CN106986989B - 一种聚酰胺中空纳米微球的制备方法 - Google Patents

一种聚酰胺中空纳米微球的制备方法 Download PDF

Info

Publication number
CN106986989B
CN106986989B CN201710345514.4A CN201710345514A CN106986989B CN 106986989 B CN106986989 B CN 106986989B CN 201710345514 A CN201710345514 A CN 201710345514A CN 106986989 B CN106986989 B CN 106986989B
Authority
CN
China
Prior art keywords
product
chloride
water
microemulsion
oil phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710345514.4A
Other languages
English (en)
Other versions
CN106986989A (zh
Inventor
丁晓莉
华明明
赵红永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201710345514.4A priority Critical patent/CN106986989B/zh
Publication of CN106986989A publication Critical patent/CN106986989A/zh
Application granted granted Critical
Publication of CN106986989B publication Critical patent/CN106986989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/043Drying and spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Polyamides (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明涉及纳米材料制备,具体的说是一种聚酰胺中空纳米微球的制备方法,其制备步骤可按三个方案进行。方案一:将间苯二胺等水溶性单体溶于水中,将该水溶液与一定量的油相溶剂和助剂混合形成油包水型微乳液,将一定量的均苯三甲酰氯等油溶性单体溶于微乳中,反应一定时间后,除去溶剂得到聚酰胺中空纳米微球;方案二:将均苯三甲酰氯等油溶性单体溶于油相溶剂中,将该溶液与一定量的水和助剂混合形成水包油型微乳液,将一定量的间苯二胺等水溶性单体溶于微乳中,反应一定时间后,除去溶剂得到聚酰胺中空纳米微球。

Description

一种聚酰胺中空纳米微球的制备方法
技术领域
本发明涉及纳米技术,具体的说是一种聚酰胺中空纳米微球的制备方法。
背景技术
近年来,各种具有特殊结构和特殊形貌的纳米材料引起了广泛的关注,其中之一是中空纳米微球材料。中空纳米微球是由核/壳复合结构材料演变而来,可以通过调节异质核/壳复合粒子的结构、尺寸及成分达到对其性质的可控调节,从而实现对其光学、热学、电学、磁学以及催化性质的大范围裁剪。由于这类结构的材料具有低密度、高比表面的特性,而且其空心部分可容纳大量的客体分子或大尺寸的客体,可以产生一些奇特的基于微观“包裹”效应的性质,使得中空纳米微球材料在医药、生化和化工等许多技术领域都有重要的作用。
空心微球的制备常用以下几种方式:(1)去除模板法,制备空心球的典型方法。在制备过程中,通过控制前驱体在核模板表面的沉淀或反应,形成表面包覆的核/壳结构,用加热或化学反应的方法去除核模板,就得到了空心球结构,球的大小由模板颗粒的尺寸决定。(2)微乳液法,以微乳液滴作模板,目标产物的前驱体在液滴表面水解生成相应的氢氧化物或含水氧化物,然后再经过缩聚反应形成稳定的胶体粒子包覆在乳液液滴表面,形成乳液/凝胶的核壳结构,通过加入水和丙酮及其他有机溶剂的方法,使产物与微乳液分离,再煅烧除去表面活性剂和有机溶剂,得到目标产物的空心球结构。用该方法可制备出纳米到微米尺度的空心球,并可制备出球壳含有介孔孔道的空心球。(3)喷雾反应法,先以水、乙醇或其他溶剂将目标前驱体配成溶液,再通过喷雾装置将溶液雾化,雾化液经过喷嘴形成液滴进入反应器中,液滴表面的溶剂迅速蒸发,溶质发生热分解或燃烧等化学反应,沉淀下来形成一个空心球壳,从而得到了空心球的结构。(4)超声波法,由于超声波所产生的超声空化气泡爆炸时释放出巨大的能量,产生局部的高温高压环境和具有强烈冲击力的微射流,能够驱动许多化学反应。(5)模板——界面反应法,将化学反应限制在核模板的表面,通过化学反应生成材料的空心结构。在反应过程中,模板作为反应物参加反应,生成物作为壳包覆在未反应的模板上。随着反应的进行,核模板的量逐渐减少,而壳层厚度不断增加,最后反应生成物形成了空心微球结构。(7)逐层自组装法,把带负(正)电荷的胶体微粒作为模板加入到聚阳(阴)离子溶液中,待吸附饱和后用超离心的办法使之与溶液分离,再加到聚阴(阳)离子溶液中,如此反复就可以得到多层膜结构。在完成了微粒模板上的多层膜组装后,将核模板溶解出来,最后得到了包含纳米微粒、聚电解质等在内的空心球结构。
聚酰胺微球的制备在文献报道中出现的较少,中空型的报道则更为少见。
发明内容
本发明的目的在于提供一种简单的方法用于聚酰胺中空纳米微球的制备。该方法包括两个方案。
方案一包括以下步骤:
1)将一定量的水溶性胺单体溶于水中;
2)将方案一中步骤1)中配置的水溶液和一定量的油相溶剂,一定量的助剂混合,形成油包水型微乳液;
3)将一定量的油溶性酰氯单体溶于方案一中步骤2)中配置的微乳液中,水溶性单体和油溶性单体在油水界面处发生界面聚合,反应一段时间后,蒸发除去部分溶剂,再在真空烘箱中干燥,形成中空纳米微球。
方案二包括以下步骤:
1)将一定量的油溶性酰氯单体溶于油相溶剂中;
2)将方案二中步骤1)中配置的油相溶液和一定量的水,一定量的助剂溶剂混合,形成水包油型微乳液;
3)将一定量的水溶性胺单体溶于方案二中步骤2)中配置的微乳液中,水溶性单体和油溶性单体在油水界面处发生界面聚合,反应一段时间后,蒸发除去部分溶剂,再在真空烘箱中干燥,形成中空纳米微球。
方案一和二中所述的水溶性胺单体可选用以下一种或几种的混合物:苯二胺(如间苯二胺、对苯二胺)及其衍生物、二乙烯三胺、三乙烯四胺、聚乙烯亚胺、甲基间苯二胺、乙二胺、己二胺、辛二胺、支化聚酰胺多胺、O,O′-二(2-氨基丙基)聚丙二醇-嵌段-聚乙二醇-嵌段-聚丙二醇。
方案一和二中所述的油溶性酰氯单体可选用以下一种或几种的混合物:均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯、邻苯二甲酰氯、1,5-萘二磺酰氯、1,3,6-三磺酰氯、5-氧甲酰氯-异肽酰氯、5-异氰酸酯-异肽酰氯、1,3,5-环己烷三甲酰氯、3,3,5,5-联苯四甲酰氯。
方案一中所述的油包水微乳液包括以下体系:正己烷/水/异丙醇,甲苯/水/乙醇,油酸/水/正丙醇,呋喃甲醛/水/甲醇,呋喃甲醛/水/乙醇,呋喃甲醛/水/二甲基甲酰胺,油酸/氨水/汽油/乙醇/水,油酸/氨水/汽油/正丙醇/水,油酸/氨水/汽油/正丁醇/水,油酸/氨水/汽油/正戊醇/水,油酸/氨水/汽油/正己醇/水油酸/氨水/汽油/正庚醇/水。
方案二中所述的水包油微乳液包括以下体系:甲苯/水/乙醇,油酸/水/正丙醇,呋喃甲醛/水/甲醇,呋喃甲醛/水/乙醇,呋喃甲醛/水/二甲基甲酰胺。
本发明具有如下优点:在微乳体系中反应生成中空纳米微球,且主要是利用的是酰氯和胺基间的快速反应,反应快速;采用的微乳体系未加表面活性剂,无需后处理将表面活性剂除去,直接将溶剂去除便可得到聚酰胺纳米微球。该种方法简单,步骤少,耗时少。
附图说明
图1实施例1中用间苯二胺和均苯三甲酰氯制备的中空纳米微球的扫描电镜照片
图2实施例2中用对苯二胺和间苯二甲酰氯制备的中空纳米微球的透射电镜照片
具体实施方式
实施例1
配置10%间苯二胺水溶液,水溶液与正己烷与异丙醇按质量比0.3∶0.25∶0.45配置成微乳液;取一定量的油溶相单体(微乳液中正己烷质量的10%)溶于微乳液中,反应5min后,蒸发掉部分溶剂,再放入真空烘箱中干燥除去水分和残留的异丙醇和正己烷。粒径如表1所示。
表1
Figure BSA0000144599380000021
Figure BSA0000144599380000031
实施例2
配置25%甲基间苯二胺水溶液,水溶液与甲苯与乙醇按质量比8.7∶55.7∶35.6配置成微乳液;取一定量的油溶单体(微乳液中甲苯质量的25%)溶于微乳液中,反应5min后,蒸发掉部分溶剂,再放入真空烘箱中干燥除去水分和残留的异丙醇和正己烷。粒径如表2所示。
表2
油相单体 外径(nm) 内径(nm)
均苯三甲酰氯 56 35
对苯二甲酰氯 78 43
间苯二甲酰氯 76 45
邻苯二甲酰氯 87 41
1,5-萘二磺酰氯 88 47
1,3,6-三磺酰氯 84 60
5-氧甲酰氯-异肽酰氯 59 38
5-异氰酸酯-异肽酰氯 71 41
1,3,5-环己烷三甲酰氯 67 27
3,3,5,5-联苯四甲酰氯 46 25
实施例3
配置间苯二甲酰氯的甲苯溶液(酰氯质量含量15%),油酸与水与异丙醇按质量比75∶10∶15配置成微乳液;取一定量的水相单体溶于微乳液中,反应3min后,通过蒸发除去部分溶剂,在放入真空烘箱中干燥除去水分和残留的乙醇和甲苯。粒径如表2所示。
表3
Figure BSA0000144599380000032
Figure BSA0000144599380000041
以上两个实例并不表明本专利的有限的应用范围。任何对该领域熟悉的专业人士都能够非常容易地根据专利所阐述的内容应用于其他任何可能的体系,如哌嗪及其衍生物也可作为水溶性单体使用,其他的无表面活性剂体微乳体系也可用作反应体系。

Claims (1)

1.一种聚酰胺中空纳米微球的制备方法,其特征在于:配置10%间苯二胺水溶液,水溶液与正己烷与异丙醇按质量比0.3∶0.25∶0.45配置成微乳液;取微乳液中正己烷质量的10%的油溶相单体溶于微乳液中,反应5min后,蒸发掉部分溶剂,再放入真空烘箱中干燥除去水分和残留的异丙醇和正己烷;
所述油相单体为对苯二甲酰氯时,产物外径为68nm、内径为40nm;
所述油相单体为间苯二甲酰氯时,产物外径为76nm、内径为35nm;
所述油相单体为邻苯二甲酰氯时,产物外径为57nm、内径为29nm;
所述油相单体为1,5-萘二黄酰氯时,产物外径为48nm、内径为17nm;
所述油相单体为1,3,6-三磺酰氯时,产物外径为54nm、内径为20nm;
所述油相单体为5-氧甲酰氯-异肽酰氯时,产物外径为49nm、内径为18nm;
所述油相单体为5-异氰酸酯-异肽酰氯时,产物外径为71nm、内径为40nm;
所述油相单体为1,3,5-环己烷三甲酰氯时,产物外径为57nm、内径为37nm;
所述油相单体为3,3,5,5-联苯四甲酰氯时,产物外径为56nm、内径为23nm。
CN201710345514.4A 2017-05-12 2017-05-12 一种聚酰胺中空纳米微球的制备方法 Active CN106986989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710345514.4A CN106986989B (zh) 2017-05-12 2017-05-12 一种聚酰胺中空纳米微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710345514.4A CN106986989B (zh) 2017-05-12 2017-05-12 一种聚酰胺中空纳米微球的制备方法

Publications (2)

Publication Number Publication Date
CN106986989A CN106986989A (zh) 2017-07-28
CN106986989B true CN106986989B (zh) 2020-10-27

Family

ID=59420841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710345514.4A Active CN106986989B (zh) 2017-05-12 2017-05-12 一种聚酰胺中空纳米微球的制备方法

Country Status (1)

Country Link
CN (1) CN106986989B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694475B (zh) * 2017-10-24 2022-03-15 中国石油化工股份有限公司 还原性聚酰胺材料以及负载型纳米金属催化剂及其制备方法和应用
CN107880218B (zh) * 2017-11-21 2020-07-03 天津工业大学 一种聚合物中空纳米微球及其制备方法和应用
CN110559867B (zh) * 2018-06-06 2022-02-18 天津工业大学 一种复合膜及其制备方法
CN111804161B (zh) * 2019-04-12 2022-05-17 天津工业大学 用于co2分离的包覆氨基酸离子液体纳米微球/聚合物杂化膜
CN111560258A (zh) * 2020-05-27 2020-08-21 江苏集萃智能液晶科技有限公司 温敏显色的液晶微胶囊及其制备方法
CN115232333B (zh) * 2022-09-23 2023-01-31 江苏恒力化纤股份有限公司 一种由废旧pa6织物制备pa6粉末的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577515A (en) * 1963-12-13 1971-05-04 Pennwalt Corp Encapsulation by interfacial polycondensation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577515A (en) * 1963-12-13 1971-05-04 Pennwalt Corp Encapsulation by interfacial polycondensation

Also Published As

Publication number Publication date
CN106986989A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
CN106986989B (zh) 一种聚酰胺中空纳米微球的制备方法
Liu et al. Synthesis and application of core–shell liquid metal particles: A perspective of surface engineering
Liao et al. Preparation and characterization of microcapsule containing epoxy resin and its self-healing performance of anticorrosion covering material
CN102600778A (zh) 一种纳米复合环氧树脂自修复微胶囊及其制备方法
US8147783B2 (en) Nickel hydroxide powder and method for producing same
US7879131B2 (en) Metal encapsulation
JP2014087786A (ja) マイクロカプセルの製造方法及びマイクロカプセル
CN112745805A (zh) 一种相变微胶囊的制备方法
CN113248674A (zh) 一种聚合物颗粒及制备方法与碳基材料
Ma et al. Preparation of polyaniline (PANI)-coated Fe 3 O 4 microsphere chains and PANI chain-like hollow spheres without using surfactants
CN102895925B (zh) 一种硅质体微胶囊及其制备方法
CN103359746A (zh) 一种双层中空二氧化硅纳米球及其制备方法
WO2015133606A1 (ja) シリカ殻からなるナノ中空粒子の製造方法
Liu et al. Interfacial Activity of Janus Particle: Unity of Molecular Surfactant and Homogeneous Particle
Du et al. One-step synthesis of hydrophobic multicompartment organosilica microspheres with highly interconnected macro-mesopores for the stabilization of liquid marbles with excellent catalysis
Zhu et al. The advantages of nanoparticle surfactants over Janus nanoparticles on structuring liquids
Fang et al. Massage ball-like, hollow porous Au/SiO 2 microspheres templated by a Pickering emulsion derived from polymer–metal hybrid emulsifier micelles
CN107880218B (zh) 一种聚合物中空纳米微球及其制备方法和应用
Fuji Hollow particles as controlled small space to functionalize materials
Ishizuka et al. Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification
Liu et al. Dynamic evolution of a vesicle formed by comb-like block copolymer-tethered nanoparticles: a dissipative particle dynamics simulation study
CN102091576A (zh) 控制搅拌速度的微胶囊制备工艺
Mirzataheria et al. Emulsion polymerization and encapsulation of micro and nanoparticles within polymer droplets
Chen et al. Preparation of silica capsules via an acid-catalyzed sol–gel process in inverse miniemulsions
JP2013103860A (ja) メソ細孔を有するシリカ殻からなるナノ中空粒子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant