CN107029563B - 一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途 - Google Patents

一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途 Download PDF

Info

Publication number
CN107029563B
CN107029563B CN201710458000.XA CN201710458000A CN107029563B CN 107029563 B CN107029563 B CN 107029563B CN 201710458000 A CN201710458000 A CN 201710458000A CN 107029563 B CN107029563 B CN 107029563B
Authority
CN
China
Prior art keywords
composite semipermeable
semipermeable membrane
preparation
semi
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710458000.XA
Other languages
English (en)
Other versions
CN107029563A (zh
Inventor
陶富军
张玉良
刘景榕
郭良帅
王斌斌
董丽华
尹衍升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201710458000.XA priority Critical patent/CN107029563B/zh
Publication of CN107029563A publication Critical patent/CN107029563A/zh
Application granted granted Critical
Publication of CN107029563B publication Critical patent/CN107029563B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途,该方法包含:步骤1,采用纤维素硝酸酯制备半透膜前驱体溶液;步骤2,将银盐添加至上述半透膜前驱体溶液中,搅拌均匀,得混合溶液;步骤3,将上述混合溶液平铺在平底容器上,自然干燥成膜;步骤4,将上述膜置于还原性溶液中浸泡,以将Ag盐还原为Ag单质;步骤5,将上述半透膜自然晾干,成功制备出含Ag复合半透膜。本发明制备的含Ag复合半透膜,利用其金属表面的等离子共振效应,将其吸收的太阳能转换为热能,实现光蒸发水,从而在海水淡化领域得以推广应用。

Description

一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途
技术领域
本发明属于膜的制备技术领域,涉及一种复合半透膜,具体涉及一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途。
背景技术
资源是当今世界所面临的三大重要的发展问题(人口、资源与环境)之一。对于资源的利用,人类的需要越来越大。在各类资源中,水资源是人类不可或缺并且无法替代的资源之一。在地球总水量中,人类真正可以利用的淡水资源基本是江河湖泊和地下水中的一部分,这部分水资源仅仅约占0.26%。目前,全球约有10亿多人面临着水资源匮乏的问题,据有关专家推算,大约至2025年,全球将有近一半的人会生活在极度缺水的区域,到2050年,预计缺水国家中的总人数将增加到10.6~24.3亿,大约会占全球预测人口比例的13%~20%。水资源短缺的危机已经成为制约人类可持续发展的重要因素之一,但是海水中有大量的水资源,因此将海水淡化将是缓解并有希望解决人类淡水危机的重要途径。
迄今,已经研发出来的海水淡化技术有二十余种,低温多效蒸馏、反渗透、冷冻、电渗析法和多级闪蒸法是目前常用的几种主要技术。最近,通过光热转换来实现海水蒸馏的相关技术研究十分火热,Advanced Materials(先进材料)2017,29,1603504,刊发了一篇与此相关的论文,意大利卡拉布里亚大学的Efrem Curcio教授课题组将传统的膜蒸馏技术与光热转换结合在一起开展了相关的科学研究。关于膜蒸馏技术,可以说已经是一个非常“古老”的研究课题了,它的原理是将膜技术与蒸馏过程结合起来,以膜两侧的温度差(即蒸汽压差)为驱动力,使料液在膜的表面蒸发,蒸发的成分可以通过膜孔,在膜的另一侧冷凝,以此实现蒸馏的过程。
发明内容
本发明的目的是提供一种复合半透膜,将膜蒸馏技术与光热转换结合起来,其具有较好的光热转换效果,通过光蒸发水,达到淡化海水的目的,适用于海水淡化领域。
为了达到上述目的,本发明提供了一种用于光蒸发水的含Ag复合半透膜的制备方法,该方法包含:
步骤1,采用纤维素硝酸酯制备半透膜前驱体溶液;
步骤2,将银盐添加至上述半透膜前驱体溶液中,搅拌均匀,得混合溶液;
步骤3,将上述混合溶液平铺在平底容器上,自然干燥成膜;
步骤4,将上述膜置于还原性溶液中浸泡,以将Ag盐还原为Ag单质;
步骤5,将上述半透膜自然晾干,成功制备出含Ag复合半透膜。
上述的用于光蒸发水的含Ag复合半透膜的制备方法,其中,步骤1中,制备半透膜前驱体溶液的方法是指,将干燥的纤维素硝酸酯溶于的低沸点有机溶液中,不断震荡,得到透明的半透膜前驱体溶液。
上述的用于光蒸发水的含Ag复合半透膜的制备方法,其中,所述的低沸点有机溶液为乙醚与乙醇的混合溶液。
上述的用于光蒸发水的含Ag复合半透膜的制备方法,其中,所述的纤维素硝酸酯通过将脱脂棉溶于浓硝酸与浓硫酸的混合溶液中,经水洗、干燥制备。
上述的用于光蒸发水的含Ag复合半透膜的制备方法,其中,步骤2中,所述的银盐选择三氟甲烷磺酸银、乙酸银或四氟硼酸银中的任意一种。
上述的用于光蒸发水的含Ag复合半透膜的制备方法,其中,步骤5中,所述的还原性溶液选择硼氢化钠,柠檬酸钠或水合肼中的任意一种。
上述的用于光蒸发水的含Ag复合半透膜的制备方法,其中,所述的还原性溶液的浓度为1~10g/L。
上述的用于光蒸发水的含Ag复合半透膜的制备方法,其中,步骤4中,所述的膜在还原性溶液浸泡时间为5min~1h。
本发明还提供了一种采用上述的方法制备的用于光蒸发水的含Ag复合半透膜,该含Ag复合半透膜的厚度(通过增加纤维素硝酸酯的质量,其半透膜前驱体溶液浓度会增大,其做出的膜的厚度越厚,厚度越厚,会越减少光蒸发水的效果)为50~300μm,其中,Ag的含量较佳范围为4.5~60%,以重量百分数计。Ag添加量太少,光蒸发水的速率和效率均不能达到应用要求;Ag添加量太多反而有阻塞半透膜水的透过作用,其效果反而降低。
本发明还提供了一种采用上述的方法制备的用于光蒸发水的含Ag复合半透膜的用途,该含Ag复合半透膜能通过光致水蒸发淡化海水,适用于光热转换领域。
金属银具有局域表面等离子体共振效应,从而具有较好的可见光响应特性,因此,将金属银与半透膜复合,制备金属基半透膜,利用太阳光辐射的太阳能,将光能转换为热能,实现光蒸发水,达到淡化海水的目的。
本发明所提出的含Ag复合半透膜制备方法具有制作工艺简单,成本低,光热转换效果好等优点,适合在光蒸发水,淡化海水领域内得到广阔的应用。
附图说明
图1 为本发明实施例1-7制备的含Ag复合半透膜的XRD图谱。
图2的(A)为本发明实施例7制备的胶棉半透膜(SCM)的SEM照片;图2的 (B)为本发明实施例6制备的含Ag复合半透膜的SEM照片。
图3的(A)-(B) 为本发明实施例1-7制备的半透膜的光蒸发水性能实验图谱(柱状图及折线图);图3的(C)为本发明实施例1-7制备的半透膜的光蒸发水速率图谱;图3的(D)为本发明实施例1-7制备的半透膜的光蒸发水效率图谱。
具体实施方式
以下结合附图和实施例对本发明的技术方案做进一步的说明。
制备纤维素硝酸酯:将5mL浓硝酸与10mL浓硫酸混合,配成混合溶液体积比1:2,将1g脱脂棉侵入上述混合溶液1h后,取出脱脂棉,用去离子水冲洗8次,30℃烘箱烘干24h,得到纤维素硝酸酯。
制备半透膜前驱体溶液:取出1g上述干燥后的纤维素硝酸酯,将其溶于25mL乙醚与25mL乙醇的混合溶液中,不断震荡,得到透明的半透膜前驱体溶液。
实施例1
将3.375mg三氟甲烷磺酸银添加至6mL上述半透膜前驱体溶液中,机械搅拌45min,得均匀混合的混合溶液,取出2mL混合溶液,将其加入直径为75mm的500mL烧杯底部,自然干燥成膜,将其裁剪为直径为35mm的圆形薄膜。将所制备的圆形薄膜放置于(5g/L)的硼氢化钠溶液浸泡30min,将其取出,成功制备出厚度约120μm的Ag含量约为0.25mg的含Ag复合半透膜半透膜。
实施例2
将6.75mg三氟甲烷磺酸银添加至6mL上述半透膜前驱体溶液,机械搅拌45min,得均匀混合的混合溶液,取出2mL混合溶液,将其加入直径为75 mm的500mL烧杯底部,自然干燥成膜,将其裁剪为直径为35mm的圆形薄膜。将所制备的圆形薄膜放置于(5g/L)的硼氢化钠溶液浸泡30min,将其取出,成功制备出厚度约120μm的Ag含量约为0.5mg的含Ag复合半透膜半透膜。
实施例3
将13.5mg三氟甲烷磺酸银添加至6mL上述半透膜前驱体溶液,机械搅拌45min,得均匀混合的混合溶液,取出2mL混合溶液,将其加入直径为75 mm的500mL烧杯底部,自然干燥成膜,将其裁剪为直径为35mm的圆形薄膜。将所制备的圆形薄膜放置于(5g/L)的硼氢化钠溶液浸泡30min,将其取出,成功制备出厚度约120μm的Ag含量约为1mg的含Ag复合半透膜。
实施例4
将27mg三氟甲烷磺酸银添加至6mL上述半透膜前驱体溶液,机械搅拌45min,得均匀混合的混合溶液,取出2mL混合溶液,将其加入直径为75mm的500mL烧杯底部,自然干燥成膜,将其裁剪为直径为35mm的圆形薄膜。将所制备的圆形薄膜放置于(5g/L)的硼氢化钠溶液浸泡30min,将其取出,成功制备出厚度约120μm的Ag含量约为2mg的含Ag复合半透膜。
实施例5
将54mg三氟甲烷磺酸银添加至6mL上述半透膜前驱体溶液,机械搅拌45min,得均匀混合的混合溶液,取出2mL混合溶液,将其加入直径为75mm的500mL烧杯底部,自然干燥成膜,将其裁剪为直径为35mm的圆形薄膜。将所制备的圆形薄膜放置于(5g/L)的硼氢化钠溶液浸泡30min,将其取出,成功制备出厚度约120μm的Ag含量约为4mg的含Ag复合半透膜。
实施例6
将108 mg 三氟甲烷磺酸银添加至6mL上述半透膜前驱体溶液,机械搅拌45min,得均匀混合的混合溶液,取出2mL混合溶液,将其加入直径为75 mm的500mL烧杯底部,自然干燥成膜,将其裁剪为直径为35mm的圆形薄膜。将所制备的圆形薄膜放置于(5g/L)的硼氢化钠溶液浸泡30min,将其取出,成功制备出厚度约120μm的Ag含量约为8mg的含Ag复合半透膜。
实施例7(对比例)
作为对比,还制备了未加三氟甲烷磺酸银的胶棉半透膜(SemipermeableCollodion Membrane):用吸管吸取2mL 半透膜前驱体溶液,将其将其加入直径为75mm的500mL烧杯底部,自然干燥成膜,将其裁剪为直径为35mm的圆形薄膜,制备出透明的胶棉半透膜(SCM)。
实施例1-7制备的7个半透膜的XRD图谱如图1所示,其中,1mg-8mg(实施例3-6)的图形中有明显的Ag单质的特征峰,与标准卡片JCPDS No.87-2717相对应,说明成功制备出了含银半透膜。
本发明实施例7制备的胶棉半透膜(SCM)的SEM照片如图2的(A)所示;本发明实施例6制备的含Ag复合半透膜的SEM照片如图2的(B)所示,其中,图2的(B)中有密布的亮点,该些亮点代表银单质,说明了实施例6制备的膜表面均匀的含有单质银纳米颗粒。
分别将实施例1-7制备的7个半透膜放置于开口直径为35mm的40mm × 25mm的装有10mL水的称量瓶的水面上,在模拟太阳光(1.5 KW/m2)的辐射下,通过电子精密天平准确记录水的减少量,其测试结果见图3(其中,water-dark为水在没有模拟太阳光的辐射下,及在室温的条件下其蒸发效果)。图3(A-B)所示的是光蒸发导致水的减少量柱状图和直接变化图。从图3C看出,最好的光蒸发速率高达1.06 kg m-2h-1。从图3D看出,其含量8mg的金属Ag基半透膜的光蒸发效率高达44.4 %。该含Ag复合半透膜展示出了非常好的光热转换效果。
综上所述,本发明提供的含Ag复合半透膜,将金属银与半透膜复合,利用太阳光辐射的太阳能,将光能转换为热能,光热转换效果好,能实现光蒸发水。而且,本发明的含Ag复合半透膜制备方法制作工艺简单,成本低,适合在光蒸发水,淡化海水领域内得到广阔的应用。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (5)

1.一种用于光蒸发水的含Ag复合半透膜的制备方法,其特征在于,该方法包含:
步骤1,将干燥的纤维素硝酸酯溶于乙醚与乙醇的混合溶液中,得到透明的半透膜前驱体溶液;
步骤2,将银盐添加至上述半透膜前驱体溶液中,搅拌均匀,得混合溶液;所述的银盐选择三氟甲烷磺酸银、乙酸银或四氟硼酸银中的任意一种;
步骤3,将上述混合溶液平铺在平底容器上,自然干燥成膜;
步骤4,将上述膜置于还原性溶液中浸泡5min~1h,以将Ag盐还原为Ag单质;所述的还原性溶液选择硼氢化钠,柠檬酸钠或水合肼中的任意一种;
步骤5,将上述半透膜自然晾干,成功制备出含Ag复合半透膜;其中,Ag的含量范围为4.5~60%,以重量百分数计。
2.如权利要求1所述的用于光蒸发水的含Ag复合半透膜的制备方法,其特征在于,所述的纤维素硝酸酯通过将脱脂棉溶于浓硝酸与浓硫酸的混合溶液中,经水洗、干燥制备。
3.如权利要求1所述的用于光蒸发水的含Ag复合半透膜的制备方法,其特征在于,所述的还原性溶液的浓度为1~10g/L。
4.一种采用权利要求1-3中任意一项所述的方法制备的用于光蒸发水的含Ag复合半透膜,其特征在于,所述的含Ag复合半透膜的厚度为50~300μm,其中,Ag的含量范围为4.5~60%,以重量百分数计。
5.一种采用权利要求1-3中任意一项所述的方法制备的用于光蒸发水的含Ag复合半透膜的用途,其特征在于,该含Ag复合半透膜能通过光致水蒸发淡化海水,适用于光热转换领域。
CN201710458000.XA 2017-06-16 2017-06-16 一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途 Expired - Fee Related CN107029563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710458000.XA CN107029563B (zh) 2017-06-16 2017-06-16 一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710458000.XA CN107029563B (zh) 2017-06-16 2017-06-16 一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途

Publications (2)

Publication Number Publication Date
CN107029563A CN107029563A (zh) 2017-08-11
CN107029563B true CN107029563B (zh) 2019-11-08

Family

ID=59541958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710458000.XA Expired - Fee Related CN107029563B (zh) 2017-06-16 2017-06-16 一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途

Country Status (1)

Country Link
CN (1) CN107029563B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043238B (zh) * 2017-12-29 2019-10-08 上海海事大学 一种用于光蒸发水的含Ti3C2复合半透膜、其制备方法与用途
CN110683603B (zh) * 2019-08-07 2022-01-18 浙江海洋大学 一种用于海水淡化的碳布表面覆盖铜铋纳米颗粒的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150353385A1 (en) * 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR080385A1 (es) * 2010-03-09 2012-04-04 Polymers Crc Ltd Procedimiento para la preparacion de un articulo antimicrobiano
CN102755837B (zh) * 2012-07-16 2014-05-14 济南大学 一种改善有机纳滤膜分离性能的方法
CN103418250B (zh) * 2013-07-05 2015-12-02 烟台绿水赋膜材料有限公司 一种在分离膜表面原位生成纳米粒子的方法
CN104511245A (zh) * 2013-09-27 2015-04-15 曹福宝 一种纳米无机—有机复合纳滤膜的制备方法
CN106809897B (zh) * 2015-11-30 2020-03-20 中国科学院金属研究所 用于海水淡化及净水处理的石墨烯光热转化材料制备方法
CN105854627B (zh) * 2016-05-04 2019-01-18 上海交通大学 一种多功能纳米复合污水净化薄膜及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150353385A1 (en) * 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination

Also Published As

Publication number Publication date
CN107029563A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN107158967B (zh) 一种用于光蒸发水的含碳复合半透膜、其制备方法及用途
Wang et al. A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement
Sheng et al. Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation
CN107158968B (zh) 一种用于光蒸发水的含半导体硫属化合物复合半透膜、其制备方法及用途
Wu et al. A plant‐transpiration‐process‐inspired strategy for highly efficient solar evaporation
Wang et al. Functional photothermal sponges for efficient solar steam generation and accelerated cleaning of viscous crude-oil spill
Chen et al. A 3D hemispheric steam generator based on an organic–inorganic composite light absorber for efficient solar evaporation and desalination
Shan et al. Porous reduced graphene oxide/nickel foam for highly efficient solar steam generation
Guo et al. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination
CN110510689B (zh) 一种多级结构的光热海水淡化材料及其制备方法和用途
Yin et al. Femtosecond laser induced robust Ti foam based evaporator for efficient solar desalination
CN108126531A (zh) 一种用于光蒸发水的含Cu2-xS的复合半透膜及其制备和用途
CN107029563B (zh) 一种用于光蒸发水的含Ag复合半透膜、其制备方法及用途
CN108043238B (zh) 一种用于光蒸发水的含Ti3C2复合半透膜、其制备方法与用途
RU2007142380A (ru) Инфильтрация исходного материала и способ покрытия
CN108715471B (zh) 一种基于铜纳米颗粒光热效应的海水淡化方法
Zhang et al. In situ chemo‐polymerized polypyrrole‐coated filter paper for high‐efficient solar vapor generation
CN109012197A (zh) 一种用于渗透汽化处理高含盐水的聚酰亚胺复合膜及制备方法
Sun et al. Porous biomass foam of polypyrrole-coated cattail fibers for efficient photothermal evaporation
CN109487315A (zh) 结合碳黑薄膜的多孔材料、其应用及其制备方法
Yue et al. A loofah-based all-day-round solar evaporator with phenolic lignin as the light-absorbing material for a highly efficient photothermal conversion
Song et al. Multifunctional and asymmetrically superwettable Janus membrane for all-day freshwater harvesting
Xu et al. Highly efficient solar steam generation of polyamide 6 membrane modified with graphene oxide and Au nanoparticles
CN110182854A (zh) 一种类海胆状氧化钴光热转化薄膜及其制备方法和应用
CN110172184A (zh) 具有双重散热功能的红外复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191108