CN107051480A - The preparation method of ozone Heterogeneous oxidation solid catalyst - Google Patents

The preparation method of ozone Heterogeneous oxidation solid catalyst Download PDF

Info

Publication number
CN107051480A
CN107051480A CN201710274759.2A CN201710274759A CN107051480A CN 107051480 A CN107051480 A CN 107051480A CN 201710274759 A CN201710274759 A CN 201710274759A CN 107051480 A CN107051480 A CN 107051480A
Authority
CN
China
Prior art keywords
weight
component
double
solid catalyst
dichloro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710274759.2A
Other languages
Chinese (zh)
Inventor
朱明�
吴雨婕
王麒麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Normal University
Original Assignee
Sichuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Normal University filed Critical Sichuan Normal University
Priority to CN201710274759.2A priority Critical patent/CN107051480A/en
Publication of CN107051480A publication Critical patent/CN107051480A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and technical field of chemical engineering catalysts.With activated carbon, carnallite, dolomite, calcite, fluorite and glauberite make carrier after lithium hypochlorite and double (acetylacetone,2,4-pentanedione) beryllium reamings, add surfactant β hydroxyethyl dimethyls ammonium lauryl sulfate and activation process is carried out under ul-trasonic irradiation, then carrier in hydrothermal reaction kettle with composite mineralizer borax and potassium sulfate, the cyclopentadiene promethium of catalytic activity auxiliary agent predecessor three, three (2, 2, 6, 6 tetramethyls 3, 5 heptadione acid) gadolinium, it is hydrated three acetic acid terbiums, three [N, double (trimethyl silane) amine of N] erbium, catalytic active center predecessor cobalt edetate, cupric glutamate and the ammino palladium of dichloro four, the ammino platinum of dichloro two, hydro-thermal reaction is carried out under the effect of emulsifying agent methyl chloride acryloyloxyethyl trimethyl ammonium, drying is removed after moisture, calcination obtains ozone Heterogeneous oxidation solid catalyst in Muffle furnace.

Description

The preparation method of ozone Heterogeneous oxidation solid catalyst
Technical field
The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and chemical catalyst skill Art field.
Background technology
Ozonation technology using ozone oxidation ability it is strong the characteristics of, can be by many organic pollution oxidation Decompositions, extensively For wastewater treatment.Catalytic ozonation technology is divided into ozone homogeneous catalytic oxidation and ozone heterogeneous catalytic oxidation, and ozone is equal Phase catalysis oxidation has that the more difficult separation and recovery of catalyst is reused, ozone utilization rate is low causes water process operating cost higher, Organic pollutant removal rate is relatively low simultaneously and easily causing secondary pollution of water is limited to its application;Ozone heterogeneous catalysis oxygen There is change technology catalyst to be easily isolated and recycled and reusable, ozone utilization rate is high, organic pollutant removal rate is higher, drop Low water process operating cost and receive significant attention its application the advantages of do not result in secondary pollution.Ozone heterogeneous catalysis It is to reach local organic matter enrichment by catalyst surface absorption organic matter that oxidation of organic compounds, which is decomposed, while ozone molecule absorption exists The hydroxyl radical free radical that catalyst surface produces high activity under catalyst action decomposes organic matter.Ozone heterogeneous catalytic oxidation Handle in waste water technology, core technology is the preparation of ozone Heterogeneous oxidation solid catalyst.
Ozone Heterogeneous oxidation solid catalyst is generally made up of carrier, activated centre and auxiliary agent.Due to being polluted in waste water Species are various, complex chemical composition feature, can produce harmful effect to performance such as absorption, the mithridatism of catalyst. Prepare that the carrier structure that ozone Heterogeneous oxidation solid catalyst uses is more single at present, adsorptivity is relatively low;Activated centre is universal Using normal transition metal salt, mithridatism is poor;Preparation method mainly has infusion process, the precipitation method, mixing method and collosol and gel etc. Method attachment activity center and adjuvant component are easily liquated out in carrier surface, activated centre and adjuvant component, cause catalyst Easily lose catalytic activity.For exist in current ozone Heterogeneous oxidation solid catalyst preparation method Catalyst Adsorption compared with Low, mithridatism is poor and easily loses catalytic activity problem, and exploitation is strengthened using multicomponent porous carrier through reaming, surface active The adsorptivity of catalyst, catalytic activity auxiliary agent predecessor, normal transition Organometallic are made using Rare-earth chemicals Compound and precious metal chemical complex are made catalytic active center predecessor and prepared with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering Ozone Heterogeneous oxidation solid catalyst containing multi-element metal has to improve the preparation method of catalyst mithridatism and catalytic activity There are larger environmental benefit and higher practical value.
The content of the invention
For existing in current ozone Heterogeneous oxidation solid catalyst preparation method, Catalyst Adsorption is relatively low, mithridatism Poor to lose catalytic activity problem with easy, exploitation strengthens catalyst using multicomponent porous carrier through reaming, surface active Adsorptivity, catalytic activity auxiliary agent predecessor, normal transition metallo-organic compound and expensive are made using Rare-earth chemicals Metallic compound is made catalytic active center predecessor and prepared with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering containing polynary gold The ozone Heterogeneous oxidation solid catalyst of category to improve the preparation method of catalyst mithridatism and catalytic activity, it is characterized in that Component A can be added in closed reactor and deionized water stirring prepares the aqueous solution, the weight concentration for control component A is 2%~6%, After the completion of prepared by solution, B component is added under agitation, 35 DEG C~50 DEG C are warming up to, continues stirring reaction 3h~6h, is filtered, instead Product is answered to obtain reaming modified support after 102 DEG C~106 DEG C dry constant weights;Reaming modified support puts into ultrasound reactor, The aqueous solution prepared by component C and deionized water is added, the weight concentration of component C is 3%~8%, is uniformly mixed, and control is super Sound power density is 0.3~0.8W/m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasound Surface active carrier mixed liquor;Ultrasonic surface activated carrier mixed liquor is transferred in hydrothermal reaction kettle, add D components and go from The aqueous solution that sub- water is prepared, the weight concentration of D components is 40%~55%, by weight, D component deionized water solutions:Ultrasonic table Weight ratio=1 of face activated carrier mixed liquor:(1.5~2), control 120 DEG C~180 DEG C of temperature, the hydro-thermal reaction time be 8h~ 16h, then dries to obtain fine particle;Fine particle is in Muffle furnace, 600 DEG C~950 DEG C, and calcination 3h~8h obtains ozone non- Homogeneous oxidizing solid catalyst.The component A is made up of lithium hypochlorite, double (acetylacetone,2,4-pentanedione) berylliums, by weight, lithium hypochlorite: Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B component by activated carbon, carnallite, dolomite, calcite, fluorite, Glauberite is constituted, by weight, activated carbon:Carnallite:Dolomite:Calcite:Fluorite:The weight ratio of glauberite=(5~ 15):(7~17):(9~19):(11~21):(13~23):(15~25), by weight, component A:The weight ratio of B component =1:(10~20), component C is beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate, by weight, component C:Reaming modified support Weight ratio=1:(5~10), D components are by composite mineralizer borax, potassium sulfate, the cyclopentadiene of catalytic activity auxiliary agent predecessor three Promethium, three (DPM dpm,dipivalomethane acid) gadoliniums, three acetic acid terbiums of hydration, three [double (trimethyl silane) amine of N, N-] erbiums Rare-earth chemicals, catalytic active center predecessor normal transition metallo-organic compound cobalt edetate, glutamic acid Copper and the ammino palladium of precious metal chemical complex dichloro four, the ammino platinum of dichloro two, emulsifying agent methyl chloride acryloyloxyethyl trimethyl Ammonium is constituted, by weight, borax:Potassium sulfate:Three cyclopentadiene promethiums:Three (DPM dpm,dipivalomethane acid) gadoliniums:Water Close three acetic acid terbiums:Three [double (trimethyl silane) amine of N, N-] erbiums:Cobalt edetate:Cupric glutamate:The ammino palladium of dichloro four:Dichloro two Ammino platinum:The weight ratio of methyl chloride acryloyloxyethyl trimethyl ammonium=(4~8):(6~10):(3~6):(4~7): (5~8):(6~9):(10~15):(12~18):(4~7):(6~9):(6~20).Activated carbon, the light halogen of the B component Stone, dolomite, calcite, fluorite, glauberite are crushed respectively, and deionized water washing, which is dried, to be removed after moisture, through standard screen - 200 mesh ,+400 mesh sieves point are carried out, it is the mm of 0.0370mm~0.0750 control particle diameter.
What the technical method of the present invention was realized in:Lithium hypochlorite LiClO, double (second can be being added in closed reactor Acyl acetone) beryllium C10H14BeO4The aqueous solution is prepared with deionized water stirring, it is 0.0370mm~0.0750mm to add particle diameter after screening Activated carbon, carnallite, dolomite, calcite, fluorite and glauberite porous material carrier, in certain temperature and stirring condition Under, the small Be of aqueous solution Ionic Radius2+(0.31Å)、Li+(0.60Å)Displace part ion radius in porous material big Ca2+(0.99Å)、K+(1.33Å)、Ba2+(1.35Å)Plasma, the aperture of porous material carrier becomes big, surface roughness increase, Filtering, dries the reaming modified support input ultrasound reactor after constant weight, adds beta-hydroxyethyl dimethyl dodecyl base sulphur Sour ammonium [C12H25N(CH3)2CH2CH2OH]+CH3SO4 -The aqueous solution, control ultrasonic power density, ultrasonic frequency, temperature and ultrasound Duration of oscillation, under ultrasonic cavitation effect, beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate [C12H25N(CH3)2CH2CH2OH]+ CH3SO4 -It is easy to escape into reaming modified support duct from the aqueous solution or is attached to reaming modified support surface, is beneficial to carrier Being interconnected and carrier surface activation for duct, enhances adsorptivity;After the completion of ultrasonic activation, the mixing of ultrasonic surface activated carrier Liquid is transferred in hydrothermal reaction kettle, with borax Na2B4O7·10H2O, potassium sulfate K2SO4Before composite mineralizer, catalytic activity auxiliary agent Drive the cyclopentadiene promethium Pm (C of thing three5H5)3, three (DPM dpm,dipivalomethane acid) gadolinium C33H57GdO6, hydration three acetic acid Terbium C6H11O7Tb, three [double (trimethyl silane) amine of N, N-] erbium C18H54ErN3Si6In Rare-earth chemicals, catalytic activity Heart component predecessor normal transition metallo-organic compound cobalt edetate C12H22O14Co, cupric glutamate C5H7NO4Cu and dichloro Four ammino palladium Pd (NH3)4Cl2, the ammino platinum Pt (NH of dichloro two3)2Cl2Precious metal chemical complex, in emulsifying agent methyl chloride acryloyl Epoxide ethyl trimethyl ammonium CH2C(CH3)COOCH2CH2N(CH3)3Cl carries out hydro-thermal reaction under, mineralizer accelerate diffusion, Reactant lattice is activated, the progress of solid phase reaction is promoted, it is ultrasonic surface activated carrier and Rare-earth chemicals, general Logical transition metal organometallic compound, precious metal chemical complex Uniform Doped, emulsifying agent methyl chloride acryloyloxyethyl trimethyl Ammonium makes reaction solution form quasi-stationary emulsion to prevent separation of solid and liquid, sedimentation, while to the further surface active of porous carrier, lead to Cross in certain temperature, the hydro-thermal reaction of time, drying obtains the fine silt thing of Uniform Doped;The fine silt thing of Uniform Doped is in horse Not in stove, through high temperature sintering, organic matter carbonization therein further enhances the microcellular structure of porous carrier, obtains porous The heterogeneous oxygen of ozone of the catalytic active center of carrier loaded rare-earth oxide, transition metal oxide and noble metal formation Change solid catalyst, improve the mithridatism and catalytic activity of catalyst.
Relative to art methods, outstanding feature of the present invention is that activated carbon, carnallite, white clouds are used in technology of preparing Stone, calcite, fluorite, glauberite porous material make carrier, due to lithium hypochlorite LiClO and double (acetylacetone,2,4-pentanedione) berylliums C10H14BeO4Reaming effect, beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate [C12H25N(CH3)2CH2CH2OH]+CH3SO4 -, chlorine Change methacryloxyethyl trimethyl ammonium CH2C(CH3)COOCH2CH2N(CH3)3Cl is interconnected and surface work to duct Change is acted on;Rare-earth chemicals, normal transition metallo-organic compound and precious metal chemical complex are made by hydro-thermal reaction Reach Uniform Doped and be attached in carrier surface and duct, high temperature sintering makes organic matter carbonization strengthen and form multilayer Secondary microcellular structure, the multi-element metal of porous carrier supported rare earth metal oxide, transition metal oxide and noble metal formation Catalytic active center is combined more firm with porous carrier, and the ozone Heterogeneous oxidation solid catalyst of preparation has stronger suction Attached property, the cooperative effect of multi-element metal, the noble metal of particularly doping have stability and high activity, can suppress metal catalytic Liquating out for active component, improves the mithridatism and catalytic activity of catalyst, with good environmental benefit and economic benefit.
Embodiment
Embodiment 1:1.35g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 1.65g, 140ml deionized waters are added to volume for 500ml Can be uniformly mixed in closed reactor, the weight concentration of the aqueous solution is 2.1%, lithium hypochlorite:Double (acetylacetone,2,4-pentanedione) berylliums Weight ratio=1:1.2;Add deionized water wash to it is neutral, 103 DEG C dry and remove the mesh of -200 mesh of sieving after moisture~+400 The 2.75g activated carbons of standard screen, 3.75g carnallites, 4.75g dolomites, 5.75g calcites, 6.75g fluorites, 7.75g calcium awns The weight of nitre, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(3g):The weight of porous material(31.5g)=1:10.5, it is warming up to 36 DEG C, obtain reaming modified support 31g after continuing stirring reaction 3.2h, filtering, 103 DEG C of dry constant weights;In 500ml ultrasonic responses In device, put into reaming modified support 31g, add 3.25g beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate be dissolved in 100ml go from The aqueous solution of sub- water, the weight concentration of the aqueous solution is 3.1%, is uniformly mixed, beta-hydroxyethyl dimethyl dodecyl base sulfuric acid Ammonium(3.25g):Reaming modified support(31g )=1:9.5;It is 0.4 W/m to control ultrasonic power density3, ultrasonic frequency 41 DEG C of 21kHz, temperature, sonic oscillation 2.2h;After the completion of ultrasonic activation, the ultrasonic surface activated carrier in ultrasound reactor Mixed liquor is transferred in 500ml hydrothermal reaction kettles, add by 2.1g boraxs, 3.05g potassium sulfates, the cyclopentadiene promethiums of 1.6g tri-, 2.05g tri- (DPM dpm,dipivalomethane acid) gadolinium, 2.6g are hydrated three acetic acid terbiums, the [double (trimethyls of N, N- of 3.05g tri- Silane) amine] erbium, 5.05g cobalt edetates, 6.1g cupric glutamates, the ammino palladium of 2.05g dichloros four, the ammino platinum of 3.1g dichloros two, The aqueous solution that 3.05g methyl chloride acryloyloxyethyl trimethyl ammoniums and 50ml deionized waters are prepared, the weight of the aqueous solution Concentration is 40.3%, the weight of the aqueous solution:Weight=83.8g of ultrasonic surface activated carrier mixed liquor:134.25g =1:1.6, 125 DEG C of temperature is controlled, the hydro-thermal reaction time is 8.3h, then dries to obtain fine silt thing for 105 DEG C;Fine silt thing in Muffle furnace, 620 DEG C, calcination 3.2h after cooling down, can obtain the ozone Heterogeneous oxidation solid catalyst of fine particle shape.
Embodiment 2:0.24g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 0.36g, 10ml deionized waters, being added to volume is 100ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 5.7%, lithium hypochlorite:Double (levulinics Ketone) beryllium weight ratio=1:1.5;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+ 1.45g activated carbons, 1.65g carnallites, 1.85g dolomites, 2.05g calcites, 2.25g fluorites, the 2.45g of 400 mesh standard sieves The weight of glauberite, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(0.6g):The weight of porous material(11.7g)=1:19.5, heating To 48 DEG C, reaming modified support 11.5g is obtained after continuing stirring reaction 5.8h, filtering, 105 DEG C of dry constant weights;In 100ml ultrasounds In ripple reactor, reaming modified support 11.5g is put into, 2.2g beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate is added and is dissolved in The aqueous solution of 26ml deionized waters, the weight concentration of the aqueous solution is 7.8%, is uniformly mixed, beta-hydroxyethyl dimethyl 12 Alkylsurfuric acid ammonium(2.2g):Reaming modified support(11.5g )=1:5.2;It is 0.7 W/m to control ultrasonic power density3, ultrasonic wave 54 DEG C of frequency 29kHz, temperature, sonic oscillation 4.7h;After the completion of ultrasonic activation, the ultrasonic surface in ultrasound reactor is activated Carrier mixed liquor is transferred in 100ml hydrothermal reaction kettles, is added by 0.78g boraxs, 0.97g potassium sulfates, the rings penta 2 of 0.58g tri- Alkene promethium, 0.67g tri- (DPM dpm,dipivalomethane acid) gadolinium, 0.78g are hydrated three acetic acid terbiums, 0.87g tri-, and [N, N- are double (trimethyl silane) amine] erbium, 1.48g cobalt edetates, 1.77g cupric glutamates, the ammino palladium of 0.68g dichloros four, 0.87g dichloros The aqueous solution that two ammino platinum, 1.98g methyl chloride acryloyloxyethyl trimethyl ammoniums and 10ml deionized waters are prepared, this is water-soluble The weight concentration of liquid is 53.3%, the weight of the aqueous solution:Weight=21.43g of ultrasonic surface activated carrier mixed liquor:39.7g =1:1.9,175 DEG C of temperature is controlled, the hydro-thermal reaction time is 15.5h, then dries to obtain fine silt thing for 105 DEG C;Fine silt thing is in horse Not in stove, 930 DEG C, calcination 7.5h after cooling down, can obtain the ozone Heterogeneous oxidation solid catalyst of fine particle shape.
Comparative example 1:Preparation process is not added with lithium hypochlorite, double (acetylacetone,2,4-pentanedione) berylliums, Β-hydroxyethyl dimethyl dodecyl Outside ammonium sulfate, methyl chloride acryloyloxyethyl trimethyl ammonium, borax and potassium sulfate, whole preparation process, preparation condition and Embodiment 1 is identical.
The parameter of ozone Heterogeneous oxidation solid catalyst prepared by embodiment 1, embodiment 2 and comparative example 1 is included in table 1.
The embodiment of table 1 and comparative example prepare ozone Heterogeneous oxidation solid catalysis agent parameter
Project Average pore size (nm) Pore volume (cm3/g) BET is than surface (m2/g)
Embodiment 1 4.808 0.6288 741.53
Embodiment 2 4.349 0.5860 617.03
Comparative example 1 2.701 0.3741 432.27

Claims (2)

1. a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, it is characterized in that A groups can added in closed reactor Divide and deionized water stirring prepares the aqueous solution, the weight concentration for controlling component A is 2%~6%, after the completion of prepared by solution, in stirring Lower addition B component, is warming up to 35 DEG C~50 DEG C, continues stirring reaction 3h~6h, and filtering, reaction product is dry at 102 DEG C~106 DEG C Reaming modified support is obtained after dry constant weight, reaming modified support input ultrasound reactor, addition is matched somebody with somebody by component C and deionized water The aqueous solution of system, the weight concentration of component C is 3%~8%, is uniformly mixed, and it is 0.3~0.8W/ to control ultrasonic power density m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasonic surface activated carrier mixed liquor, transfer Into hydrothermal reaction kettle, the aqueous solution that D components and deionized water are prepared is added, the weight concentration of D components is 40%~55%, is pressed Weight meter, D component deionized water solutions:Weight ratio=1 of ultrasonic surface activated carrier mixed liquor:(1.5~2), control temperature 120 DEG C~180 DEG C, the hydro-thermal reaction time is 8h~16h, then dries to obtain fine silt thing, fine silt thing is in Muffle furnace, 600 DEG C~950 DEG C, calcination 3h~8h obtains ozone Heterogeneous oxidation solid catalyst;The component A by expanding agent lithium hypochlorite, Double (acetylacetone,2,4-pentanedione) beryllium compositions, by weight, lithium hypochlorite:Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B groups Divide and be made up of activated carbon, carnallite, dolomite, calcite, fluorite, glauberite, by weight, activated carbon:Carnallite:White clouds Stone:Calcite:Fluorite:The weight ratio of glauberite=(5~15):(7~17):(9~19):(11~21):(13~23): (15~25), by weight, component A:Weight ratio=1 of B component:(10~20), component C is beta-hydroxyethyl dimethyl 12 Alkylsurfuric acid ammonium, by weight, component C:Weight ratio=1 of reaming modified support:(5~10), D components are by composite mineralizer Borax, potassium sulfate, the cyclopentadiene promethium of catalytic activity auxiliary agent predecessor three, three (2,2,6,6- tetramethyl -3,5- heptadione acid) gadoliniums, It is hydrated three acetic acid terbiums, three [double (trimethyl silane) amine of N, N-] erbium Rare-earth chemicals, catalytic active center predecessor Normal transition metallo-organic compound cobalt edetate, cupric glutamate and the ammino palladium of precious metal chemical complex dichloro four, dichloro diamino Platinum is closed, emulsifying agent methyl chloride acryloyloxyethyl trimethyl ammonium is constituted, by weight, borax:Potassium sulfate:Three cyclopentadiene Promethium:Three (DPM dpm,dipivalomethane acid) gadoliniums:It is hydrated three acetic acid terbiums:Three [double (trimethyl silane) amine of N, N-] erbiums: Cobalt edetate:Cupric glutamate:The ammino palladium of dichloro four:The ammino platinum of dichloro two:Methyl chloride acryloyloxyethyl trimethyl ammonium Weight ratio=(4~8):(6~10):(3~6):(4~7):(5~8):(6~9):(10~15):(12~18):(4~ 7):(6~9):(6~20).
2. B component is made up of activated carbon, carnallite, dolomite, calcite, fluorite, glauberite according to claim 1, living Property charcoal, carnallite, dolomite, calcite, fluorite, glauberite crushed respectively, deionized water washing, which is dried, removes moisture Afterwards, sieved through standard screen, it is 0.0370mm~0.0750mm to control particle diameter.
CN201710274759.2A 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst Withdrawn CN107051480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710274759.2A CN107051480A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710274759.2A CN107051480A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Publications (1)

Publication Number Publication Date
CN107051480A true CN107051480A (en) 2017-08-18

Family

ID=59604596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710274759.2A Withdrawn CN107051480A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Country Status (1)

Country Link
CN (1) CN107051480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115069422A (en) * 2022-06-16 2022-09-20 中南大学 Diketone compound and its preparation method and use in floatation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115069422A (en) * 2022-06-16 2022-09-20 中南大学 Diketone compound and its preparation method and use in floatation
CN115069422B (en) * 2022-06-16 2023-02-24 中南大学 Application of diketone compound in high-calcium fluorite flotation

Similar Documents

Publication Publication Date Title
CN107051480A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107042115A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008364A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008381A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159235A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008360A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020110A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051496A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008371A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008376A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008384A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107088425A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051479A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN106984341A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008377A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159193A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008345A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107096542A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020123A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107029744A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008431A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051436A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020117A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159254A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051481A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170818

WW01 Invention patent application withdrawn after publication