) 一种磺酸基改性超顺磁纳米材料的制备方法及其应用
CN105381784A (zh) 一种磁性氧化石墨烯复合材料的制备方法和应用
Zhang et al. Enahanced biosorption of Cu (II) by magnetic chitosan microspheres immobilized Aspergillus sydowii (MCMAs) from aqueous solution
Oladipo et al. High boron removal by functionalized magnesium ferrite nanopowders
Lu et al. Adsorption of Eu (III) on iron oxide/multiwalled carbon nanotube magnetic composites
Ji et al. Three-dimensional network graphene oxide/sodium alginate aerogel beads with slit-shaped structure: Synthesis, performance and selective adsorption mechanism for Cu (II)
La et al. Effective removal of Pb (II) using a graphene@ ternary oxides composite as an adsorbent in aqueous media
Yang et al. Application of a novel plasma-induced CD/MWCNT/iron oxide composite in zinc decontamination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant