CN107008379A - The preparation method of ozone Heterogeneous oxidation solid catalyst - Google Patents

The preparation method of ozone Heterogeneous oxidation solid catalyst Download PDF

Info

Publication number
CN107008379A
CN107008379A CN201710275266.0A CN201710275266A CN107008379A CN 107008379 A CN107008379 A CN 107008379A CN 201710275266 A CN201710275266 A CN 201710275266A CN 107008379 A CN107008379 A CN 107008379A
Authority
CN
China
Prior art keywords
weight
component
double
solid catalyst
ozone heterogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710275266.0A
Other languages
Chinese (zh)
Inventor
朱明�
吴雨婕
王麒麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Normal University
Original Assignee
Sichuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Normal University filed Critical Sichuan Normal University
Priority to CN201710275266.0A priority Critical patent/CN107008379A/en
Publication of CN107008379A publication Critical patent/CN107008379A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and technical field of chemical engineering catalysts.With activated carbon, carnallite, dolomite, calcite, aluminium hydroxide and reddish black masonry carrier are after lithium hypochlorite and double (acetylacetone,2,4-pentanedione) beryllium reamings, add surfactant β hydroxyethyl dimethyls ammonium lauryl sulfate and activation process is carried out under ul-trasonic irradiation, then carrier in hydrothermal reaction kettle with composite mineralizer borax and potassium sulfate, the cyclopentadiene promethium of catalytic activity auxiliary agent predecessor three, three (2, 2, 6, 6 tetramethyls 3, 5 heptadione acid) gadolinium, three (6, 6, 7, 7, 8, 8, 8 seven fluorine 2, 2 dimethyl 3, 5 octene diketone) dysprosium (III), three [N, double (trimethyl silane) amine of N] erbium, catalytic active center component predecessor cobalt edetate, zinc lactate, L lucid asparagus amino acid molybdenums and the golden potassium of tetrachloro, hydro-thermal reaction is carried out under the effect of emulsifying agent dodecyl dihydroxypropyl sulfate methyl ammonium, calcination obtains ozone Heterogeneous oxidation solid catalyst in Muffle furnace after drying removing moisture.

Description

The preparation method of ozone Heterogeneous oxidation solid catalyst
Technical field
The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and chemical catalyst skill Art field.
Background technology
Ozonation technology using ozone oxidation ability it is strong the characteristics of, can be by many organic pollution oxidation Decompositions, extensively For wastewater treatment.Catalytic ozonation technology is divided into ozone homogeneous catalytic oxidation and ozone heterogeneous catalytic oxidation, and ozone is equal Phase catalysis oxidation has that the more difficult separation and recovery of catalyst is reused, ozone utilization rate is low causes water process operating cost higher, Organic pollutant removal rate is relatively low simultaneously and easily causing secondary pollution of water is limited to its application;Ozone heterogeneous catalysis oxygen There is change technology catalyst to be easily isolated and recycled and reusable, ozone utilization rate is high, organic pollutant removal rate is higher, drop Low water process operating cost and receive significant attention its application the advantages of do not result in secondary pollution.Ozone heterogeneous catalysis It is to reach local organic matter enrichment by catalyst surface absorption organic matter that oxidation of organic compounds, which is decomposed, while ozone molecule absorption exists The hydroxyl radical free radical that catalyst surface produces high activity under catalyst action decomposes organic matter.Ozone heterogeneous catalytic oxidation Handle in waste water technology, core technology is the preparation of ozone Heterogeneous oxidation solid catalyst.
Ozone Heterogeneous oxidation solid catalyst is generally made up of carrier, activated centre and auxiliary agent.Due to being polluted in waste water Species are various, complex chemical composition feature, can produce harmful effect to performance such as absorption, the mithridatism of catalyst. Prepare that the carrier structure that ozone Heterogeneous oxidation solid catalyst uses is more single at present, adsorptivity is relatively low;Activated centre is universal Using normal transition metal salt, mithridatism is poor;Preparation method mainly has infusion process, the precipitation method, mixing method and collosol and gel etc. Method attachment activity center and adjuvant component are easily liquated out in carrier surface, activated centre and adjuvant component, cause catalyst Easily lose catalytic activity.For exist in current ozone Heterogeneous oxidation solid catalyst preparation method Catalyst Adsorption compared with Low, mithridatism is poor and easily loses catalytic activity problem, and exploitation is strengthened using multicomponent porous carrier through reaming, surface active The adsorptivity of catalyst, catalytic activity auxiliary agent predecessor, normal transition Organometallic are made using Rare-earth chemicals Compound and precious metal chemical complex are made catalytic active center predecessor and prepared with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering Ozone Heterogeneous oxidation solid catalyst containing multi-element metal has to improve the preparation method of catalyst mithridatism and catalytic activity There are larger environmental benefit and higher practical value.
The content of the invention
For existing in current ozone Heterogeneous oxidation solid catalyst preparation method, Catalyst Adsorption is relatively low, mithridatism Poor to lose catalytic activity problem with easy, exploitation strengthens catalyst using multicomponent porous carrier through reaming, surface active Adsorptivity, catalytic activity auxiliary agent predecessor, normal transition metallo-organic compound and expensive are made using Rare-earth chemicals Metallic compound is made catalytic active center predecessor and prepared with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering containing polynary gold The ozone Heterogeneous oxidation solid catalyst of category to improve the preparation method of catalyst mithridatism and catalytic activity, it is characterized in that Component A can be added in closed reactor and deionized water stirring prepares the aqueous solution, the weight concentration for control component A is 2%~6%, After the completion of prepared by solution, B component is added under agitation, 35 DEG C~50 DEG C are warming up to, continues stirring reaction 3h~6h, is filtered, instead Product is answered to obtain reaming modified support after 102 DEG C~106 DEG C dry constant weights;Reaming modified support puts into ultrasound reactor, The aqueous solution prepared by component C and deionized water is added, the weight concentration of component C is 3%~8%, is uniformly mixed, and control is super Sound power density is 0.3~0.8W/m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasound Surface active carrier mixed liquor;Ultrasonic surface activated carrier mixed liquor is transferred in hydrothermal reaction kettle, add D components and go from The aqueous solution that sub- water is prepared, the weight concentration of D components is 40%~55%, by weight, D component deionized water solutions:Ultrasonic table Weight ratio=1 of face activated carrier mixed liquor:(1.5~2), control 120 DEG C~180 DEG C of temperature, the hydro-thermal reaction time be 8h~ 16h, then dries to obtain fine particle;Fine particle is in Muffle furnace, 600 DEG C~950 DEG C, and calcination 3h~8h obtains ozone non- Homogeneous oxidizing solid catalyst.The component A is made up of lithium hypochlorite, double (acetylacetone,2,4-pentanedione) berylliums, by weight, lithium hypochlorite: Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B component is by activated carbon, carnallite, dolomite, calcite, hydroxide Aluminium, celestine composition, by weight, activated carbon:Carnallite:Dolomite:Calcite:Aluminium hydroxide:The weight of celestine it Than=(5~15):(7~17):(9~19):(11~21):(13~23):(15~25), by weight, component A:B component Weight ratio=1:(10~20), component C is beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate, by weight, component C:Reaming changes Weight ratio=1 of property carrier:(5~10), D components are by composite mineralizer borax, potassium sulfate, catalytic activity auxiliary agent predecessor three Cyclopentadiene promethium, three (DPM dpm,dipivalomethane acid) gadoliniums, three (the fluoro- 2,2- diformazans of 6,6,7,7,8,8,8- seven Base -3,5- octene diketone) dysprosium (III), three [N, N- double (trimethyl silane) amine] erbium Rare-earth chemicals, catalysis lives Property center predecessor normal transition metallo-organic compound cobalt edetate, zinc lactate, L- lucid asparagus amino acid molybdenums and noble metal Compound tetrachloro gold potassium, emulsifying agent dodecyl dihydroxypropyl sulfate methyl ammonium composition, by weight, borax:Potassium sulfate:Three Cyclopentadiene promethium:Three (DPM dpm,dipivalomethane acid) gadoliniums:Three (the fluoro- 2,2- diformazans of 6,6,7,7,8,8,8- seven Base -3,5- octenes diketone) dysprosium (III):Three [double (trimethyl silane) amine of N, N-] erbiums:Cobalt edetate:Zinc lactate:L- Tianmens Winter amino acid molybdenum:Tetrachloro gold potassium:The weight ratio of dodecyl dihydroxypropyl sulfate methyl ammonium=(4~8):(6~10):(3~ 6):(4~7):(5~8):(6~9):(10~15):(12~18):(4~7):(6~9):(6~20).The work of the B component Property charcoal, carnallite, dolomite, calcite, aluminium hydroxide, celestine crushed respectively, deionized water washing, which is dried, removes water After point, -200 mesh ,+400 mesh sieves point are carried out through standard screen, it is the mm of 0.0370mm~0.0750 control particle diameter.
What the technical method of the present invention was realized in:Lithium hypochlorite LiClO, double (second can be being added in closed reactor Acyl acetone) beryllium C10H14BeO4The aqueous solution is prepared with deionized water stirring, it is 0.0370mm~0.0750mm to add particle diameter after screening Activated carbon, carnallite, dolomite, calcite, aluminium hydroxide and celestine porous material carrier, in certain temperature and stirring Under the conditions of, the small Be of aqueous solution Ionic Radius2+(0.31Å)、Li+(0.60Å)Displace part ion radius in porous material Big Ca2+(0.99Å)、K+(1.33Å)、Ba2+(1.35Å)Plasma, the aperture of porous material carrier becomes big, surface roughness increasing Plus, filtering dries the reaming modified support input ultrasound reactor after constant weight, adds beta-hydroxyethyl dimethyl dodecyl base Ammonium sulfate [C12H25N(CH3)2CH2CH2OH]+CH3SO4 -The aqueous solution, controls ultrasonic power density, ultrasonic frequency, temperature and surpasses The sound oscillation time, under ultrasonic cavitation effect, beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate [C12H25N(CH3)2CH2CH2OH]+CH3SO4 -It is easy to escape into reaming modified support duct from the aqueous solution or is attached to reaming modified support surface, It is beneficial to being interconnected and carrier surface activation for carrier duct, enhances adsorptivity;After the completion of ultrasonic activation, ultrasonic surface is lived Change carrier mixed liquor to be transferred in hydrothermal reaction kettle, with borax Na2B4O7·10H2O, potassium sulfate K2SO4Composite mineralizer, catalysis The cyclopentadiene promethium Pm (C of coagent predecessor three5H5)3, three (DPM dpm,dipivalomethane acid) gadolinium C33H57GdO6、 Three (the fluoro- 2,2- dimethyl -3,5- octenes diketone of 6,6,7,7,8,8,8- seven) dysprosium (III) C30H30DyF21O6, three [N, N- are double (trimethyl silane) amine] erbium C18H54ErN3Si6Rare-earth chemicals, catalytic active center component predecessor normal transition Metallo-organic compound cobalt edetate C12H22O14Co, zinc lactate C6H10O6Zn, L- lucid asparagus amino acid molybdenum Mo [OOCCH2CH (NH2)COO]3(H2O)3With the golden potassium KAuCl of tetrachloro4Precious metal chemical complex, in emulsifying agent dodecyl dihydroxypropyl sulfate methyl ammonium [C12H25CH2CH(OH)CH(OH)N(CH3)3]+CH3SO4 -Hydro-thermal reaction is carried out under, mineralizer accelerates diffusion, makes reaction Thing lattice is activated, and promotes the progress of solid phase reaction, ultrasonic surface activated carrier and Rare-earth chemicals, normal transition Metallo-organic compound, precious metal chemical complex Uniform Doped, emulsifying agent dodecyl dihydroxypropyl sulfate methyl ammonium make reaction solution Form quasi-stationary emulsion and prevent separation of solid and liquid, sedimentation, while to the further surface active of porous carrier, by a constant temperature Degree, the hydro-thermal reaction of time, drying obtain the fine silt thing of Uniform Doped;The fine silt thing of Uniform Doped is in Muffle furnace, warp High temperature sintering, organic matter carbonization therein further enhances the microcellular structure of porous carrier, obtains porous carrier load The ozone Heterogeneous oxidation solid of the catalytic active center of rare-earth oxide, transition metal oxide and noble metal formation is urged Agent, improves the mithridatism and catalytic activity of catalyst.
Relative to art methods, outstanding feature of the present invention is that activated carbon, carnallite, white clouds are used in technology of preparing Stone, calcite, aluminium hydroxide, celestine porous material make carrier, due to lithium hypochlorite LiClO and double (acetylacetone,2,4-pentanedione) berylliums C10H14BeO4Reaming effect, beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate [C12H25N(CH3)2CH2CH2OH]+CH3SO4 -, ten Dialkyl group dihydroxypropyl sulfate methyl ammonium [C12H25CH2CH(OH)CH(OH)N(CH3)3]+CH3SO4 -To duct be interconnected and Surface activation;Rare-earth chemicals, normal transition metallo-organic compound and noble metal are made by hydro-thermal reaction Compound reaches Uniform Doped and is attached in carrier surface and duct that high temperature sintering makes organic matter carbonization strengthen and be formed Multi-level microcellular structure, porous carrier supported rare earth metal oxide, transition metal oxide and noble metal formation it is many First metal catalytic activity center is combined more firm with porous carrier, and the ozone Heterogeneous oxidation solid catalyst of preparation has more Strong adsorptivity, the cooperative effect of multi-element metal, the noble metal of particularly doping have stability and high activity, can suppress gold Liquating out for category catalytic active component, improves the mithridatism and catalytic activity of catalyst, with good environmental benefit and warp Ji benefit.
Embodiment
Embodiment 1:1.35g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 1.65g, 140ml deionized waters are added to volume for 500ml Can be uniformly mixed in closed reactor, the weight concentration of the aqueous solution is 2.1%, lithium hypochlorite:Double (acetylacetone,2,4-pentanedione) berylliums Weight ratio=1:1.2;Add deionized water wash to it is neutral, 103 DEG C dry and remove the mesh of -200 mesh of sieving after moisture~+400 2.75g activated carbons, 3.75g carnallites, 4.75g dolomites, 5.75g calcites, 6.75g aluminium hydroxides, the 7.75g of standard screen The weight of celestine, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(3g):The weight of porous material(31.5g)=1:10.5, it is warming up to 36 DEG C, reaming modified support 31g is obtained after continuing stirring reaction 3.2h, filtering, 103 DEG C of dry constant weights;It is anti-in 500ml ultrasonic waves Answer in device, put into reaming modified support 31g, add 3.25g beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate and be dissolved in 100ml The aqueous solution of ionized water, the weight concentration of the aqueous solution is 3.1%, is uniformly mixed, beta-hydroxyethyl dimethyl dodecyl base sulphur Sour ammonium(3.25g):Reaming modified support(31g )=1:9.5;It is 0.4 W/m to control ultrasonic power density3, ultrasonic frequency 41 DEG C of 21kHz, temperature, sonic oscillation 2.2h;After the completion of ultrasonic activation, the ultrasonic surface activated carrier in ultrasound reactor Mixed liquor is transferred in 500ml hydrothermal reaction kettles, add by 2.1g boraxs, 3.05g potassium sulfates, the cyclopentadiene promethiums of 1.6g tri-, 2.05g tri- (DPM dpm,dipivalomethane acid) gadolinium, 2.6g tri- (the fluoro- 2,2- dimethyl of 6,6,7,7,8,8,8- seven- 3,5- octenes diketone) dysprosium (III), 3.05g tri- [N, N- double (trimethyl silane) amine] erbium, 5.05g cobalt edetates, 6.1g breasts The golden potassium of sour zinc, 2.05g L- lucid asparagus amino acid molybdenum, 3.1g tetrachloros, 3.05g dodecyl dihydroxypropyl sulfate methyl ammoniums and The aqueous solution that 50ml deionized waters are prepared, the weight concentration of the aqueous solution is 40.3%, the weight of the aqueous solution:Ultrasonic surface is lived Change weight=83.8g of carrier mixed liquor:134.25g =1:1.6,125 DEG C of temperature is controlled, the hydro-thermal reaction time is 8.3h, then 105 DEG C dry to obtain fine silt thing;Fine silt thing is in Muffle furnace, 620 DEG C, calcination 3.2h, after cooling down, can obtain fine powder Granular ozone Heterogeneous oxidation solid catalyst.
Embodiment 2:0.24g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 0.36g, 10ml deionized waters, being added to volume is 100ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 5.7%, lithium hypochlorite:Double (levulinics Ketone) beryllium weight ratio=1:1.5;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+ The 1.45g activated carbons of 400 mesh standard sieves, 1.65g carnallites, 1.85g dolomites, 2.05g calcites, 2.25g aluminium hydroxides, The weight of 2.45g celestines, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(0.6g):The weight of porous material(11.7g)=1: 19.5,48 DEG C are warming up to, reaming modified support 11.5g is obtained after continuing stirring reaction 5.8h, filtering, 105 DEG C of dry constant weights; In 100ml ultrasound reactors, reaming modified support 11.5g is put into, 2.2g beta-hydroxyethyl dimethyl dodecyl base sulphur is added Sour ammonium is dissolved in the aqueous solution of 26ml deionized waters, and the weight concentration of the aqueous solution is 7.8%, is uniformly mixed, beta-hydroxyethyl two Methyl ammonium lauryl sulfate(2.2g):Reaming modified support(11.5g )=1:5.2;It is 0.7 W/ to control ultrasonic power density m3, ultrasonic frequency 29kHz, 54 DEG C of temperature, sonic oscillation 4.7h;After the completion of ultrasonic activation, super in ultrasound reactor Sound surface active carrier mixed liquor is transferred in 100ml hydrothermal reaction kettles, add by 0.78g boraxs, 0.97g potassium sulfates, The cyclopentadiene promethiums of 0.58g tri-, 0.67g tri- (DPM dpm,dipivalomethane acid) gadolinium, 0.78g tri- (6,6,7,7,8,8, The fluoro- 2,2- dimethyl -3,5- octenes diketone of 8- seven) dysprosium (III), 0.87g tri- [N, N- double (trimethyl silane) amine] erbium, 1.48g The golden potassium of cobalt edetate, 1.77g zinc lactates, 0.68g L- lucid asparagus amino acid molybdenum, 0.87g tetrachloros, 1.98g dodecyl dihydroxies The aqueous solution that propyl group sulfate methyl ammonium and 10ml deionized waters are prepared, the weight concentration of the aqueous solution is 53.3%, the aqueous solution Weight:Weight=21.43g of ultrasonic surface activated carrier mixed liquor:39.7g =1:1.9,175 DEG C of temperature is controlled, hydro-thermal is anti- It is 15.5h between seasonable, then dries to obtain fine silt thing for 105 DEG C;Fine silt thing is in Muffle furnace, 930 DEG C, calcination 7.5h, cooling After cooling, the ozone Heterogeneous oxidation solid catalyst of fine particle shape can obtain.
Comparative example 1:Preparation process is not added with lithium hypochlorite, double (acetylacetone,2,4-pentanedione) berylliums, Β-hydroxyethyl dimethyl dodecyl Outside ammonium sulfate, dodecyl dihydroxypropyl sulfate methyl ammonium, borax and potassium sulfate, whole preparation process, preparation condition and implementation Example 1 is identical.
The parameter of ozone Heterogeneous oxidation solid catalyst prepared by embodiment 1, embodiment 2 and comparative example 1 is included in table 1.
The embodiment of table 1 and comparative example prepare ozone Heterogeneous oxidation solid catalysis agent parameter
Project Average pore size (nm) Pore volume (cm3/g) BET is than surface (m2/g)
Embodiment 1 4.848 0.6323 733.93
Embodiment 2 4.394 0.5905 606.38
Comparative example 1 2.791 0.3836 423.62

Claims (2)

1. a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, it is characterized in that A groups can added in closed reactor Divide and deionized water stirring prepares the aqueous solution, the weight concentration for controlling component A is 2%~6%, after the completion of prepared by solution, in stirring Lower addition B component, is warming up to 35 DEG C~50 DEG C, continues stirring reaction 3h~6h, and filtering, reaction product is dry at 102 DEG C~106 DEG C Reaming modified support is obtained after dry constant weight, reaming modified support input ultrasound reactor, addition is matched somebody with somebody by component C and deionized water The aqueous solution of system, the weight concentration of component C is 3%~8%, is uniformly mixed, and it is 0.3~0.8W/ to control ultrasonic power density m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasonic surface activated carrier mixed liquor, transfer Into hydrothermal reaction kettle, the aqueous solution that D components and deionized water are prepared is added, the weight concentration of D components is 40%~55%, is pressed Weight meter, D component deionized water solutions:Weight ratio=1 of ultrasonic surface activated carrier mixed liquor:(1.5~2), control temperature 120 DEG C~180 DEG C, the hydro-thermal reaction time is 8h~16h, then dries to obtain fine silt thing, fine silt thing is in Muffle furnace, 600 DEG C~950 DEG C, calcination 3h~8h obtains ozone Heterogeneous oxidation solid catalyst;The component A by expanding agent lithium hypochlorite, Double (acetylacetone,2,4-pentanedione) beryllium compositions, by weight, lithium hypochlorite:Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B groups Divide and be made up of activated carbon, carnallite, dolomite, calcite, aluminium hydroxide, celestine, by weight, activated carbon:Carnallite: Dolomite:Calcite:Aluminium hydroxide:The weight ratio of celestine=(5~15):(7~17):(9~19):(11~21): (13~23):(15~25), by weight, component A:Weight ratio=1 of B component:(10~20), component C is beta-hydroxyethyl two Methyl ammonium lauryl sulfate, by weight, component C:Weight ratio=1 of reaming modified support:(5~10), D components are by multiple Close mineralizer borax, potassium sulfate, the cyclopentadiene promethium of catalytic activity auxiliary agent predecessor three, three (2,2,6,6- tetramethyl -3,5- heptan two Ketone acid) gadolinium, three (the fluoro- 2,2- dimethyl -3,5- octenes diketone of 6,6,7,7,8,8,8- seven) dysprosiums (III), the three [double (front threes of N, N- Base silane) amine] erbium Rare-earth chemicals, catalytic active center predecessor normal transition metallo-organic compound glucose The golden potassium of sour cobalt, zinc lactate, L- lucid asparagus amino acid molybdenums and precious metal chemical complex tetrachloro, emulsifying agent dodecyl dihydroxypropyl sulfuric acid Ammonium methyl is constituted, by weight, borax:Potassium sulfate:Three cyclopentadiene promethiums:Three (DPM dpm,dipivalomethane acid) Gadolinium:Three (the fluoro- 2,2- dimethyl -3,5- octenes diketone of 6,6,7,7,8,8,8- seven) dysprosiums (III):Three [double (the trimethyl silicanes of N, N- Alkane) amine] erbium:Cobalt edetate:Zinc lactate:L- lucid asparagus amino acid molybdenums:Tetrachloro gold potassium:Dodecyl dihydroxypropyl Methylsulfate The weight ratio of ammonium=(4~8):(6~10):(3~6):(4~7):(5~8):(6~9):(10~15):(12~18):(4 ~7):(6~9):(6~20).
2. B component is by activated carbon, carnallite, dolomite, calcite, aluminium hydroxide, celestine group according to claim 1 Into activated carbon, carnallite, dolomite, calcite, aluminium hydroxide, celestine are crushed respectively, deionized water washing drying Remove after moisture, sieved through standard screen, it is 0.0370mm~0.0750mm to control particle diameter.
CN201710275266.0A 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst Withdrawn CN107008379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710275266.0A CN107008379A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710275266.0A CN107008379A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Publications (1)

Publication Number Publication Date
CN107008379A true CN107008379A (en) 2017-08-04

Family

ID=59447214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710275266.0A Withdrawn CN107008379A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Country Status (1)

Country Link
CN (1) CN107008379A (en)

Similar Documents

Publication Publication Date Title
CN107051480A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008379A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008380A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107096542A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051487A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008360A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008376A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020116A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107096544A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008377A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051496A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020122A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159249A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008358A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107096543A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107029766A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008371A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008368A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008372A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020152A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020120A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107088425A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008384A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN106984347A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159248A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170804

WW01 Invention patent application withdrawn after publication